mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
Compare commits
240 Commits
hengwu.zty
...
dev/Comet
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4c9a4c2fed | ||
|
|
e8a26827ae | ||
|
|
ab74475604 | ||
|
|
369f3c2c18 | ||
|
|
7f4c9a2c64 | ||
|
|
fd9b7d45e2 | ||
|
|
62e04e8856 | ||
|
|
96950745a6 | ||
|
|
9b3f351496 | ||
|
|
00b454cf30 | ||
|
|
c0f6a474f3 | ||
|
|
ab5b8eb160 | ||
|
|
b4fe05d466 | ||
|
|
a1314e573a | ||
|
|
2fbeba50ae | ||
|
|
d4d187bd8c | ||
|
|
90b666ea20 | ||
|
|
fd45708e4b | ||
|
|
296ed4f526 | ||
|
|
95e99e0417 | ||
|
|
ba6d8c07ba | ||
|
|
da3f129977 | ||
|
|
2889c25863 | ||
|
|
aa65200713 | ||
|
|
86e26f54c7 | ||
|
|
f1c214377c | ||
|
|
369ea80bd4 | ||
|
|
69518b2bde | ||
|
|
276cfa02b6 | ||
|
|
190840b8dc | ||
|
|
c6c3f27ecc | ||
|
|
49761d2474 | ||
|
|
07e477519b | ||
|
|
41c5e8cd6d | ||
|
|
66ceaff472 | ||
|
|
07a314767f | ||
|
|
0b75c3a03f | ||
|
|
b4dea3d64a | ||
|
|
43f9e9ab20 | ||
|
|
025f6f0f7f | ||
|
|
69051d11ec | ||
|
|
59fa786769 | ||
|
|
f38f594303 | ||
|
|
eb4d5d053f | ||
|
|
d450c32296 | ||
|
|
e84d72a4d9 | ||
|
|
06e86619c2 | ||
|
|
e257c16796 | ||
|
|
87475ccf41 | ||
|
|
8a1bce6c81 | ||
|
|
b1e966309d | ||
|
|
b95f18909e | ||
|
|
1cfc5dd077 | ||
|
|
d2e43fe6f4 | ||
|
|
426c4001ca | ||
|
|
92f1c659b9 | ||
|
|
ac75ae5184 | ||
|
|
1e52c6071e | ||
|
|
2a0dd5447a | ||
|
|
b6a1116d15 | ||
|
|
5d12ced727 | ||
|
|
2ea414922a | ||
|
|
f0b5fbb658 | ||
|
|
0b17753abe | ||
|
|
9e156428e2 | ||
|
|
99ab0f4fcb | ||
|
|
77d8cf13a3 | ||
|
|
6b21f8e82c | ||
|
|
2745d47e92 | ||
|
|
737d10191b | ||
|
|
d3b1a8e352 | ||
|
|
88f6a8e2fa | ||
|
|
b9ddcba5fd | ||
|
|
1f30317247 | ||
|
|
bfcbc73df8 | ||
|
|
4d49b68207 | ||
|
|
5aa3a46d96 | ||
|
|
b60c37b31a | ||
|
|
3d0458af31 | ||
|
|
0f6ff298dd | ||
|
|
877cf1c873 | ||
|
|
dec008e1b7 | ||
|
|
178f4bbaf9 | ||
|
|
5627adefb1 | ||
|
|
d95aaea3c5 | ||
|
|
bd4be3fc05 | ||
|
|
7a969b10bb | ||
|
|
87cec23fd0 | ||
|
|
5b4ddd26fa | ||
|
|
0d1e562f1d | ||
|
|
b00d8a073c | ||
|
|
8a88446858 | ||
|
|
26c774098d | ||
|
|
81edc83648 | ||
|
|
60b0416229 | ||
|
|
32e6684025 | ||
|
|
8ec41faf91 | ||
|
|
6c93fe86c5 | ||
|
|
8266566144 | ||
|
|
091e5c4ed8 | ||
|
|
1298d90e48 | ||
|
|
bcc58cb4cb | ||
|
|
1d8d94de82 | ||
|
|
0993ec5f08 | ||
|
|
c4688b68eb | ||
|
|
d43a0171d4 | ||
|
|
c4c8050532 | ||
|
|
3581caec76 | ||
|
|
94d6ce1006 | ||
|
|
ac70560364 | ||
|
|
6b5931dc70 | ||
|
|
7c561b6a7f | ||
|
|
30851ede4b | ||
|
|
fc3ff075ec | ||
|
|
e982eecc27 | ||
|
|
66fbcf6ac2 | ||
|
|
07d23ab08b | ||
|
|
0bcd2318c7 | ||
|
|
c9b047fbda | ||
|
|
66ae73e409 | ||
|
|
1e853ed080 | ||
|
|
6b9cebea14 | ||
|
|
9b8f28aa32 | ||
|
|
2511a49a72 | ||
|
|
014fed4405 | ||
|
|
f56c2583e8 | ||
|
|
84015697c2 | ||
|
|
c693039d14 | ||
|
|
2345ce6be2 | ||
|
|
0bf706c26f | ||
|
|
3e381002d7 | ||
|
|
cde3cec6fa | ||
|
|
07352a50b3 | ||
|
|
dc3f6432ba | ||
|
|
d6dbdfbf31 | ||
|
|
c3dfd23399 | ||
|
|
7701325969 | ||
|
|
5ed5bb15c8 | ||
|
|
6d22d0b76f | ||
|
|
487701c98c | ||
|
|
3914b54c82 | ||
|
|
a2ece33477 | ||
|
|
3411e1f599 | ||
|
|
dfcd6d0a64 | ||
|
|
16d66dc6a6 | ||
|
|
d8f00f4793 | ||
|
|
0930b4a106 | ||
|
|
d554db7e32 | ||
|
|
027e1ccb82 | ||
|
|
d1f7c1c9d7 | ||
|
|
5bd5dfecab | ||
|
|
18b9a8c844 | ||
|
|
0f19b97c5a | ||
|
|
a4db3db8ed | ||
|
|
ace734def8 | ||
|
|
5157baf166 | ||
|
|
6b7286eb62 | ||
|
|
21ddaeccf2 | ||
|
|
7e6d60c24c | ||
|
|
de76577a9f | ||
|
|
29507bc77a | ||
|
|
555efd0301 | ||
|
|
ea7d709fbb | ||
|
|
73784974ce | ||
|
|
789ee9e5e7 | ||
|
|
cb200b21c5 | ||
|
|
8130abb5ea | ||
|
|
c9acce1482 | ||
|
|
d49259855b | ||
|
|
67f298d94a | ||
|
|
4a1ec98304 | ||
|
|
0b76dfa1eb | ||
|
|
74a449ad1f | ||
|
|
9c0aa1918b | ||
|
|
2c1877a5d4 | ||
|
|
abc6f70ace | ||
|
|
ffa28e3bbd | ||
|
|
8555ab4ded | ||
|
|
69202008ce | ||
|
|
ba3d9693da | ||
|
|
06934c38c7 | ||
|
|
d52358f6c5 | ||
|
|
72b89a52fb | ||
|
|
49015f63e6 | ||
|
|
ed87445540 | ||
|
|
f6d44af146 | ||
|
|
7a2014bee3 | ||
|
|
95051e5761 | ||
|
|
f65eca6723 | ||
|
|
cd26f11859 | ||
|
|
28f1353324 | ||
|
|
f6b5c42823 | ||
|
|
ff8e63567a | ||
|
|
2665b06e95 | ||
|
|
2898d5a851 | ||
|
|
e19e80fcd8 | ||
|
|
f517d3627a | ||
|
|
9e0b99e48e | ||
|
|
df653f1e98 | ||
|
|
c6b16c06e8 | ||
|
|
c901a12789 | ||
|
|
122df8c420 | ||
|
|
1d05ae5fd3 | ||
|
|
73271d46f9 | ||
|
|
7b3e285bca | ||
|
|
bcda6d807c | ||
|
|
4d6a55243c | ||
|
|
33a585374a | ||
|
|
90433f5373 | ||
|
|
eeebc45313 | ||
|
|
9100813b79 | ||
|
|
7f5e391041 | ||
|
|
e141634da1 | ||
|
|
11eacb810e | ||
|
|
7555afb90a | ||
|
|
2ce724045b | ||
|
|
7795445ed9 | ||
|
|
d8197de4cc | ||
|
|
752103a307 | ||
|
|
a801416805 | ||
|
|
fadb22086f | ||
|
|
d2dea3d928 | ||
|
|
ee988420f3 | ||
|
|
18599be8d5 | ||
|
|
29408360fb | ||
|
|
6e7f5b922a | ||
|
|
53a3c1b17f | ||
|
|
20e0715dac | ||
|
|
662012999a | ||
|
|
1ab3186799 | ||
|
|
5f21aef786 | ||
|
|
1d881df8b2 | ||
|
|
f1e374a9bb | ||
|
|
8b097f7625 | ||
|
|
dcc943db43 | ||
|
|
9ab298dd49 | ||
|
|
bb690d9d1e | ||
|
|
f4e70e222c | ||
|
|
02f941d348 | ||
|
|
a13411c561 |
56
.github/workflows/lint.yml
vendored
Normal file
56
.github/workflows/lint.yml
vendored
Normal file
@@ -0,0 +1,56 @@
|
||||
name: Lint
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
|
||||
jobs:
|
||||
quick-checks:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Fetch CosyVoice
|
||||
uses: actions/checkout@v1
|
||||
- name: Checkout PR tip
|
||||
run: |
|
||||
set -eux
|
||||
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
|
||||
# We are on a PR, so actions/checkout leaves us on a merge commit.
|
||||
# Check out the actual tip of the branch.
|
||||
git checkout ${{ github.event.pull_request.head.sha }}
|
||||
fi
|
||||
echo ::set-output name=commit_sha::$(git rev-parse HEAD)
|
||||
id: get_pr_tip
|
||||
- name: Ensure no tabs
|
||||
run: |
|
||||
(! git grep -I -l $'\t' -- . ':(exclude)*.txt' ':(exclude)*.svg' ':(exclude)**Makefile' ':(exclude)**/contrib/**' ':(exclude)third_party' ':(exclude).gitattributes' ':(exclude).gitmodules' || (echo "The above files have tabs; please convert them to spaces"; false))
|
||||
- name: Ensure no trailing whitespace
|
||||
run: |
|
||||
(! git grep -I -n $' $' -- . ':(exclude)*.txt' ':(exclude)third_party' ':(exclude).gitattributes' ':(exclude).gitmodules' || (echo "The above files have trailing whitespace; please remove them"; false))
|
||||
|
||||
flake8-py3:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: 3.9
|
||||
architecture: x64
|
||||
- name: Fetch CosyVoice
|
||||
uses: actions/checkout@v1
|
||||
- name: Checkout PR tip
|
||||
run: |
|
||||
set -eux
|
||||
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
|
||||
# We are on a PR, so actions/checkout leaves us on a merge commit.
|
||||
# Check out the actual tip of the branch.
|
||||
git checkout ${{ github.event.pull_request.head.sha }}
|
||||
fi
|
||||
echo ::set-output name=commit_sha::$(git rev-parse HEAD)
|
||||
id: get_pr_tip
|
||||
- name: Run flake8
|
||||
run: |
|
||||
set -eux
|
||||
pip install flake8==3.8.2 flake8-bugbear flake8-comprehensions flake8-executable flake8-pyi==20.5.0 mccabe pycodestyle==2.6.0 pyflakes==2.2.0
|
||||
flake8 --version
|
||||
flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py
|
||||
if [ $? != 0 ]; then exit 1; fi
|
||||
22
.github/workflows/stale-issues.yml
vendored
Normal file
22
.github/workflows/stale-issues.yml
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
name: Close inactive issues
|
||||
on:
|
||||
schedule:
|
||||
- cron: "30 1 * * *"
|
||||
|
||||
jobs:
|
||||
close-issues:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/stale@v5
|
||||
with:
|
||||
days-before-issue-stale: 30
|
||||
days-before-issue-close: 14
|
||||
stale-issue-label: "stale"
|
||||
stale-issue-message: "This issue is stale because it has been open for 30 days with no activity."
|
||||
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
|
||||
days-before-pr-stale: -1
|
||||
days-before-pr-close: -1
|
||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -43,7 +43,10 @@ compile_commands.json
|
||||
|
||||
# train/inference files
|
||||
*.wav
|
||||
*.m4a
|
||||
*.aac
|
||||
*.pt
|
||||
pretrained_models/*
|
||||
*_pb2_grpc.py
|
||||
*_pb2.py
|
||||
*_pb2.py
|
||||
*.tar
|
||||
170
README.md
170
README.md
@@ -1,38 +1,51 @@
|
||||
# CosyVoice
|
||||
## 👉🏻 [CosyVoice Demos](https://fun-audio-llm.github.io/) 👈🏻
|
||||
[[CosyVoice Paper](https://fun-audio-llm.github.io/pdf/CosyVoice_v1.pdf)][[CosyVoice Studio](https://www.modelscope.cn/studios/iic/CosyVoice-300M)][[CosyVoice Code](https://github.com/FunAudioLLM/CosyVoice)]
|
||||
[](https://github.com/Akshay090/svg-banners)
|
||||
|
||||
For `SenseVoice`, visit [SenseVoice repo](https://github.com/FunAudioLLM/SenseVoice) and [SenseVoice space](https://www.modelscope.cn/studios/iic/SenseVoice).
|
||||
## 👉🏻 CosyVoice 👈🏻
|
||||
**CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/abs/2412.10117); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/spaces/FunAudioLLM/CosyVoice2-0.5B)
|
||||
|
||||
**CosyVoice 1.0**: [Demos](https://fun-audio-llm.github.io); [Paper](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice-300M)
|
||||
|
||||
## Highlight🔥
|
||||
|
||||
**CosyVoice 2.0** has been released! Compared to version 1.0, the new version offers more accurate, more stable, faster, and better speech generation capabilities.
|
||||
### Multilingual
|
||||
- **Supported Language**: Chinese, English, Japanese, Korean, Chinese dialects (Cantonese, Sichuanese, Shanghainese, Tianjinese, Wuhanese, etc.)
|
||||
- **Crosslingual & Mixlingual**:Support zero-shot voice cloning for cross-lingual and code-switching scenarios.
|
||||
### Ultra-Low Latency
|
||||
- **Bidirectional Streaming Support**: CosyVoice 2.0 integrates offline and streaming modeling technologies.
|
||||
- **Rapid First Packet Synthesis**: Achieves latency as low as 150ms while maintaining high-quality audio output.
|
||||
### High Accuracy
|
||||
- **Improved Pronunciation**: Reduces pronunciation errors by 30% to 50% compared to CosyVoice 1.0.
|
||||
- **Benchmark Achievements**: Attains the lowest character error rate on the hard test set of the Seed-TTS evaluation set.
|
||||
### Strong Stability
|
||||
- **Consistency in Timbre**: Ensures reliable voice consistency for zero-shot and cross-language speech synthesis.
|
||||
- **Cross-language Synthesis**: Marked improvements compared to version 1.0.
|
||||
### Natural Experience
|
||||
- **Enhanced Prosody and Sound Quality**: Improved alignment of synthesized audio, raising MOS evaluation scores from 5.4 to 5.53.
|
||||
- **Emotional and Dialectal Flexibility**: Now supports more granular emotional controls and accent adjustments.
|
||||
|
||||
## Roadmap
|
||||
|
||||
- [x] 2024/12
|
||||
|
||||
- [x] 25hz cosyvoice 2.0 released
|
||||
|
||||
- [x] 2024/09
|
||||
|
||||
- [x] 25hz cosyvoice base model
|
||||
- [x] 25hz cosyvoice voice conversion model
|
||||
|
||||
- [x] 2024/08
|
||||
|
||||
- [x] Repetition Aware Sampling(RAS) inference for llm stability
|
||||
- [x] Streaming inference mode support, including kv cache and sdpa for rtf optimization
|
||||
|
||||
- [x] 2024/07
|
||||
|
||||
- [x] Flow matching training support
|
||||
- [x] WeTextProcessing support when ttsfrd is not avaliable
|
||||
- [x] WeTextProcessing support when ttsfrd is not available
|
||||
- [x] Fastapi server and client
|
||||
|
||||
- [ ] 2024/08
|
||||
|
||||
- [ ] Repetition Aware Sampling(RAS) inference for llm stability
|
||||
- [ ] Streaming inference mode support, including kv cache and sdpa for rtf optimization
|
||||
|
||||
- [ ] 2024/09
|
||||
|
||||
- [ ] 50hz llm model which supports 10 language
|
||||
|
||||
- [ ] 2024/10
|
||||
|
||||
- [ ] 50hz llama based llm model which supports lora finetune
|
||||
|
||||
- [ ] TBD
|
||||
|
||||
- [ ] Support more instruction mode
|
||||
- [ ] Voice conversion
|
||||
- [ ] Music generation
|
||||
- [ ] Training script sample based on Mandarin
|
||||
- [ ] CosyVoice-500M trained with more multi-lingual data
|
||||
- [ ] More...
|
||||
|
||||
## Install
|
||||
|
||||
@@ -50,7 +63,7 @@ git submodule update --init --recursive
|
||||
- Create Conda env:
|
||||
|
||||
``` sh
|
||||
conda create -n cosyvoice python=3.8
|
||||
conda create -n cosyvoice -y python=3.10
|
||||
conda activate cosyvoice
|
||||
# pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
|
||||
conda install -y -c conda-forge pynini==2.1.5
|
||||
@@ -65,14 +78,14 @@ sudo yum install sox sox-devel
|
||||
|
||||
**Model download**
|
||||
|
||||
We strongly recommend that you download our pretrained `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
||||
|
||||
If you are expert in this field, and you are only interested in training your own CosyVoice model from scratch, you can skip this step.
|
||||
We strongly recommend that you download our pretrained `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
||||
|
||||
``` python
|
||||
# SDK模型下载
|
||||
from modelscope import snapshot_download
|
||||
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
|
||||
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
||||
snapshot_download('iic/CosyVoice-300M-25Hz', local_dir='pretrained_models/CosyVoice-300M-25Hz')
|
||||
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
||||
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
||||
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
||||
@@ -81,64 +94,100 @@ snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice
|
||||
``` sh
|
||||
# git模型下载,请确保已安装git lfs
|
||||
mkdir -p pretrained_models
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hz
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
|
||||
```
|
||||
|
||||
Optionaly, you can unzip `ttsfrd` resouce and install `ttsfrd` package for better text normalization performance.
|
||||
Optionally, you can unzip `ttsfrd` resouce and install `ttsfrd` package for better text normalization performance.
|
||||
|
||||
Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use WeTextProcessing by default.
|
||||
|
||||
``` sh
|
||||
cd pretrained_models/CosyVoice-ttsfrd/
|
||||
unzip resource.zip -d .
|
||||
pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl
|
||||
pip install ttsfrd_dependency-0.1-py3-none-any.whl
|
||||
pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
|
||||
```
|
||||
|
||||
**Basic Usage**
|
||||
|
||||
For zero_shot/cross_lingual inference, please use `CosyVoice-300M` model.
|
||||
For sft inference, please use `CosyVoice-300M-SFT` model.
|
||||
For instruct inference, please use `CosyVoice-300M-Instruct` model.
|
||||
First, add `third_party/Matcha-TTS` to your `PYTHONPATH`.
|
||||
|
||||
``` sh
|
||||
export PYTHONPATH=third_party/Matcha-TTS
|
||||
```
|
||||
We strongly recommend using `CosyVoice2-0.5B` for better performance.
|
||||
Follow code below for detailed usage of each model.
|
||||
|
||||
``` python
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
import sys
|
||||
sys.path.append('third_party/Matcha-TTS')
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
import torchaudio
|
||||
```
|
||||
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT')
|
||||
**CosyVoice2 Usage**
|
||||
```python
|
||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
|
||||
|
||||
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
||||
# zero_shot usage
|
||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
|
||||
for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
# instruct usage
|
||||
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
# bistream usage, you can use generator as input, this is useful when using text llm model as input
|
||||
# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
|
||||
def text_generator():
|
||||
yield '收到好友从远方寄来的生日礼物,'
|
||||
yield '那份意外的惊喜与深深的祝福'
|
||||
yield '让我心中充满了甜蜜的快乐,'
|
||||
yield '笑容如花儿般绽放。'
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
```
|
||||
|
||||
**CosyVoice Usage**
|
||||
```python
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
|
||||
# sft usage
|
||||
print(cosyvoice.list_avaliable_spks())
|
||||
output = cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女')
|
||||
torchaudio.save('sft.wav', output['tts_speech'], 22050)
|
||||
print(cosyvoice.list_available_spks())
|
||||
# change stream=True for chunk stream inference
|
||||
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
|
||||
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M') # or change to pretrained_models/CosyVoice-300M-25Hz for 25Hz inference
|
||||
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
|
||||
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
|
||||
output = cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k)
|
||||
torchaudio.save('zero_shot.wav', output['tts_speech'], 22050)
|
||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
# cross_lingual usage
|
||||
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
|
||||
output = cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k)
|
||||
torchaudio.save('cross_lingual.wav', output['tts_speech'], 22050)
|
||||
prompt_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
# vc usage
|
||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||
source_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_vc(source_speech_16k, prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
|
||||
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
|
||||
output = cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
|
||||
torchaudio.save('instruct.wav', output['tts_speech'], 22050)
|
||||
for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
|
||||
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
```
|
||||
|
||||
**Start web demo**
|
||||
|
||||
You can use our web demo page to get familiar with CosyVoice quickly.
|
||||
We support sft/zero_shot/cross_lingual/instruct inference in web demo.
|
||||
|
||||
Please see the demo website for details.
|
||||
|
||||
@@ -150,12 +199,11 @@ python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice-300M
|
||||
**Advanced Usage**
|
||||
|
||||
For advanced user, we have provided train and inference scripts in `examples/libritts/cosyvoice/run.sh`.
|
||||
You can get familiar with CosyVoice following this recipie.
|
||||
|
||||
**Build for deployment**
|
||||
|
||||
Optionally, if you want to use grpc for service deployment,
|
||||
you can run following steps. Otherwise, you can just ignore this step.
|
||||
Optionally, if you want service deployment,
|
||||
you can run following steps.
|
||||
|
||||
``` sh
|
||||
cd runtime/python
|
||||
@@ -163,10 +211,10 @@ docker build -t cosyvoice:v1.0 .
|
||||
# change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference
|
||||
# for grpc usage
|
||||
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"
|
||||
python3 grpc/client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
||||
cd grpc && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
||||
# for fastapi usage
|
||||
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && MODEL_DIR=iic/CosyVoice-300M fastapi dev --port 50000 server.py && sleep infinity"
|
||||
python3 fastapi/client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
||||
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && python3 server.py --port 50000 --model_dir iic/CosyVoice-300M && sleep infinity"
|
||||
cd fastapi && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
||||
```
|
||||
|
||||
## Discussion & Communication
|
||||
|
||||
92
cosyvoice/bin/average_model.py
Normal file
92
cosyvoice/bin/average_model.py
Normal file
@@ -0,0 +1,92 @@
|
||||
# Copyright (c) 2020 Mobvoi Inc (Di Wu)
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import glob
|
||||
|
||||
import yaml
|
||||
import torch
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='average model')
|
||||
parser.add_argument('--dst_model', required=True, help='averaged model')
|
||||
parser.add_argument('--src_path',
|
||||
required=True,
|
||||
help='src model path for average')
|
||||
parser.add_argument('--val_best',
|
||||
action="store_true",
|
||||
help='averaged model')
|
||||
parser.add_argument('--num',
|
||||
default=5,
|
||||
type=int,
|
||||
help='nums for averaged model')
|
||||
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
val_scores = []
|
||||
if args.val_best:
|
||||
yamls = glob.glob('{}/*.yaml'.format(args.src_path))
|
||||
yamls = [
|
||||
f for f in yamls
|
||||
if not (os.path.basename(f).startswith('train')
|
||||
or os.path.basename(f).startswith('init'))
|
||||
]
|
||||
for y in yamls:
|
||||
with open(y, 'r') as f:
|
||||
dic_yaml = yaml.load(f, Loader=yaml.BaseLoader)
|
||||
loss = float(dic_yaml['loss_dict']['loss'])
|
||||
epoch = int(dic_yaml['epoch'])
|
||||
step = int(dic_yaml['step'])
|
||||
tag = dic_yaml['tag']
|
||||
val_scores += [[epoch, step, loss, tag]]
|
||||
sorted_val_scores = sorted(val_scores,
|
||||
key=lambda x: x[2],
|
||||
reverse=False)
|
||||
print("best val (epoch, step, loss, tag) = " +
|
||||
str(sorted_val_scores[:args.num]))
|
||||
path_list = [
|
||||
args.src_path + '/epoch_{}_whole.pt'.format(score[0])
|
||||
for score in sorted_val_scores[:args.num]
|
||||
]
|
||||
print(path_list)
|
||||
avg = {}
|
||||
num = args.num
|
||||
assert num == len(path_list)
|
||||
for path in path_list:
|
||||
print('Processing {}'.format(path))
|
||||
states = torch.load(path, map_location=torch.device('cpu'))
|
||||
for k in states.keys():
|
||||
if k not in avg.keys():
|
||||
avg[k] = states[k].clone()
|
||||
else:
|
||||
avg[k] += states[k]
|
||||
# average
|
||||
for k in avg.keys():
|
||||
if avg[k] is not None:
|
||||
# pytorch 1.6 use true_divide instead of /=
|
||||
avg[k] = torch.true_divide(avg[k], num)
|
||||
print('Saving to {}'.format(args.dst_model))
|
||||
torch.save(avg, args.dst_model)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
91
cosyvoice/bin/export_jit.py
Normal file
91
cosyvoice/bin/export_jit.py
Normal file
@@ -0,0 +1,91 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='export your model for deployment')
|
||||
parser.add_argument('--model_dir',
|
||||
type=str,
|
||||
default='pretrained_models/CosyVoice-300M',
|
||||
help='local path')
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
return args
|
||||
|
||||
|
||||
def get_optimized_script(model, preserved_attrs=[]):
|
||||
script = torch.jit.script(model)
|
||||
if preserved_attrs != []:
|
||||
script = torch.jit.freeze(script, preserved_attrs=preserved_attrs)
|
||||
else:
|
||||
script = torch.jit.freeze(script)
|
||||
script = torch.jit.optimize_for_inference(script)
|
||||
return script
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
|
||||
torch._C._jit_set_fusion_strategy([('STATIC', 1)])
|
||||
torch._C._jit_set_profiling_mode(False)
|
||||
torch._C._jit_set_profiling_executor(False)
|
||||
|
||||
try:
|
||||
model = CosyVoice(args.model_dir)
|
||||
except Exception:
|
||||
try:
|
||||
model = CosyVoice2(args.model_dir)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
|
||||
if not isinstance(model, CosyVoice2):
|
||||
# 1. export llm text_encoder
|
||||
llm_text_encoder = model.model.llm.text_encoder
|
||||
script = get_optimized_script(llm_text_encoder)
|
||||
script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(llm_text_encoder.half())
|
||||
script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
|
||||
|
||||
# 2. export llm llm
|
||||
llm_llm = model.model.llm.llm
|
||||
script = get_optimized_script(llm_llm, ['forward_chunk'])
|
||||
script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
|
||||
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
||||
|
||||
# 3. export flow encoder
|
||||
flow_encoder = model.model.flow.encoder
|
||||
script = get_optimized_script(flow_encoder)
|
||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(flow_encoder.half())
|
||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
116
cosyvoice/bin/export_onnx.py
Normal file
116
cosyvoice/bin/export_onnx.py
Normal file
@@ -0,0 +1,116 @@
|
||||
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com)
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
import os
|
||||
import sys
|
||||
import onnxruntime
|
||||
import random
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
|
||||
|
||||
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
||||
x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
||||
mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
|
||||
mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
||||
t = torch.rand((batch_size), dtype=torch.float32, device=device)
|
||||
spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
|
||||
cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
||||
return x, mask, mu, t, spks, cond
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='export your model for deployment')
|
||||
parser.add_argument('--model_dir',
|
||||
type=str,
|
||||
default='pretrained_models/CosyVoice-300M',
|
||||
help='local path')
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
|
||||
try:
|
||||
model = CosyVoice(args.model_dir)
|
||||
except Exception:
|
||||
try:
|
||||
model = CosyVoice2(args.model_dir)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
|
||||
# 1. export flow decoder estimator
|
||||
estimator = model.model.flow.decoder.estimator
|
||||
|
||||
device = model.model.device
|
||||
batch_size, seq_len = 2, 256
|
||||
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||
torch.onnx.export(
|
||||
estimator,
|
||||
(x, mask, mu, t, spks, cond),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
export_params=True,
|
||||
opset_version=18,
|
||||
do_constant_folding=True,
|
||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||
output_names=['estimator_out'],
|
||||
dynamic_axes={
|
||||
'x': {2: 'seq_len'},
|
||||
'mask': {2: 'seq_len'},
|
||||
'mu': {2: 'seq_len'},
|
||||
'cond': {2: 'seq_len'},
|
||||
'estimator_out': {2: 'seq_len'},
|
||||
}
|
||||
)
|
||||
|
||||
# 2. test computation consistency
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
sess_options=option, providers=providers)
|
||||
|
||||
for _ in tqdm(range(10)):
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
||||
ort_inputs = {
|
||||
'x': x.cpu().numpy(),
|
||||
'mask': mask.cpu().numpy(),
|
||||
'mu': mu.cpu().numpy(),
|
||||
't': t.cpu().numpy(),
|
||||
'spks': spks.cpu().numpy(),
|
||||
'cond': cond.cpu().numpy()
|
||||
}
|
||||
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
||||
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
10
cosyvoice/bin/export_trt.sh
Normal file
10
cosyvoice/bin/export_trt.sh
Normal file
@@ -0,0 +1,10 @@
|
||||
#!/bin/bash
|
||||
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
||||
# download tensorrt from https://developer.nvidia.com/tensorrt/download/10x, check your system and cuda for compatibability
|
||||
# for example for linux + cuda12.4, you can download https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
|
||||
TRT_DIR=<YOUR_TRT_DIR>
|
||||
MODEL_DIR=<COSYVOICE2_MODEL_DIR>
|
||||
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TRT_DIR/lib:/usr/local/cuda/lib64
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp32.mygpu.plan --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw --outputIOFormats=fp32:chw
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp16.mygpu.plan --fp16 --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw --outputIOFormats=fp16:chw
|
||||
@@ -18,16 +18,15 @@ import argparse
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
import os
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
import torchaudio
|
||||
from hyperpyyaml import load_hyperpyyaml
|
||||
from tqdm import tqdm
|
||||
from cosyvoice.cli.model import CosyVoiceModel
|
||||
|
||||
from cosyvoice.dataset.dataset import Dataset
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='inference with your model')
|
||||
parser.add_argument('--config', required=True, help='config file')
|
||||
@@ -66,7 +65,8 @@ def main():
|
||||
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
||||
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
||||
|
||||
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False, tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
||||
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
||||
tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
||||
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
||||
|
||||
del configs
|
||||
@@ -74,13 +74,11 @@ def main():
|
||||
fn = os.path.join(args.result_dir, 'wav.scp')
|
||||
f = open(fn, 'w')
|
||||
with torch.no_grad():
|
||||
for batch_idx, batch in tqdm(enumerate(test_data_loader)):
|
||||
for _, batch in tqdm(enumerate(test_data_loader)):
|
||||
utts = batch["utts"]
|
||||
assert len(utts) == 1, "inference mode only support batchsize 1"
|
||||
text = batch["text"]
|
||||
text_token = batch["text_token"].to(device)
|
||||
text_token_len = batch["text_token_len"].to(device)
|
||||
tts_text = batch["tts_text"]
|
||||
tts_index = batch["tts_index"]
|
||||
tts_text_token = batch["tts_text_token"].to(device)
|
||||
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
||||
@@ -100,10 +98,13 @@ def main():
|
||||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
||||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
||||
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
||||
model_output = model.inference(**model_input)
|
||||
tts_speeches = []
|
||||
for model_output in model.tts(**model_input):
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
tts_speeches = torch.concat(tts_speeches, dim=1)
|
||||
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
||||
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
||||
torchaudio.save(tts_fn, model_output['tts_speech'], sample_rate=22050)
|
||||
torchaudio.save(tts_fn, tts_speeches, sample_rate=22050)
|
||||
f.write('{} {}\n'.format(tts_key, tts_fn))
|
||||
f.flush()
|
||||
f.close()
|
||||
|
||||
@@ -18,6 +18,7 @@ import datetime
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
from copy import deepcopy
|
||||
import os
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import deepspeed
|
||||
@@ -67,13 +68,17 @@ def get_args():
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Use pinned memory buffers used for reading')
|
||||
parser.add_argument('--use_amp',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Use automatic mixed precision training')
|
||||
parser.add_argument('--deepspeed.save_states',
|
||||
dest='save_states',
|
||||
default='model_only',
|
||||
choices=['model_only', 'model+optimizer'],
|
||||
help='save model/optimizer states')
|
||||
parser.add_argument('--timeout',
|
||||
default=30,
|
||||
default=60,
|
||||
type=int,
|
||||
help='timeout (in seconds) of cosyvoice_join.')
|
||||
parser = deepspeed.add_config_arguments(parser)
|
||||
@@ -86,10 +91,16 @@ def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
# gan train has some special initialization logic
|
||||
gan = True if args.model == 'hifigan' else False
|
||||
|
||||
override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model}
|
||||
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
||||
if gan is True:
|
||||
override_dict.pop('hift')
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||
if gan is True:
|
||||
configs['train_conf'] = configs['train_conf_gan']
|
||||
configs['train_conf'].update(vars(args))
|
||||
|
||||
# Init env for ddp
|
||||
@@ -97,7 +108,7 @@ def main():
|
||||
|
||||
# Get dataset & dataloader
|
||||
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
||||
init_dataset_and_dataloader(args, configs)
|
||||
init_dataset_and_dataloader(args, configs, gan)
|
||||
|
||||
# Do some sanity checks and save config to arsg.model_dir
|
||||
configs = check_modify_and_save_config(args, configs)
|
||||
@@ -107,30 +118,53 @@ def main():
|
||||
|
||||
# load checkpoint
|
||||
model = configs[args.model]
|
||||
start_step, start_epoch = 0, -1
|
||||
if args.checkpoint is not None:
|
||||
model.load_state_dict(torch.load(args.checkpoint, map_location='cpu'))
|
||||
if os.path.exists(args.checkpoint):
|
||||
state_dict = torch.load(args.checkpoint, map_location='cpu')
|
||||
model.load_state_dict(state_dict, strict=False)
|
||||
if 'step' in state_dict:
|
||||
start_step = state_dict['step']
|
||||
if 'epoch' in state_dict:
|
||||
start_epoch = state_dict['epoch']
|
||||
else:
|
||||
logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
|
||||
|
||||
# Dispatch model from cpu to gpu
|
||||
model = wrap_cuda_model(args, model)
|
||||
|
||||
# Get optimizer & scheduler
|
||||
model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model)
|
||||
model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
|
||||
scheduler.set_step(start_step)
|
||||
if scheduler_d is not None:
|
||||
scheduler_d.set_step(start_step)
|
||||
|
||||
# Save init checkpoints
|
||||
info_dict = deepcopy(configs['train_conf'])
|
||||
info_dict['step'] = start_step
|
||||
info_dict['epoch'] = start_epoch
|
||||
save_model(model, 'init', info_dict)
|
||||
|
||||
# Get executor
|
||||
executor = Executor()
|
||||
executor = Executor(gan=gan)
|
||||
executor.step = start_step
|
||||
|
||||
# Init scaler, used for pytorch amp mixed precision training
|
||||
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
|
||||
print('start step {} start epoch {}'.format(start_step, start_epoch))
|
||||
# Start training loop
|
||||
for epoch in range(info_dict['max_epoch']):
|
||||
for epoch in range(start_epoch + 1, info_dict['max_epoch']):
|
||||
executor.epoch = epoch
|
||||
train_dataset.set_epoch(epoch)
|
||||
dist.barrier()
|
||||
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
||||
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join)
|
||||
if gan is True:
|
||||
executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
||||
writer, info_dict, scaler, group_join)
|
||||
else:
|
||||
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join)
|
||||
dist.destroy_process_group(group_join)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
@@ -12,72 +12,203 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import torch
|
||||
import time
|
||||
from typing import Generator
|
||||
from tqdm import tqdm
|
||||
from hyperpyyaml import load_hyperpyyaml
|
||||
from modelscope import snapshot_download
|
||||
import torch
|
||||
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
||||
from cosyvoice.cli.model import CosyVoiceModel
|
||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, VllmCosyVoice2Model
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
from cosyvoice.utils.class_utils import get_model_type
|
||||
|
||||
|
||||
class CosyVoice:
|
||||
|
||||
def __init__(self, model_dir):
|
||||
instruct = True if '-Instruct' in model_dir else False
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
|
||||
self.instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
self.fp16 = fp16
|
||||
if not os.path.exists(model_dir):
|
||||
model_dir = snapshot_download(model_dir)
|
||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||
configs['feat_extractor'],
|
||||
'{}/campplus.onnx'.format(model_dir),
|
||||
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
||||
'{}/spk2info.pt'.format(model_dir),
|
||||
instruct,
|
||||
configs['allowed_special'])
|
||||
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
||||
self.sample_rate = configs['sample_rate']
|
||||
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
||||
load_jit, load_trt, fp16 = False, False, False
|
||||
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
||||
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
|
||||
self.model.load('{}/llm.pt'.format(model_dir),
|
||||
'{}/flow.pt'.format(model_dir),
|
||||
'{}/hift.pt'.format(model_dir))
|
||||
if load_jit:
|
||||
self.model.load_jit('{}/llm.text_encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
'{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
'{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||
if load_trt:
|
||||
self.estimator_count = configs.get('estimator_count', 1)
|
||||
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
||||
self.fp16, self.estimator_count)
|
||||
del configs
|
||||
|
||||
def list_avaliable_spks(self):
|
||||
|
||||
def list_available_spks(self):
|
||||
spks = list(self.frontend.spk2info.keys())
|
||||
return spks
|
||||
|
||||
def inference_sft(self, tts_text, spk_id):
|
||||
tts_speeches = []
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
def add_spk_info(self, spk_id, spk_info):
|
||||
self.frontend.add_spk_info(spk_id, spk_info)
|
||||
|
||||
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_sft(i, spk_id)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
||||
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
||||
tts_speeches = []
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
||||
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k):
|
||||
if self.frontend.instruct is True:
|
||||
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
||||
tts_speeches = []
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
def inference_zero_shot_by_spk_id(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||
"""使用预定义的说话人执行 zero_shot 推理"""
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_zero_shot_by_spk_id(i, spk_id)
|
||||
start_time = time.time()
|
||||
last_time = start_time
|
||||
chunk_index = 0
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech index:{}, len {:.2f}, rtf {:.3f}, cost {:.3f}s, all cost time {:.3f}s'.format(
|
||||
chunk_index, speech_len, (time.time()-last_time)/speech_len, time.time()-last_time, time.time()-start_time))
|
||||
yield model_output
|
||||
last_time = time.time()
|
||||
chunk_index += 1
|
||||
|
||||
def inference_instruct(self, tts_text, spk_id, instruct_text):
|
||||
if self.frontend.instruct is False:
|
||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
||||
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
|
||||
if self.instruct is False:
|
||||
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
||||
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
||||
tts_speeches = []
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
||||
model_output = self.model.inference(**model_input)
|
||||
tts_speeches.append(model_output['tts_speech'])
|
||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
||||
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
|
||||
class CosyVoice2(CosyVoice):
|
||||
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, use_vllm=False):
|
||||
self.instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
self.fp16 = fp16
|
||||
if not os.path.exists(model_dir):
|
||||
model_dir = snapshot_download(model_dir)
|
||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
||||
assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||
configs['feat_extractor'],
|
||||
'{}/campplus.onnx'.format(model_dir),
|
||||
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
|
||||
'{}/spk2info.pt'.format(model_dir),
|
||||
configs['allowed_special'])
|
||||
self.sample_rate = configs['sample_rate']
|
||||
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
||||
load_jit, load_trt, fp16 = False, False, False
|
||||
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
||||
if use_vllm:
|
||||
try:
|
||||
self.model = VllmCosyVoice2Model(model_dir, configs['flow'], configs['hift'], fp16)
|
||||
except Exception as e:
|
||||
logging.warning(f'use vllm inference failed. \n{e}')
|
||||
raise e
|
||||
else:
|
||||
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
||||
self.model.load('{}/llm.pt'.format(model_dir),
|
||||
'{}/flow.pt'.format(model_dir),
|
||||
'{}/hift.pt'.format(model_dir))
|
||||
if load_jit:
|
||||
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||
if load_trt:
|
||||
self.estimator_count = configs.get('estimator_count', 1)
|
||||
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
||||
self.fp16, self.estimator_count)
|
||||
del configs
|
||||
|
||||
|
||||
def inference_instruct(self, *args, **kwargs):
|
||||
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
||||
|
||||
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_instruct2_by_spk_id(i, instruct_text, spk_id)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
@@ -12,6 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from functools import partial
|
||||
from typing import Generator, Optional
|
||||
import json
|
||||
import onnxruntime
|
||||
import torch
|
||||
import numpy as np
|
||||
@@ -22,6 +24,8 @@ import torchaudio
|
||||
import os
|
||||
import re
|
||||
import inflect
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
try:
|
||||
import ttsfrd
|
||||
use_ttsfrd = True
|
||||
@@ -30,7 +34,20 @@ except ImportError:
|
||||
from tn.chinese.normalizer import Normalizer as ZhNormalizer
|
||||
from tn.english.normalizer import Normalizer as EnNormalizer
|
||||
use_ttsfrd = False
|
||||
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
|
||||
|
||||
|
||||
class SpeakerInfo(BaseModel):
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
name: Optional[str] = None
|
||||
spk_id: str
|
||||
prompt_text: str
|
||||
prompt_text_token: torch.Tensor
|
||||
speech_feat: torch.Tensor
|
||||
speech_token: torch.Tensor
|
||||
embedding: torch.Tensor
|
||||
|
||||
|
||||
class CosyVoiceFrontEnd:
|
||||
@@ -41,7 +58,6 @@ class CosyVoiceFrontEnd:
|
||||
campplus_model: str,
|
||||
speech_tokenizer_model: str,
|
||||
spk2info: str = '',
|
||||
instruct: bool = False,
|
||||
allowed_special: str = 'all'):
|
||||
self.tokenizer = get_tokenizer()
|
||||
self.feat_extractor = feat_extractor
|
||||
@@ -50,34 +66,53 @@ class CosyVoiceFrontEnd:
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
||||
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider"if torch.cuda.is_available() else "CPUExecutionProvider"])
|
||||
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
|
||||
providers=["CUDAExecutionProvider" if torch.cuda.is_available() else
|
||||
"CPUExecutionProvider"])
|
||||
self.spk2info_path = spk2info
|
||||
if os.path.exists(spk2info):
|
||||
self.spk2info = torch.load(spk2info, map_location=self.device)
|
||||
self.instruct = instruct
|
||||
self.spk2info = torch.load(spk2info, map_location=self.device, weights_only=False)
|
||||
else:
|
||||
self.spk2info = {}
|
||||
self.allowed_special = allowed_special
|
||||
self.inflect_parser = inflect.engine()
|
||||
self.use_ttsfrd = use_ttsfrd
|
||||
if self.use_ttsfrd:
|
||||
self.frd = ttsfrd.TtsFrontendEngine()
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, 'failed to initialize ttsfrd resource'
|
||||
self.frd.set_lang_type('pinyin')
|
||||
self.frd.enable_pinyin_mix(True)
|
||||
self.frd.set_breakmodel_index(1)
|
||||
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
|
||||
'failed to initialize ttsfrd resource'
|
||||
self.frd.set_lang_type('pinyinvg')
|
||||
else:
|
||||
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False)
|
||||
# self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
|
||||
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=False)
|
||||
self.en_tn_model = EnNormalizer()
|
||||
self.inflect_parser = inflect.engine()
|
||||
|
||||
def _extract_text_token(self, text):
|
||||
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
||||
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
||||
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
||||
return text_token, text_token_len
|
||||
if isinstance(text, Generator):
|
||||
logging.info('get tts_text generator, will return _extract_text_token_generator!')
|
||||
# NOTE add a dummy text_token_len for compatibility
|
||||
return self._extract_text_token_generator(text), torch.tensor([0], dtype=torch.int32).to(self.device)
|
||||
else:
|
||||
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
||||
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
||||
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
||||
return text_token, text_token_len
|
||||
|
||||
def _extract_text_token_generator(self, text_generator):
|
||||
for text in text_generator:
|
||||
text_token, _ = self._extract_text_token(text)
|
||||
for i in range(text_token.shape[1]):
|
||||
yield text_token[:, i: i + 1]
|
||||
|
||||
def _extract_speech_token(self, speech):
|
||||
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
|
||||
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
||||
speech_token = self.speech_tokenizer_session.run(None, {self.speech_tokenizer_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
||||
self.speech_tokenizer_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
||||
speech_token = self.speech_tokenizer_session.run(None,
|
||||
{self.speech_tokenizer_session.get_inputs()[0].name:
|
||||
feat.detach().cpu().numpy(),
|
||||
self.speech_tokenizer_session.get_inputs()[1].name:
|
||||
np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
||||
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
||||
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
||||
return speech_token, speech_token_len
|
||||
@@ -88,7 +123,8 @@ class CosyVoiceFrontEnd:
|
||||
dither=0,
|
||||
sample_frequency=16000)
|
||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||
embedding = self.campplus_session.run(None, {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||||
embedding = self.campplus_session.run(None,
|
||||
{self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||||
embedding = torch.tensor([embedding]).to(self.device)
|
||||
return embedding
|
||||
|
||||
@@ -98,48 +134,58 @@ class CosyVoiceFrontEnd:
|
||||
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
||||
return speech_feat, speech_feat_len
|
||||
|
||||
def text_normalize(self, text, split=True):
|
||||
def text_normalize(self, text, split=True, text_frontend=True):
|
||||
if isinstance(text, Generator):
|
||||
logging.info('get tts_text generator, will skip text_normalize!')
|
||||
return [text]
|
||||
if text_frontend is False:
|
||||
return [text] if split is True else text
|
||||
text = text.strip()
|
||||
if contains_chinese(text):
|
||||
if self.use_ttsfrd:
|
||||
text = self.frd.get_frd_extra_info(text, 'input')
|
||||
else:
|
||||
text = self.zh_tn_model.normalize(text)
|
||||
text = text.replace("\n", "")
|
||||
text = replace_blank(text)
|
||||
text = replace_corner_mark(text)
|
||||
text = text.replace(".", "、")
|
||||
text = text.replace(" - ", ",")
|
||||
text = remove_bracket(text)
|
||||
text = re.sub(r'[,,]+$', '。', text)
|
||||
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
||||
token_min_n=60, merge_len=20,
|
||||
comma_split=False)]
|
||||
if self.use_ttsfrd:
|
||||
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
||||
text = ''.join(texts)
|
||||
else:
|
||||
if self.use_ttsfrd:
|
||||
text = self.frd.get_frd_extra_info(text, 'input')
|
||||
if contains_chinese(text):
|
||||
text = self.zh_tn_model.normalize(text)
|
||||
text = text.replace("\n", "")
|
||||
text = replace_blank(text)
|
||||
text = replace_corner_mark(text)
|
||||
text = text.replace(".", "。")
|
||||
text = text.replace(" - ", ",")
|
||||
text = remove_bracket(text)
|
||||
text = re.sub(r'[,,、]+$', '。', text)
|
||||
if not split:
|
||||
return text
|
||||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
||||
token_min_n=60, merge_len=20, comma_split=False))
|
||||
else:
|
||||
text = self.en_tn_model.normalize(text)
|
||||
text = spell_out_number(text, self.inflect_parser)
|
||||
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
||||
token_min_n=60, merge_len=20,
|
||||
comma_split=False)]
|
||||
if split is False:
|
||||
return text
|
||||
return texts
|
||||
text = spell_out_number(text, self.inflect_parser)
|
||||
if not split:
|
||||
return text
|
||||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
||||
token_min_n=60, merge_len=20, comma_split=False))
|
||||
texts = [i for i in texts if not is_only_punctuation(i)]
|
||||
return texts if split is True else text
|
||||
|
||||
def frontend_sft(self, tts_text, spk_id):
|
||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||
embedding = self.spk2info[spk_id]['embedding']
|
||||
assert embedding is not None
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||
return model_input
|
||||
|
||||
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
||||
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate):
|
||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
||||
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
|
||||
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
||||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||
if resample_rate == 24000:
|
||||
# cosyvoice2, force speech_feat % speech_token = 2
|
||||
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
||||
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
||||
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
||||
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
||||
@@ -149,8 +195,8 @@ class CosyVoiceFrontEnd:
|
||||
'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||
return model_input
|
||||
|
||||
def frontend_cross_lingual(self, tts_text, prompt_speech_16k):
|
||||
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k)
|
||||
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate):
|
||||
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate)
|
||||
# in cross lingual mode, we remove prompt in llm
|
||||
del model_input['prompt_text']
|
||||
del model_input['prompt_text_len']
|
||||
@@ -166,3 +212,78 @@ class CosyVoiceFrontEnd:
|
||||
model_input['prompt_text'] = instruct_text_token
|
||||
model_input['prompt_text_len'] = instruct_text_token_len
|
||||
return model_input
|
||||
|
||||
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
|
||||
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate)
|
||||
del model_input['llm_prompt_speech_token']
|
||||
del model_input['llm_prompt_speech_token_len']
|
||||
return model_input
|
||||
|
||||
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
|
||||
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
|
||||
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
|
||||
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
|
||||
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
|
||||
'flow_embedding': embedding}
|
||||
return model_input
|
||||
|
||||
def generate_spk_info(self, spk_id: str, prompt_text: str, prompt_speech_16k: torch.Tensor, resample_rate:int=24000, name: str=None):
|
||||
assert isinstance(spk_id, str)
|
||||
assert spk_id not in self.spk2info, "spk_id already exists"
|
||||
prompt_text_token, _ = self._extract_text_token(prompt_text)
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||
speech_feat, _ = self._extract_speech_feat(prompt_speech_resample)
|
||||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||
if resample_rate == 24000:
|
||||
# cosyvoice2, force speech_feat % speech_token = 2
|
||||
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
||||
speech_feat = speech_feat[:, :2 * token_len]
|
||||
speech_token = speech_token[:, :token_len]
|
||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||
spk_info = SpeakerInfo(
|
||||
name=name,
|
||||
spk_id=spk_id,
|
||||
prompt_text=prompt_text,
|
||||
prompt_text_token=prompt_text_token,
|
||||
speech_feat=speech_feat,
|
||||
speech_token=speech_token,
|
||||
embedding=embedding,
|
||||
)
|
||||
self.add_spk_info(spk_id, spk_info)
|
||||
|
||||
def add_spk_info(self, spk_id: str, spk_info: dict|SpeakerInfo):
|
||||
if isinstance(spk_info, BaseModel):
|
||||
spk_info = spk_info.model_dump()
|
||||
self.spk2info[spk_id] = spk_info
|
||||
if self.spk2info_path:
|
||||
torch.save(self.spk2info, self.spk2info_path)
|
||||
|
||||
def frontend_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id):
|
||||
assert spk_id in self.spk2info
|
||||
tts_text_token, _ = self._extract_text_token(tts_text)
|
||||
prompt_text_token, _ = self._extract_text_token(instruct_text + '<|endofprompt|>')
|
||||
model_input = {'text': tts_text_token,
|
||||
'prompt_text': prompt_text_token,
|
||||
'flow_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
|
||||
'prompt_speech_feat': self.spk2info[spk_id]['speech_feat'],
|
||||
'llm_embedding': self.spk2info[spk_id]['embedding'],
|
||||
'flow_embedding': self.spk2info[spk_id]['embedding'],
|
||||
}
|
||||
return model_input
|
||||
|
||||
def frontend_zero_shot_by_spk_id(self, tts_text, spk_id):
|
||||
assert spk_id in self.spk2info
|
||||
tts_text_token, _ = self._extract_text_token(tts_text)
|
||||
model_input = {'text': tts_text_token,
|
||||
'prompt_text': self.spk2info[spk_id]['prompt_text_token'],
|
||||
'llm_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
|
||||
'flow_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
|
||||
'prompt_speech_feat': self.spk2info[spk_id]['speech_feat'],
|
||||
'llm_embedding': self.spk2info[spk_id]['embedding'],
|
||||
'flow_embedding': self.spk2info[spk_id]['embedding']
|
||||
}
|
||||
return model_input
|
||||
@@ -11,50 +11,456 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from typing import Generator
|
||||
import torch
|
||||
import numpy as np
|
||||
import threading
|
||||
import time
|
||||
from torch.nn import functional as F
|
||||
from contextlib import nullcontext
|
||||
import uuid
|
||||
from cosyvoice.utils.common import fade_in_out
|
||||
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
||||
from cosyvoice.flow.flow_matching import EstimatorWrapper
|
||||
import queue
|
||||
|
||||
class CosyVoiceModel:
|
||||
|
||||
def __init__(self,
|
||||
llm: torch.nn.Module,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module):
|
||||
hift: torch.nn.Module,
|
||||
fp16: bool):
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.llm = llm
|
||||
self.flow = flow
|
||||
self.hift = hift
|
||||
self.fp16 = fp16
|
||||
self.llm.fp16 = fp16
|
||||
self.flow.fp16 = fp16
|
||||
if self.fp16 is True:
|
||||
self.llm.half()
|
||||
self.flow.half()
|
||||
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
||||
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
||||
self.token_overlap_len = 20
|
||||
# here we fix set flow.decoder.estimator.static_chunk_size = 0 for compatibability
|
||||
self.flow.decoder.estimator.static_chunk_size = 0
|
||||
# mel fade in out
|
||||
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
||||
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
||||
# hift cache
|
||||
self.mel_cache_len = 20
|
||||
self.source_cache_len = int(self.mel_cache_len * 256)
|
||||
# speech fade in out
|
||||
self.speech_window = np.hamming(2 * self.source_cache_len)
|
||||
# rtf and decoding related
|
||||
self.stream_scale_factor = 1
|
||||
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
||||
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||
self.lock = threading.Lock()
|
||||
# dict used to store session related variable
|
||||
self.tts_speech_token_dict = {}
|
||||
self.llm_end_dict = {}
|
||||
self.mel_overlap_dict = {}
|
||||
self.flow_cache_dict = {}
|
||||
self.hift_cache_dict = {}
|
||||
|
||||
self.stream_context_pool = queue.Queue()
|
||||
for _ in range(10):
|
||||
self.stream_context_pool.put(torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext())
|
||||
|
||||
self.is_cuda_available = torch.cuda.is_available()
|
||||
|
||||
def load(self, llm_model, flow_model, hift_model):
|
||||
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
||||
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
||||
self.llm.to(self.device).eval()
|
||||
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
|
||||
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
|
||||
self.flow.to(self.device).eval()
|
||||
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
||||
# in case hift_model is a hifigan model
|
||||
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
||||
self.hift.load_state_dict(hift_state_dict, strict=True)
|
||||
self.hift.to(self.device).eval()
|
||||
|
||||
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
||||
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
||||
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)):
|
||||
tts_speech_token = self.llm.inference(text=text.to(self.device),
|
||||
text_len=text_len.to(self.device),
|
||||
prompt_text=prompt_text.to(self.device),
|
||||
prompt_text_len=prompt_text_len.to(self.device),
|
||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
||||
embedding=llm_embedding.to(self.device),
|
||||
beam_size=1,
|
||||
sampling=25,
|
||||
max_token_text_ratio=30,
|
||||
min_token_text_ratio=3)
|
||||
tts_mel = self.flow.inference(token=tts_speech_token,
|
||||
token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
||||
prompt_token=flow_prompt_speech_token.to(self.device),
|
||||
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
||||
prompt_feat=prompt_speech_feat.to(self.device),
|
||||
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
||||
embedding=flow_embedding.to(self.device))
|
||||
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
||||
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
||||
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
||||
self.llm.text_encoder = llm_text_encoder
|
||||
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
|
||||
self.llm.llm = llm_llm
|
||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||
self.flow.encoder = flow_encoder
|
||||
|
||||
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16, estimator_count=1):
|
||||
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
||||
if not os.path.exists(flow_decoder_estimator_model):
|
||||
convert_onnx_to_trt(flow_decoder_estimator_model, flow_decoder_onnx_model, fp16)
|
||||
if os.path.getsize(flow_decoder_estimator_model) == 0:
|
||||
raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model))
|
||||
del self.flow.decoder.estimator
|
||||
import tensorrt as trt
|
||||
with open(flow_decoder_estimator_model, 'rb') as f:
|
||||
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||
if self.flow.decoder.estimator_engine is None:
|
||||
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
|
||||
self.flow.decoder.estimator = EstimatorWrapper(self.flow.decoder.estimator_engine, estimator_count=estimator_count)
|
||||
|
||||
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
||||
with self.llm_context:
|
||||
if isinstance(text, Generator):
|
||||
assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
|
||||
for i in self.llm.inference_bistream(text=text,
|
||||
prompt_text=prompt_text.to(self.device),
|
||||
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=llm_embedding.to(self.device)):
|
||||
self.tts_speech_token_dict[uuid].append(i)
|
||||
else:
|
||||
for i in self.llm.inference(text=text.to(self.device),
|
||||
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_text=prompt_text.to(self.device),
|
||||
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=llm_embedding.to(self.device)):
|
||||
self.tts_speech_token_dict[uuid].append(i)
|
||||
self.llm_end_dict[uuid] = True
|
||||
|
||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
||||
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
flow_cache=self.flow_cache_dict[uuid])
|
||||
self.flow_cache_dict[uuid] = flow_cache
|
||||
|
||||
# mel overlap fade in out
|
||||
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
||||
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
||||
# append hift cache
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
||||
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
||||
else:
|
||||
hift_cache_source = torch.zeros(1, 1, 0)
|
||||
# keep overlap mel and hift cache
|
||||
if finalize is False:
|
||||
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
||||
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
||||
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
||||
'source': tts_source[:, :, -self.source_cache_len:],
|
||||
'speech': tts_speech[:, -self.source_cache_len:]}
|
||||
tts_speech = tts_speech[:, :-self.source_cache_len]
|
||||
else:
|
||||
if speed != 1.0:
|
||||
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
||||
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
||||
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||
return tts_speech
|
||||
|
||||
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
||||
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
||||
# this_uuid is used to track variables related to this inference thread
|
||||
|
||||
stream_context = self.stream_context_pool.get()
|
||||
with stream_context:
|
||||
|
||||
this_uuid = str(uuid.uuid1())
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
||||
self.hift_cache_dict[this_uuid] = None
|
||||
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
||||
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
||||
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
||||
p.start()
|
||||
if stream is True:
|
||||
token_hop_len = self.token_min_hop_len
|
||||
while True:
|
||||
time.sleep(0.1)
|
||||
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
||||
.unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=False)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
||||
# increase token_hop_len for better speech quality
|
||||
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
||||
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
||||
break
|
||||
p.join()
|
||||
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=True)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
else:
|
||||
# deal with all tokens
|
||||
p.join()
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=True,
|
||||
speed=speed)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict.pop(this_uuid)
|
||||
self.llm_end_dict.pop(this_uuid)
|
||||
self.mel_overlap_dict.pop(this_uuid)
|
||||
self.hift_cache_dict.pop(this_uuid)
|
||||
self.flow_cache_dict.pop(this_uuid)
|
||||
|
||||
self.synchronize_stream()
|
||||
self.stream_context_pool.put(stream_context)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
|
||||
# this_uuid is used to track variables related to this inference thread
|
||||
this_uuid = str(uuid.uuid1())
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
|
||||
self.hift_cache_dict[this_uuid] = None
|
||||
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
||||
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
||||
if stream is True:
|
||||
token_hop_len = self.token_min_hop_len
|
||||
while True:
|
||||
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
||||
.unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=False)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
||||
# increase token_hop_len for better speech quality
|
||||
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
||||
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
||||
break
|
||||
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=True)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
else:
|
||||
# deal with all tokens
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=True,
|
||||
speed=speed)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict.pop(this_uuid)
|
||||
self.llm_end_dict.pop(this_uuid)
|
||||
self.mel_overlap_dict.pop(this_uuid)
|
||||
self.hift_cache_dict.pop(this_uuid)
|
||||
torch.cuda.empty_cache()
|
||||
return {'tts_speech': tts_speech}
|
||||
|
||||
def synchronize_stream(self):
|
||||
if self.is_cuda_available:
|
||||
torch.cuda.current_stream().synchronize()
|
||||
|
||||
|
||||
class CosyVoice2Model(CosyVoiceModel):
|
||||
|
||||
def __init__(self,
|
||||
llm: torch.nn.Module,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module,
|
||||
fp16: bool):
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.llm = llm
|
||||
self.flow = flow
|
||||
self.hift = hift
|
||||
self.fp16 = fp16
|
||||
self.llm.fp16 = fp16
|
||||
self.flow.fp16 = fp16
|
||||
if self.fp16 is True:
|
||||
self.llm.half()
|
||||
self.flow.half()
|
||||
self.token_hop_len = 2 * self.flow.input_frame_rate
|
||||
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
|
||||
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
|
||||
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
|
||||
# hift cache
|
||||
self.mel_cache_len = 8
|
||||
self.source_cache_len = int(self.mel_cache_len * 480)
|
||||
# speech fade in out
|
||||
self.speech_window = np.hamming(2 * self.source_cache_len)
|
||||
# rtf and decoding related
|
||||
self.stream_scale_factor = 1
|
||||
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||
self.lock = threading.Lock()
|
||||
# dict used to store session related variable
|
||||
self.tts_speech_token_dict = {}
|
||||
self.llm_end_dict = {}
|
||||
self.hift_cache_dict = {}
|
||||
|
||||
self.stream_context_pool = queue.Queue()
|
||||
for _ in range(10):
|
||||
self.stream_context_pool.put(torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext())
|
||||
|
||||
self.is_cuda_available = torch.cuda.is_available()
|
||||
|
||||
def load_jit(self, flow_encoder_model):
|
||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||
self.flow.encoder = flow_encoder
|
||||
|
||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
|
||||
|
||||
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
finalize=finalize)
|
||||
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
||||
# append hift cache
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
||||
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
||||
else:
|
||||
hift_cache_source = torch.zeros(1, 1, 0)
|
||||
# keep overlap mel and hift cache
|
||||
if finalize is False:
|
||||
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
||||
'source': tts_source[:, :, -self.source_cache_len:],
|
||||
'speech': tts_speech[:, -self.source_cache_len:]}
|
||||
tts_speech = tts_speech[:, :-self.source_cache_len]
|
||||
else:
|
||||
if speed != 1.0:
|
||||
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
||||
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
||||
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||
return tts_speech
|
||||
|
||||
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
||||
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
||||
# this_uuid is used to track variables related to this inference thread
|
||||
self.synchronize_stream()
|
||||
stream_context = self.stream_context_pool.get()
|
||||
with stream_context:
|
||||
|
||||
this_uuid = str(uuid.uuid1())
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
||||
self.hift_cache_dict[this_uuid] = None
|
||||
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
||||
p.start()
|
||||
if stream is True:
|
||||
token_offset = 0
|
||||
while True:
|
||||
time.sleep(0.1)
|
||||
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
token_offset=token_offset,
|
||||
finalize=False)
|
||||
token_offset += self.token_hop_len
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
|
||||
break
|
||||
p.join()
|
||||
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
token_offset=token_offset,
|
||||
finalize=True)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
else:
|
||||
# deal with all tokens
|
||||
p.join()
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
token_offset=0,
|
||||
finalize=True,
|
||||
speed=speed)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict.pop(this_uuid)
|
||||
self.llm_end_dict.pop(this_uuid)
|
||||
|
||||
self.synchronize_stream()
|
||||
self.stream_context_pool.put(stream_context)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
class VllmCosyVoice2Model(CosyVoice2Model):
|
||||
def __init__(self,
|
||||
model_dir: str,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module,
|
||||
fp16: bool):
|
||||
try:
|
||||
from cosyvoice.llm.llm_vllm import VllmQwen2LM
|
||||
except Exception as e:
|
||||
raise e
|
||||
llm = VllmQwen2LM(model_dir)
|
||||
super().__init__(llm,flow,hift,fp16)
|
||||
|
||||
def load(self, llm_model, flow_model, hift_model):
|
||||
self.flow.load_state_dict(torch.load(flow_model, weights_only=True, map_location=self.device), strict=True)
|
||||
self.flow.to(self.device).eval()
|
||||
# in case hift_model is a hifigan model
|
||||
hift_state_dict = {k.replace('generator.', ''): v for k, v in
|
||||
torch.load(hift_model, weights_only=True, map_location=self.device).items()}
|
||||
self.hift.load_state_dict(hift_state_dict, strict=True)
|
||||
self.hift.to(self.device).eval()
|
||||
|
||||
@@ -126,6 +126,7 @@ class DataList(IterableDataset):
|
||||
def Dataset(data_list_file,
|
||||
data_pipeline,
|
||||
mode='train',
|
||||
gan=False,
|
||||
shuffle=True,
|
||||
partition=True,
|
||||
tts_file='',
|
||||
@@ -148,13 +149,16 @@ def Dataset(data_list_file,
|
||||
tts_data = json.load(f)
|
||||
utt2lists = read_json_lists(prompt_utt2data)
|
||||
# filter unnecessary file in inference mode
|
||||
lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists]))
|
||||
lists = list({utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists})
|
||||
dataset = DataList(lists,
|
||||
shuffle=shuffle,
|
||||
partition=partition)
|
||||
if mode == 'inference':
|
||||
# map partial arg tts_data in inference mode
|
||||
# map partial arg to parquet_opener func in inference mode
|
||||
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
||||
if gan is True:
|
||||
# map partial arg to padding func in gan mode
|
||||
data_pipeline[-1] = partial(data_pipeline[-1], gan=gan)
|
||||
for func in data_pipeline:
|
||||
dataset = Processor(dataset, func, mode=mode)
|
||||
return dataset
|
||||
|
||||
@@ -20,10 +20,10 @@ import torch
|
||||
import torchaudio
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
import torch.nn.functional as F
|
||||
import pyworld as pw
|
||||
|
||||
torchaudio.set_audio_backend('soundfile')
|
||||
|
||||
AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])
|
||||
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
||||
|
||||
|
||||
def parquet_opener(data, mode='train', tts_data={}):
|
||||
@@ -40,20 +40,22 @@ def parquet_opener(data, mode='train', tts_data={}):
|
||||
assert 'src' in sample
|
||||
url = sample['src']
|
||||
try:
|
||||
df = pq.read_table(url).to_pandas()
|
||||
for i in range(len(df)):
|
||||
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
||||
continue
|
||||
sample.update(dict(df.loc[i]))
|
||||
if mode == 'train':
|
||||
# NOTE do not return sample directly, must initialize a new dict
|
||||
yield {**sample}
|
||||
else:
|
||||
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
||||
yield {**sample, 'tts_index': index, 'tts_text': text}
|
||||
for df in pq.ParquetFile(url).iter_batches(batch_size=64):
|
||||
df = df.to_pandas()
|
||||
for i in range(len(df)):
|
||||
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
||||
continue
|
||||
sample.update(dict(df.loc[i]))
|
||||
if mode == 'train':
|
||||
# NOTE do not return sample directly, must initialize a new dict
|
||||
yield {**sample}
|
||||
else:
|
||||
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
||||
yield {**sample, 'tts_index': index, 'tts_text': text}
|
||||
except Exception as ex:
|
||||
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
||||
|
||||
|
||||
def filter(data,
|
||||
max_length=10240,
|
||||
min_length=10,
|
||||
@@ -84,6 +86,7 @@ def filter(data,
|
||||
"""
|
||||
for sample in data:
|
||||
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
||||
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
||||
del sample['audio_data']
|
||||
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
||||
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
||||
@@ -133,6 +136,27 @@ def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
|
||||
yield sample
|
||||
|
||||
|
||||
def truncate(data, truncate_length=24576, mode='train'):
|
||||
""" Truncate data.
|
||||
|
||||
Args:
|
||||
data: Iterable[{key, wav, label, sample_rate}]
|
||||
truncate_length: truncate length
|
||||
|
||||
Returns:
|
||||
Iterable[{key, wav, label, sample_rate}]
|
||||
"""
|
||||
for sample in data:
|
||||
waveform = sample['speech']
|
||||
if waveform.shape[1] > truncate_length:
|
||||
start = random.randint(0, waveform.shape[1] - truncate_length)
|
||||
waveform = waveform[:, start: start + truncate_length]
|
||||
else:
|
||||
waveform = torch.concat([waveform, torch.zeros(1, truncate_length - waveform.shape[1])], dim=1)
|
||||
sample['speech'] = waveform
|
||||
yield sample
|
||||
|
||||
|
||||
def compute_fbank(data,
|
||||
feat_extractor,
|
||||
mode='train'):
|
||||
@@ -152,7 +176,31 @@ def compute_fbank(data,
|
||||
waveform = sample['speech']
|
||||
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
||||
sample['speech_feat'] = mat
|
||||
del sample['speech']
|
||||
yield sample
|
||||
|
||||
|
||||
def compute_f0(data, sample_rate, hop_size, mode='train'):
|
||||
""" Extract f0
|
||||
|
||||
Args:
|
||||
data: Iterable[{key, wav, label, sample_rate}]
|
||||
|
||||
Returns:
|
||||
Iterable[{key, feat, label}]
|
||||
"""
|
||||
frame_period = hop_size * 1000 / sample_rate
|
||||
for sample in data:
|
||||
assert 'sample_rate' in sample
|
||||
assert 'speech' in sample
|
||||
assert 'utt' in sample
|
||||
assert 'text_token' in sample
|
||||
waveform = sample['speech']
|
||||
_f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
|
||||
if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
||||
_f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
||||
f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
|
||||
f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
|
||||
sample['pitch_feat'] = f0
|
||||
yield sample
|
||||
|
||||
|
||||
@@ -308,7 +356,7 @@ def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, m
|
||||
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
||||
|
||||
|
||||
def padding(data, use_spk_embedding, mode='train'):
|
||||
def padding(data, use_spk_embedding, mode='train', gan=False):
|
||||
""" Padding the data into training data
|
||||
|
||||
Args:
|
||||
@@ -324,6 +372,9 @@ def padding(data, use_spk_embedding, mode='train'):
|
||||
order = torch.argsort(speech_feat_len, descending=True)
|
||||
|
||||
utts = [sample[i]['utt'] for i in order]
|
||||
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
|
||||
speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
|
||||
speech = pad_sequence(speech, batch_first=True, padding_value=0)
|
||||
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
||||
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
||||
speech_token = pad_sequence(speech_token,
|
||||
@@ -342,6 +393,8 @@ def padding(data, use_spk_embedding, mode='train'):
|
||||
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
||||
batch = {
|
||||
"utts": utts,
|
||||
"speech": speech,
|
||||
"speech_len": speech_len,
|
||||
"speech_token": speech_token,
|
||||
"speech_token_len": speech_token_len,
|
||||
"speech_feat": speech_feat,
|
||||
@@ -352,6 +405,19 @@ def padding(data, use_spk_embedding, mode='train'):
|
||||
"utt_embedding": utt_embedding,
|
||||
"spk_embedding": spk_embedding,
|
||||
}
|
||||
if gan is True:
|
||||
# in gan train, we need pitch_feat
|
||||
pitch_feat = [sample[i]['pitch_feat'] for i in order]
|
||||
pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
|
||||
pitch_feat = pad_sequence(pitch_feat,
|
||||
batch_first=True,
|
||||
padding_value=0)
|
||||
batch["pitch_feat"] = pitch_feat
|
||||
batch["pitch_feat_len"] = pitch_feat_len
|
||||
else:
|
||||
# only gan train needs speech, delete it to save memory
|
||||
del batch["speech"]
|
||||
del batch["speech_len"]
|
||||
if mode == 'inference':
|
||||
tts_text = [sample[i]['tts_text'] for i in order]
|
||||
tts_index = [sample[i]['tts_index'] for i in order]
|
||||
|
||||
105
cosyvoice/flow/decoder.py
Executable file → Normal file
105
cosyvoice/flow/decoder.py
Executable file → Normal file
@@ -13,16 +13,83 @@
|
||||
# limitations under the License.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import pack, rearrange, repeat
|
||||
from cosyvoice.utils.common import mask_to_bias
|
||||
from cosyvoice.utils.mask import add_optional_chunk_mask
|
||||
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
||||
from matcha.models.components.transformer import BasicTransformerBlock
|
||||
|
||||
|
||||
class Transpose(torch.nn.Module):
|
||||
def __init__(self, dim0: int, dim1: int):
|
||||
super().__init__()
|
||||
self.dim0 = dim0
|
||||
self.dim1 = dim1
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = torch.transpose(x, self.dim0, self.dim1)
|
||||
return x
|
||||
|
||||
|
||||
class CausalBlock1D(Block1D):
|
||||
def __init__(self, dim: int, dim_out: int):
|
||||
super(CausalBlock1D, self).__init__(dim, dim_out)
|
||||
self.block = torch.nn.Sequential(
|
||||
CausalConv1d(dim, dim_out, 3),
|
||||
Transpose(1, 2),
|
||||
nn.LayerNorm(dim_out),
|
||||
Transpose(1, 2),
|
||||
nn.Mish(),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, mask: torch.Tensor):
|
||||
output = self.block(x * mask)
|
||||
return output * mask
|
||||
|
||||
|
||||
class CausalResnetBlock1D(ResnetBlock1D):
|
||||
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
||||
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
||||
self.block1 = CausalBlock1D(dim, dim_out)
|
||||
self.block2 = CausalBlock1D(dim_out, dim_out)
|
||||
|
||||
|
||||
class CausalConv1d(torch.nn.Conv1d):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride: int = 1,
|
||||
dilation: int = 1,
|
||||
groups: int = 1,
|
||||
bias: bool = True,
|
||||
padding_mode: str = 'zeros',
|
||||
device=None,
|
||||
dtype=None
|
||||
) -> None:
|
||||
super(CausalConv1d, self).__init__(in_channels, out_channels,
|
||||
kernel_size, stride,
|
||||
padding=0, dilation=dilation,
|
||||
groups=groups, bias=bias,
|
||||
padding_mode=padding_mode,
|
||||
device=device, dtype=dtype)
|
||||
assert stride == 1
|
||||
self.causal_padding = (kernel_size - 1, 0)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = F.pad(x, self.causal_padding)
|
||||
x = super(CausalConv1d, self).forward(x)
|
||||
return x
|
||||
|
||||
|
||||
class ConditionalDecoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
causal=False,
|
||||
channels=(256, 256),
|
||||
dropout=0.05,
|
||||
attention_head_dim=64,
|
||||
@@ -39,7 +106,7 @@ class ConditionalDecoder(nn.Module):
|
||||
channels = tuple(channels)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
|
||||
self.causal = causal
|
||||
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
||||
time_embed_dim = channels[0] * 4
|
||||
self.time_mlp = TimestepEmbedding(
|
||||
@@ -56,7 +123,8 @@ class ConditionalDecoder(nn.Module):
|
||||
input_channel = output_channel
|
||||
output_channel = channels[i]
|
||||
is_last = i == len(channels) - 1
|
||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
||||
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
@@ -70,14 +138,16 @@ class ConditionalDecoder(nn.Module):
|
||||
]
|
||||
)
|
||||
downsample = (
|
||||
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
Downsample1D(output_channel) if not is_last else
|
||||
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
)
|
||||
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
||||
|
||||
for i in range(num_mid_blocks):
|
||||
for _ in range(num_mid_blocks):
|
||||
input_channel = channels[-1]
|
||||
out_channels = channels[-1]
|
||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
||||
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
@@ -99,7 +169,11 @@ class ConditionalDecoder(nn.Module):
|
||||
input_channel = channels[i] * 2
|
||||
output_channel = channels[i + 1]
|
||||
is_last = i == len(channels) - 2
|
||||
resnet = ResnetBlock1D(
|
||||
resnet = CausalResnetBlock1D(
|
||||
dim=input_channel,
|
||||
dim_out=output_channel,
|
||||
time_emb_dim=time_embed_dim,
|
||||
) if self.causal else ResnetBlock1D(
|
||||
dim=input_channel,
|
||||
dim_out=output_channel,
|
||||
time_emb_dim=time_embed_dim,
|
||||
@@ -119,14 +193,13 @@ class ConditionalDecoder(nn.Module):
|
||||
upsample = (
|
||||
Upsample1D(output_channel, use_conv_transpose=True)
|
||||
if not is_last
|
||||
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
)
|
||||
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
||||
self.final_block = Block1D(channels[-1], channels[-1])
|
||||
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
|
||||
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
||||
self.initialize_weights()
|
||||
|
||||
|
||||
def initialize_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv1d):
|
||||
@@ -159,7 +232,7 @@ class ConditionalDecoder(nn.Module):
|
||||
_type_: _description_
|
||||
"""
|
||||
|
||||
t = self.time_embeddings(t)
|
||||
t = self.time_embeddings(t).to(t.dtype)
|
||||
t = self.time_mlp(t)
|
||||
|
||||
x = pack([x, mu], "b * t")[0]
|
||||
@@ -176,7 +249,9 @@ class ConditionalDecoder(nn.Module):
|
||||
mask_down = masks[-1]
|
||||
x = resnet(x, mask_down, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
||||
# attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
@@ -193,7 +268,9 @@ class ConditionalDecoder(nn.Module):
|
||||
for resnet, transformer_blocks in self.mid_blocks:
|
||||
x = resnet(x, mask_mid, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
||||
# attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
@@ -208,7 +285,9 @@ class ConditionalDecoder(nn.Module):
|
||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||
x = resnet(x, mask_up, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
||||
# attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
|
||||
@@ -33,8 +33,13 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
encoder: torch.nn.Module = None,
|
||||
length_regulator: torch.nn.Module = None,
|
||||
decoder: torch.nn.Module = None,
|
||||
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1, 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine', 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}), 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64, 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
||||
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050, 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
||||
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
||||
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
||||
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
||||
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
||||
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
||||
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
||||
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.output_size = output_size
|
||||
@@ -104,7 +109,101 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
prompt_token_len,
|
||||
prompt_feat,
|
||||
prompt_feat_len,
|
||||
embedding):
|
||||
embedding,
|
||||
flow_cache):
|
||||
if self.fp16 is True:
|
||||
prompt_feat = prompt_feat.half()
|
||||
embedding = embedding.half()
|
||||
|
||||
assert token.shape[0] == 1
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
|
||||
# concat text and prompt_text
|
||||
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
||||
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len)
|
||||
h = self.encoder_proj(h)
|
||||
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
|
||||
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
|
||||
|
||||
# get conditions
|
||||
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
||||
conds[:, :mel_len1] = prompt_feat
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
||||
feat, flow_cache = self.decoder(
|
||||
mu=h.transpose(1, 2).contiguous(),
|
||||
mask=mask.unsqueeze(1),
|
||||
spks=embedding,
|
||||
cond=conds,
|
||||
n_timesteps=10,
|
||||
prompt_len=mel_len1,
|
||||
flow_cache=flow_cache
|
||||
)
|
||||
feat = feat[:, :, mel_len1:]
|
||||
assert feat.shape[2] == mel_len2
|
||||
return feat.float(), flow_cache
|
||||
|
||||
|
||||
class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
def __init__(self,
|
||||
input_size: int = 512,
|
||||
output_size: int = 80,
|
||||
spk_embed_dim: int = 192,
|
||||
output_type: str = "mel",
|
||||
vocab_size: int = 4096,
|
||||
input_frame_rate: int = 50,
|
||||
only_mask_loss: bool = True,
|
||||
token_mel_ratio: int = 2,
|
||||
pre_lookahead_len: int = 3,
|
||||
encoder: torch.nn.Module = None,
|
||||
decoder: torch.nn.Module = None,
|
||||
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
||||
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
||||
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
||||
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
||||
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
||||
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
||||
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
||||
super().__init__()
|
||||
self.input_size = input_size
|
||||
self.output_size = output_size
|
||||
self.decoder_conf = decoder_conf
|
||||
self.mel_feat_conf = mel_feat_conf
|
||||
self.vocab_size = vocab_size
|
||||
self.output_type = output_type
|
||||
self.input_frame_rate = input_frame_rate
|
||||
logging.info(f"input frame rate={self.input_frame_rate}")
|
||||
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
||||
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
||||
self.encoder = encoder
|
||||
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
||||
self.decoder = decoder
|
||||
self.only_mask_loss = only_mask_loss
|
||||
self.token_mel_ratio = token_mel_ratio
|
||||
self.pre_lookahead_len = pre_lookahead_len
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self,
|
||||
token,
|
||||
token_len,
|
||||
prompt_token,
|
||||
prompt_token_len,
|
||||
prompt_feat,
|
||||
prompt_feat_len,
|
||||
embedding,
|
||||
finalize):
|
||||
if self.fp16 is True:
|
||||
prompt_feat = prompt_feat.half()
|
||||
embedding = embedding.half()
|
||||
|
||||
assert token.shape[0] == 1
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
@@ -112,30 +211,29 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
|
||||
# concat text and prompt_text
|
||||
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
|
||||
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len)
|
||||
if finalize is False:
|
||||
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
|
||||
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
||||
h = self.encoder_proj(h)
|
||||
feat_len = (token_len / 50 * 22050 / 256).int()
|
||||
h, h_lengths = self.length_regulator(h, feat_len)
|
||||
|
||||
# get conditions
|
||||
conds = torch.zeros([1, feat_len.max().item(), self.output_size], device=token.device)
|
||||
if prompt_feat.shape[1] != 0:
|
||||
for i, j in enumerate(prompt_feat_len):
|
||||
conds[i, :j] = prompt_feat[i]
|
||||
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
||||
conds[:, :mel_len1] = prompt_feat
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(feat_len)).to(h)
|
||||
feat = self.decoder(
|
||||
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
||||
feat, _ = self.decoder(
|
||||
mu=h.transpose(1, 2).contiguous(),
|
||||
mask=mask.unsqueeze(1),
|
||||
spks=embedding,
|
||||
cond=conds,
|
||||
n_timesteps=10
|
||||
)
|
||||
if prompt_feat.shape[1] != 0:
|
||||
feat = feat[:, :, prompt_feat.shape[1]:]
|
||||
return feat
|
||||
feat = feat[:, :, mel_len1:]
|
||||
assert feat.shape[2] == mel_len2
|
||||
return feat.float(), None
|
||||
|
||||
156
cosyvoice/flow/flow_matching.py
Executable file → Normal file
156
cosyvoice/flow/flow_matching.py
Executable file → Normal file
@@ -11,9 +11,30 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import threading
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from matcha.models.components.flow_matching import BASECFM
|
||||
import queue
|
||||
|
||||
class EstimatorWrapper:
|
||||
def __init__(self, estimator_engine, estimator_count=2,):
|
||||
self.estimators = queue.Queue()
|
||||
self.estimator_engine = estimator_engine
|
||||
for _ in range(estimator_count):
|
||||
estimator = estimator_engine.create_execution_context()
|
||||
if estimator is not None:
|
||||
self.estimators.put(estimator)
|
||||
|
||||
if self.estimators.empty():
|
||||
raise Exception("No available estimator")
|
||||
|
||||
def acquire_estimator(self):
|
||||
return self.estimators.get(), self.estimator_engine
|
||||
|
||||
def release_estimator(self, estimator):
|
||||
self.estimators.put(estimator)
|
||||
return
|
||||
|
||||
class ConditionalCFM(BASECFM):
|
||||
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
||||
@@ -29,9 +50,10 @@ class ConditionalCFM(BASECFM):
|
||||
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
||||
# Just change the architecture of the estimator here
|
||||
self.estimator = estimator
|
||||
self.lock = threading.Lock()
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
@@ -49,11 +71,21 @@ class ConditionalCFM(BASECFM):
|
||||
sample: generated mel-spectrogram
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
z = torch.randn_like(mu) * temperature
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
||||
|
||||
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
|
||||
cache_size = flow_cache.shape[2]
|
||||
# fix prompt and overlap part mu and z
|
||||
if cache_size != 0:
|
||||
z[:, :, :cache_size] = flow_cache[:, :, :, 0]
|
||||
mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
|
||||
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
||||
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
||||
flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
|
||||
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||
if self.t_scheduler == 'cosine':
|
||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
|
||||
|
||||
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
||||
"""
|
||||
@@ -71,30 +103,91 @@ class ConditionalCFM(BASECFM):
|
||||
cond: Not used but kept for future purposes
|
||||
"""
|
||||
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||
t = t.unsqueeze(dim=0)
|
||||
|
||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||
# Or in future might add like a return_all_steps flag
|
||||
sol = []
|
||||
|
||||
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
||||
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
|
||||
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
|
||||
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
|
||||
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||
for step in range(1, len(t_span)):
|
||||
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
||||
# Classifier-Free Guidance inference introduced in VoiceBox
|
||||
if self.inference_cfg_rate > 0:
|
||||
cfg_dphi_dt = self.estimator(
|
||||
x, mask,
|
||||
torch.zeros_like(mu), t,
|
||||
torch.zeros_like(spks) if spks is not None else None,
|
||||
torch.zeros_like(cond)
|
||||
)
|
||||
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
|
||||
self.inference_cfg_rate * cfg_dphi_dt)
|
||||
x_in[:] = x
|
||||
mask_in[:] = mask
|
||||
mu_in[0] = mu
|
||||
t_in[:] = t.unsqueeze(0)
|
||||
spks_in[0] = spks
|
||||
cond_in[0] = cond
|
||||
dphi_dt = self.forward_estimator(
|
||||
x_in, mask_in,
|
||||
mu_in, t_in,
|
||||
spks_in,
|
||||
cond_in
|
||||
)
|
||||
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
||||
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
||||
x = x + dt * dphi_dt
|
||||
t = t + dt
|
||||
sol.append(x)
|
||||
if step < len(t_span) - 1:
|
||||
dt = t_span[step + 1] - t
|
||||
|
||||
return sol[-1]
|
||||
return sol[-1].float()
|
||||
|
||||
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
||||
if isinstance(self.estimator, torch.nn.Module):
|
||||
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
||||
else:
|
||||
if isinstance(self.estimator, EstimatorWrapper):
|
||||
estimator, engine = self.estimator.acquire_estimator()
|
||||
|
||||
estimator.set_input_shape('x', (2, 80, x.size(2)))
|
||||
estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
||||
estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
||||
estimator.set_input_shape('t', (2,))
|
||||
estimator.set_input_shape('spks', (2, 80))
|
||||
estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||
|
||||
data_ptrs = [x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr()]
|
||||
|
||||
for idx, data_ptr in enumerate(data_ptrs):
|
||||
estimator.set_tensor_address(engine.get_tensor_name(idx), data_ptr)
|
||||
|
||||
# run trt engine
|
||||
estimator.execute_async_v3(torch.cuda.current_stream().cuda_stream)
|
||||
|
||||
torch.cuda.current_stream().synchronize()
|
||||
self.estimator.release_estimator(estimator)
|
||||
return x
|
||||
else:
|
||||
with self.lock:
|
||||
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
||||
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
||||
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
||||
self.estimator.set_input_shape('t', (2,))
|
||||
self.estimator.set_input_shape('spks', (2, 80))
|
||||
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||
# run trt engine
|
||||
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr()])
|
||||
return x
|
||||
|
||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
||||
"""Computes diffusion loss
|
||||
@@ -136,3 +229,36 @@ class ConditionalCFM(BASECFM):
|
||||
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
||||
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
||||
return loss, y
|
||||
|
||||
|
||||
class CausalConditionalCFM(ConditionalCFM):
|
||||
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
||||
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
|
||||
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): output_mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
n_timesteps (int): number of diffusion steps
|
||||
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
||||
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
cond: Not used but kept for future purposes
|
||||
|
||||
Returns:
|
||||
sample: generated mel-spectrogram
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
|
||||
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
|
||||
# fix prompt and overlap part mu and z
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||
if self.t_scheduler == 'cosine':
|
||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|
||||
|
||||
22
cosyvoice/flow/length_regulator.py
Executable file → Normal file
22
cosyvoice/flow/length_regulator.py
Executable file → Normal file
@@ -13,6 +13,7 @@
|
||||
# limitations under the License.
|
||||
from typing import Tuple
|
||||
import torch.nn as nn
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from cosyvoice.utils.mask import make_pad_mask
|
||||
|
||||
@@ -43,7 +44,26 @@ class InterpolateRegulator(nn.Module):
|
||||
def forward(self, x, ylens=None):
|
||||
# x in (B, T, D)
|
||||
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
||||
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
||||
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear')
|
||||
out = self.model(x).transpose(1, 2).contiguous()
|
||||
olens = ylens
|
||||
return out * mask, olens
|
||||
|
||||
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
|
||||
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
|
||||
# x in (B, T, D)
|
||||
if x2.shape[1] > 40:
|
||||
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
||||
x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2,
|
||||
mode='linear')
|
||||
x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
||||
x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
|
||||
else:
|
||||
x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')
|
||||
if x1.shape[1] != 0:
|
||||
x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear')
|
||||
x = torch.concat([x1, x2], dim=2)
|
||||
else:
|
||||
x = x2
|
||||
out = self.model(x).transpose(1, 2).contiguous()
|
||||
return out, mel_len1 + mel_len2
|
||||
|
||||
140
cosyvoice/hifigan/discriminator.py
Normal file
140
cosyvoice/hifigan/discriminator.py
Normal file
@@ -0,0 +1,140 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
from typing import List, Optional, Tuple
|
||||
from einops import rearrange
|
||||
from torchaudio.transforms import Spectrogram
|
||||
|
||||
|
||||
class MultipleDiscriminator(nn.Module):
|
||||
def __init__(
|
||||
self, mpd: nn.Module, mrd: nn.Module
|
||||
):
|
||||
super().__init__()
|
||||
self.mpd = mpd
|
||||
self.mrd = mrd
|
||||
|
||||
def forward(self, y: torch.Tensor, y_hat: torch.Tensor):
|
||||
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
|
||||
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1))
|
||||
y_d_rs += this_y_d_rs
|
||||
y_d_gs += this_y_d_gs
|
||||
fmap_rs += this_fmap_rs
|
||||
fmap_gs += this_fmap_gs
|
||||
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat)
|
||||
y_d_rs += this_y_d_rs
|
||||
y_d_gs += this_y_d_gs
|
||||
fmap_rs += this_fmap_rs
|
||||
fmap_gs += this_fmap_gs
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class MultiResolutionDiscriminator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
|
||||
num_embeddings: Optional[int] = None,
|
||||
):
|
||||
"""
|
||||
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
|
||||
Additionally, it allows incorporating conditional information with a learned embeddings table.
|
||||
|
||||
Args:
|
||||
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
|
||||
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
||||
Defaults to None.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
self.discriminators = nn.ModuleList(
|
||||
[DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
||||
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
|
||||
for d in self.discriminators:
|
||||
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
||||
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorR(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
window_length: int,
|
||||
num_embeddings: Optional[int] = None,
|
||||
channels: int = 32,
|
||||
hop_factor: float = 0.25,
|
||||
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
|
||||
):
|
||||
super().__init__()
|
||||
self.window_length = window_length
|
||||
self.hop_factor = hop_factor
|
||||
self.spec_fn = Spectrogram(
|
||||
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
|
||||
)
|
||||
n_fft = window_length // 2 + 1
|
||||
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
||||
self.bands = bands
|
||||
convs = lambda: nn.ModuleList(
|
||||
[
|
||||
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
||||
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
||||
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
||||
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
||||
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
|
||||
]
|
||||
)
|
||||
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
||||
|
||||
if num_embeddings is not None:
|
||||
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
|
||||
torch.nn.init.zeros_(self.emb.weight)
|
||||
|
||||
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
|
||||
|
||||
def spectrogram(self, x):
|
||||
# Remove DC offset
|
||||
x = x - x.mean(dim=-1, keepdims=True)
|
||||
# Peak normalize the volume of input audio
|
||||
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
||||
x = self.spec_fn(x)
|
||||
x = torch.view_as_real(x)
|
||||
x = rearrange(x, "b f t c -> b c t f")
|
||||
# Split into bands
|
||||
x_bands = [x[..., b[0]: b[1]] for b in self.bands]
|
||||
return x_bands
|
||||
|
||||
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
|
||||
x_bands = self.spectrogram(x)
|
||||
fmap = []
|
||||
x = []
|
||||
for band, stack in zip(x_bands, self.band_convs):
|
||||
for i, layer in enumerate(stack):
|
||||
band = layer(band)
|
||||
band = torch.nn.functional.leaky_relu(band, 0.1)
|
||||
if i > 0:
|
||||
fmap.append(band)
|
||||
x.append(band)
|
||||
x = torch.cat(x, dim=-1)
|
||||
if cond_embedding_id is not None:
|
||||
emb = self.emb(cond_embedding_id)
|
||||
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
||||
else:
|
||||
h = 0
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x += h
|
||||
|
||||
return x, fmap
|
||||
2
cosyvoice/hifigan/f0_predictor.py
Executable file → Normal file
2
cosyvoice/hifigan/f0_predictor.py
Executable file → Normal file
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils import weight_norm
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
|
||||
|
||||
class ConvRNNF0Predictor(nn.Module):
|
||||
|
||||
@@ -14,7 +14,7 @@
|
||||
|
||||
"""HIFI-GAN"""
|
||||
|
||||
import typing as tp
|
||||
from typing import Dict, Optional, List
|
||||
import numpy as np
|
||||
from scipy.signal import get_window
|
||||
import torch
|
||||
@@ -23,7 +23,7 @@ import torch.nn.functional as F
|
||||
from torch.nn import Conv1d
|
||||
from torch.nn import ConvTranspose1d
|
||||
from torch.nn.utils import remove_weight_norm
|
||||
from torch.nn.utils import weight_norm
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
from torch.distributions.uniform import Uniform
|
||||
|
||||
from cosyvoice.transformer.activation import Snake
|
||||
@@ -38,13 +38,15 @@ This code is modified from https://github.com/jik876/hifi-gan
|
||||
https://github.com/NVIDIA/BigVGAN
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class ResBlock(torch.nn.Module):
|
||||
"""Residual block module in HiFiGAN/BigVGAN."""
|
||||
def __init__(
|
||||
self,
|
||||
channels: int = 512,
|
||||
kernel_size: int = 3,
|
||||
dilations: tp.List[int] = [1, 3, 5],
|
||||
dilations: List[int] = [1, 3, 5],
|
||||
):
|
||||
super(ResBlock, self).__init__()
|
||||
self.convs1 = nn.ModuleList()
|
||||
@@ -100,6 +102,7 @@ class ResBlock(torch.nn.Module):
|
||||
remove_weight_norm(self.convs1[idx])
|
||||
remove_weight_norm(self.convs2[idx])
|
||||
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
""" Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
@@ -231,13 +234,13 @@ class HiFTGenerator(nn.Module):
|
||||
nsf_alpha: float = 0.1,
|
||||
nsf_sigma: float = 0.003,
|
||||
nsf_voiced_threshold: float = 10,
|
||||
upsample_rates: tp.List[int] = [8, 8],
|
||||
upsample_kernel_sizes: tp.List[int] = [16, 16],
|
||||
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
||||
resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
|
||||
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
source_resblock_kernel_sizes: tp.List[int] = [7, 11],
|
||||
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
|
||||
upsample_rates: List[int] = [8, 8],
|
||||
upsample_kernel_sizes: List[int] = [16, 16],
|
||||
istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
||||
resblock_kernel_sizes: List[int] = [3, 7, 11],
|
||||
resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
source_resblock_kernel_sizes: List[int] = [7, 11],
|
||||
source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
|
||||
lrelu_slope: float = 0.1,
|
||||
audio_limit: float = 0.99,
|
||||
f0_predictor: torch.nn.Module = None,
|
||||
@@ -286,8 +289,7 @@ class HiFTGenerator(nn.Module):
|
||||
self.source_resblocks = nn.ModuleList()
|
||||
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
||||
downsample_cum_rates = np.cumprod(downsample_rates)
|
||||
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
|
||||
source_resblock_dilation_sizes)):
|
||||
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
|
||||
if u == 1:
|
||||
self.source_downs.append(
|
||||
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
||||
@@ -304,7 +306,7 @@ class HiFTGenerator(nn.Module):
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = base_channels // (2**(i + 1))
|
||||
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||
self.resblocks.append(ResBlock(ch, k, d))
|
||||
|
||||
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
||||
@@ -314,11 +316,19 @@ class HiFTGenerator(nn.Module):
|
||||
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
||||
self.f0_predictor = f0_predictor
|
||||
|
||||
def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
|
||||
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
||||
|
||||
har_source, _, _ = self.m_source(f0)
|
||||
return har_source.transpose(1, 2)
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
self.m_source.remove_weight_norm()
|
||||
for l in self.source_downs:
|
||||
remove_weight_norm(l)
|
||||
for l in self.source_resblocks:
|
||||
l.remove_weight_norm()
|
||||
|
||||
def _stft(self, x):
|
||||
spec = torch.stft(
|
||||
@@ -332,13 +342,11 @@ class HiFTGenerator(nn.Module):
|
||||
magnitude = torch.clip(magnitude, max=1e2)
|
||||
real = magnitude * torch.cos(phase)
|
||||
img = magnitude * torch.sin(phase)
|
||||
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
||||
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
|
||||
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
||||
return inverse_transform
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
f0 = self.f0_predictor(x)
|
||||
s = self._f02source(f0)
|
||||
|
||||
def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
||||
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
||||
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
||||
|
||||
@@ -372,20 +380,32 @@ class HiFTGenerator(nn.Module):
|
||||
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
self.source_module.remove_weight_norm()
|
||||
for l in self.source_downs:
|
||||
remove_weight_norm(l)
|
||||
for l in self.source_resblocks:
|
||||
l.remove_weight_norm()
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
|
||||
# mel->f0
|
||||
f0 = self.f0_predictor(speech_feat)
|
||||
# f0->source
|
||||
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
||||
s, _, _ = self.m_source(s)
|
||||
s = s.transpose(1, 2)
|
||||
# mel+source->speech
|
||||
generated_speech = self.decode(x=speech_feat, s=s)
|
||||
return generated_speech, f0
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self, mel: torch.Tensor) -> torch.Tensor:
|
||||
return self.forward(x=mel)
|
||||
def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
||||
# mel->f0
|
||||
f0 = self.f0_predictor(speech_feat)
|
||||
# f0->source
|
||||
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
||||
s, _, _ = self.m_source(s)
|
||||
s = s.transpose(1, 2)
|
||||
# use cache_source to avoid glitch
|
||||
if cache_source.shape[2] != 0:
|
||||
s[:, :, :cache_source.shape[2]] = cache_source
|
||||
generated_speech = self.decode(x=speech_feat, s=s)
|
||||
return generated_speech, s
|
||||
|
||||
67
cosyvoice/hifigan/hifigan.py
Normal file
67
cosyvoice/hifigan/hifigan.py
Normal file
@@ -0,0 +1,67 @@
|
||||
from typing import Dict, Optional
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from matcha.hifigan.models import feature_loss, generator_loss, discriminator_loss
|
||||
from cosyvoice.utils.losses import tpr_loss, mel_loss
|
||||
|
||||
|
||||
class HiFiGan(nn.Module):
|
||||
def __init__(self, generator, discriminator, mel_spec_transform,
|
||||
multi_mel_spectral_recon_loss_weight=45, feat_match_loss_weight=2.0,
|
||||
tpr_loss_weight=1.0, tpr_loss_tau=0.04):
|
||||
super(HiFiGan, self).__init__()
|
||||
self.generator = generator
|
||||
self.discriminator = discriminator
|
||||
self.mel_spec_transform = mel_spec_transform
|
||||
self.multi_mel_spectral_recon_loss_weight = multi_mel_spectral_recon_loss_weight
|
||||
self.feat_match_loss_weight = feat_match_loss_weight
|
||||
self.tpr_loss_weight = tpr_loss_weight
|
||||
self.tpr_loss_tau = tpr_loss_tau
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
if batch['turn'] == 'generator':
|
||||
return self.forward_generator(batch, device)
|
||||
else:
|
||||
return self.forward_discriminator(batch, device)
|
||||
|
||||
def forward_generator(self, batch, device):
|
||||
real_speech = batch['speech'].to(device)
|
||||
pitch_feat = batch['pitch_feat'].to(device)
|
||||
# 1. calculate generator outputs
|
||||
generated_speech, generated_f0 = self.generator(batch, device)
|
||||
# 2. calculate discriminator outputs
|
||||
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
||||
# 3. calculate generator losses, feature loss, mel loss, tpr losses [Optional]
|
||||
loss_gen, _ = generator_loss(y_d_gs)
|
||||
loss_fm = feature_loss(fmap_rs, fmap_gs)
|
||||
loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
|
||||
if self.tpr_loss_weight != 0:
|
||||
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
||||
else:
|
||||
loss_tpr = torch.zeros(1).to(device)
|
||||
loss_f0 = F.l1_loss(generated_f0, pitch_feat)
|
||||
loss = loss_gen + self.feat_match_loss_weight * loss_fm + \
|
||||
self.multi_mel_spectral_recon_loss_weight * loss_mel + \
|
||||
self.tpr_loss_weight * loss_tpr + loss_f0
|
||||
return {'loss': loss, 'loss_gen': loss_gen, 'loss_fm': loss_fm, 'loss_mel': loss_mel, 'loss_tpr': loss_tpr, 'loss_f0': loss_f0}
|
||||
|
||||
def forward_discriminator(self, batch, device):
|
||||
real_speech = batch['speech'].to(device)
|
||||
# 1. calculate generator outputs
|
||||
with torch.no_grad():
|
||||
generated_speech, generated_f0 = self.generator(batch, device)
|
||||
# 2. calculate discriminator outputs
|
||||
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
||||
# 3. calculate discriminator losses, tpr losses [Optional]
|
||||
loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
|
||||
if self.tpr_loss_weight != 0:
|
||||
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
||||
else:
|
||||
loss_tpr = torch.zeros(1).to(device)
|
||||
loss = loss_disc + self.tpr_loss_weight * loss_tpr
|
||||
return {'loss': loss, 'loss_disc': loss_disc, 'loss_tpr': loss_tpr}
|
||||
@@ -11,14 +11,16 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Dict, Optional, Union
|
||||
from typing import Dict, Optional, Callable, List, Generator
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import Qwen2ForCausalLM
|
||||
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
||||
from cosyvoice.utils.common import IGNORE_ID
|
||||
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
||||
from cosyvoice.utils.common import th_accuracy
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
|
||||
|
||||
class TransformerLM(torch.nn.Module):
|
||||
@@ -31,6 +33,7 @@ class TransformerLM(torch.nn.Module):
|
||||
speech_token_size: int,
|
||||
text_encoder: torch.nn.Module,
|
||||
llm: torch.nn.Module,
|
||||
sampling: Callable,
|
||||
length_normalized_loss: bool = True,
|
||||
lsm_weight: float = 0.0,
|
||||
spk_embed_dim: int = 192,
|
||||
@@ -63,6 +66,9 @@ class TransformerLM(torch.nn.Module):
|
||||
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
||||
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
||||
|
||||
# 4. sampling method
|
||||
self.sampling = sampling
|
||||
|
||||
def encode(
|
||||
self,
|
||||
text: torch.Tensor,
|
||||
@@ -76,7 +82,8 @@ class TransformerLM(torch.nn.Module):
|
||||
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
||||
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
||||
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) for i in range(len(text_token))]
|
||||
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
||||
for i in range(len(text_token))]
|
||||
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
||||
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
||||
return lm_input, lm_input_len
|
||||
@@ -100,7 +107,8 @@ class TransformerLM(torch.nn.Module):
|
||||
embedding = batch['embedding'].to(device)
|
||||
|
||||
# 1. prepare llm_target
|
||||
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
|
||||
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
||||
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||
|
||||
# 1. encode text_token
|
||||
@@ -120,7 +128,8 @@ class TransformerLM(torch.nn.Module):
|
||||
speech_token = self.speech_embedding(speech_token)
|
||||
|
||||
# 5. unpad and pad
|
||||
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len)
|
||||
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
||||
task_id_emb, speech_token, speech_token_len)
|
||||
|
||||
# 6. run lm forward
|
||||
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
||||
@@ -132,16 +141,18 @@ class TransformerLM(torch.nn.Module):
|
||||
def sampling_ids(
|
||||
self,
|
||||
weighted_scores: torch.Tensor,
|
||||
sampling: Union[bool, int, float] = True,
|
||||
beam_size: int = 1,
|
||||
decoded_tokens: List,
|
||||
sampling: int,
|
||||
ignore_eos: bool = True,
|
||||
):
|
||||
num_trials, max_trials = 0, 100
|
||||
while True:
|
||||
prob, indices = weighted_scores.softmax(dim=-1).topk(sampling)
|
||||
top_ids = prob.multinomial(beam_size, replacement=True)
|
||||
top_ids = indices[top_ids]
|
||||
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
||||
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
||||
break
|
||||
num_trials += 1
|
||||
if num_trials > max_trials:
|
||||
raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
|
||||
return top_ids
|
||||
|
||||
@torch.inference_mode()
|
||||
@@ -154,11 +165,13 @@ class TransformerLM(torch.nn.Module):
|
||||
prompt_speech_token: torch.Tensor,
|
||||
prompt_speech_token_len: torch.Tensor,
|
||||
embedding: torch.Tensor,
|
||||
beam_size: int = 1,
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
) -> torch.Tensor:
|
||||
) -> Generator[torch.Tensor, None, None]:
|
||||
if self.fp16 is True:
|
||||
embedding = embedding.half()
|
||||
|
||||
device = text.device
|
||||
text = torch.concat([prompt_text, text], dim=1)
|
||||
text_len += prompt_text_len
|
||||
@@ -173,7 +186,7 @@ class TransformerLM(torch.nn.Module):
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
embedding = embedding.unsqueeze(dim=1)
|
||||
else:
|
||||
embedding = torch.zeros(1, 0, self.llm_input_size).to(device)
|
||||
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
|
||||
|
||||
# 3. concat llm_input
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
@@ -181,7 +194,7 @@ class TransformerLM(torch.nn.Module):
|
||||
if prompt_speech_token_len != 0:
|
||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||
else:
|
||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device)
|
||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||
|
||||
# 4. cal min/max_length
|
||||
@@ -193,14 +206,229 @@ class TransformerLM(torch.nn.Module):
|
||||
offset = 0
|
||||
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
||||
for i in range(max_len):
|
||||
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=0, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache,
|
||||
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool))
|
||||
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
|
||||
att_cache=att_cache, cnn_cache=cnn_cache,
|
||||
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
||||
device=lm_input.device)).to(torch.bool))
|
||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), sampling, beam_size, ignore_eos=True if i < min_len else False).item()
|
||||
# force continue decode first token
|
||||
if i == 0:
|
||||
logp[:, self.speech_token_size] = -float('inf')
|
||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
||||
if top_ids == self.speech_token_size:
|
||||
break
|
||||
# in stream mode, yield token one by one
|
||||
yield top_ids
|
||||
out_tokens.append(top_ids)
|
||||
offset += lm_input.size(1)
|
||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
|
||||
return torch.tensor([out_tokens], dtype=torch.int64, device=device)
|
||||
|
||||
class Qwen2Encoder(torch.nn.Module):
|
||||
def __init__(self, pretrain_path):
|
||||
super().__init__()
|
||||
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
||||
|
||||
def forward_one_step(self, xs, masks, cache=None):
|
||||
input_masks = masks[:, -1, :]
|
||||
outs = self.model(
|
||||
inputs_embeds=xs,
|
||||
attention_mask=input_masks,
|
||||
output_hidden_states=True,
|
||||
return_dict=True,
|
||||
use_cache=True,
|
||||
past_key_values=cache,
|
||||
)
|
||||
xs = outs.hidden_states[-1]
|
||||
new_cache = outs.past_key_values
|
||||
return xs, new_cache
|
||||
|
||||
|
||||
class Qwen2LM(TransformerLM):
|
||||
def __init__(
|
||||
self,
|
||||
llm_input_size: int,
|
||||
llm_output_size: int,
|
||||
speech_token_size: int,
|
||||
llm: torch.nn.Module,
|
||||
sampling: Callable,
|
||||
length_normalized_loss: bool = True,
|
||||
lsm_weight: float = 0.0,
|
||||
mix_ratio: List[int] = [5, 15],
|
||||
):
|
||||
torch.nn.Module.__init__(self)
|
||||
self.llm_input_size = llm_input_size
|
||||
self.llm_output_size = llm_output_size
|
||||
self.speech_token_size = speech_token_size
|
||||
|
||||
# 2. build speech token language model related modules
|
||||
self.sos_eos = 0
|
||||
self.task_id = 1
|
||||
self.fill_token = 2
|
||||
|
||||
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
||||
self.llm = llm
|
||||
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
|
||||
self.criterion_ce = LabelSmoothingLoss(
|
||||
size=speech_token_size + 3,
|
||||
padding_idx=IGNORE_ID,
|
||||
smoothing=lsm_weight,
|
||||
normalize_length=length_normalized_loss,
|
||||
)
|
||||
|
||||
# 3. [Optional] build speech token related modules
|
||||
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
|
||||
|
||||
# 4. sampling method
|
||||
self.sampling = sampling
|
||||
self.mix_ratio = mix_ratio
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(
|
||||
self,
|
||||
text: torch.Tensor,
|
||||
text_len: torch.Tensor,
|
||||
prompt_text: torch.Tensor,
|
||||
prompt_text_len: torch.Tensor,
|
||||
prompt_speech_token: torch.Tensor,
|
||||
prompt_speech_token_len: torch.Tensor,
|
||||
embedding: torch.Tensor,
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
) -> Generator[torch.Tensor, None, None]:
|
||||
device = text.device
|
||||
text = torch.concat([prompt_text, text], dim=1)
|
||||
text_len += prompt_text_len
|
||||
text = self.llm.model.model.embed_tokens(text)
|
||||
|
||||
# 3. concat llm_input
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
if prompt_speech_token_len != 0:
|
||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||
else:
|
||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||
lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||
|
||||
# 4. cal min/max_length
|
||||
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
||||
|
||||
# 5. step by step decode
|
||||
out_tokens = []
|
||||
cache = None
|
||||
for i in range(max_len):
|
||||
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
||||
cache=cache)
|
||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
||||
if top_ids == self.speech_token_size:
|
||||
break
|
||||
if top_ids > self.speech_token_size:
|
||||
continue
|
||||
# in stream mode, yield token one by one
|
||||
yield top_ids
|
||||
out_tokens.append(top_ids)
|
||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference_bistream(
|
||||
self,
|
||||
text: Generator,
|
||||
prompt_text: torch.Tensor,
|
||||
prompt_text_len: torch.Tensor,
|
||||
prompt_speech_token: torch.Tensor,
|
||||
prompt_speech_token_len: torch.Tensor,
|
||||
embedding: torch.Tensor,
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
) -> Generator[torch.Tensor, None, None]:
|
||||
|
||||
device = prompt_text.device
|
||||
# 1. prepare input
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
if prompt_speech_token_len != 0:
|
||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||
else:
|
||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
||||
lm_input = torch.concat([sos_eos_emb], dim=1)
|
||||
|
||||
# 2. iterate text
|
||||
out_tokens = []
|
||||
cache = None
|
||||
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
||||
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
||||
next_fill_index = -1
|
||||
for this_text in text:
|
||||
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
||||
# prompt_speech_token_emb not empty, try append to lm_input
|
||||
while prompt_speech_token_emb.size(1) != 0:
|
||||
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||
lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
|
||||
logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
|
||||
lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
|
||||
text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
|
||||
else:
|
||||
logging.info('not enough text token to decode, wait for more')
|
||||
break
|
||||
# no prompt_speech_token_emb remain, can decode some speech token
|
||||
if prompt_speech_token_emb.size(1) == 0:
|
||||
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
||||
logging.info('get fill token, need to append more text token')
|
||||
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
||||
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
||||
if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
|
||||
lm_input = lm_input_text
|
||||
else:
|
||||
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
||||
text_cache = text_cache[:, self.mix_ratio[0]:]
|
||||
else:
|
||||
logging.info('not enough text token to decode, wait for more')
|
||||
continue
|
||||
while True:
|
||||
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||
cache=cache)
|
||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
||||
top_ids = self.speech_token_size + 2
|
||||
next_fill_index += (self.mix_ratio[1] + 1)
|
||||
else:
|
||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
|
||||
if top_ids == self.speech_token_size + 2:
|
||||
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
||||
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
||||
out_tokens.append(top_ids)
|
||||
if top_ids >= self.speech_token_size:
|
||||
if top_ids == self.speech_token_size + 2:
|
||||
break
|
||||
else:
|
||||
raise ValueError('should not get token {}'.format(top_ids))
|
||||
yield top_ids
|
||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
|
||||
# 3. final decode
|
||||
lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
|
||||
logging.info('no more text token, decode until met eos')
|
||||
while True:
|
||||
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||
cache=cache)
|
||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
|
||||
out_tokens.append(top_ids)
|
||||
if top_ids >= self.speech_token_size:
|
||||
if top_ids == self.speech_token_size:
|
||||
break
|
||||
else:
|
||||
raise ValueError('should not get token {}'.format(top_ids))
|
||||
# in stream mode, yield token one by one
|
||||
yield top_ids
|
||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
|
||||
212
cosyvoice/llm/llm_vllm.py
Normal file
212
cosyvoice/llm/llm_vllm.py
Normal file
@@ -0,0 +1,212 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import time
|
||||
import queue
|
||||
import asyncio
|
||||
import threading
|
||||
from typing import List, Generator, AsyncGenerator
|
||||
import torch
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
from cosyvoice.llm.llm import Qwen2LM
|
||||
|
||||
# 启用vllm V1版本
|
||||
import os
|
||||
os.environ["VLLM_USE_V1"] = '1'
|
||||
from vllm import ModelRegistry
|
||||
from vllm import LLMEngine, AsyncLLMEngine, CompletionOutput
|
||||
from vllm.engine.arg_utils import EngineArgs, AsyncEngineArgs
|
||||
from vllm.sampling_params import SamplingParams
|
||||
|
||||
from cosyvoice.llm.vllm_use_cosyvoice2_model import CosyVoice2Model as CosyVoice2LLM
|
||||
ModelRegistry.register_model("CosyVoice2Model", CosyVoice2LLM)
|
||||
|
||||
# EngineArgs
|
||||
ENGINE_ARGS = {
|
||||
"block_size": 16,
|
||||
"swap_space": 0,
|
||||
# "enforce_eager": True,
|
||||
"gpu_memory_utilization": 0.4,
|
||||
"max_num_batched_tokens": 1024,
|
||||
"max_model_len": 1024,
|
||||
"max_num_seqs": 256,
|
||||
"disable_log_requests": True,
|
||||
"disable_log_stats": True,
|
||||
"dtype": "float16"
|
||||
}
|
||||
|
||||
from vllm.sampling_params import RequestOutputKind
|
||||
# SamplingParams
|
||||
SAMPLING_PARAMS = {
|
||||
"temperature": 1, # 不能低于0.8, 否则会生成非常多的空音频,或者无法正常生成语音Token
|
||||
"top_p": 1, # 不能低于0.8, 否则会生成非常多的空音频,或者无法正常生成语音Token
|
||||
"top_k": 25,
|
||||
# "min_tokens": 80, # 不支持设置最小的tokens数量设置,开启后vllm直接崩溃,无法启动
|
||||
# "presence_penalty": 1.0, # 不支持设置
|
||||
# "frequency_penalty": 0.0, # 不支持设置
|
||||
"max_tokens": 1024,
|
||||
"detokenize": False, # 目前 vllm 0.7.3 v1版本中设置无效,待后续版本更新后减少计算
|
||||
"ignore_eos": False,
|
||||
"output_kind": RequestOutputKind.DELTA # 设置为DELTA,如调整该参数,请同时调整llm_inference的处理代码
|
||||
}
|
||||
|
||||
def tensor_to_list(tensor: torch.tensor):
|
||||
return tensor.view(-1).cpu().numpy().tolist()
|
||||
|
||||
class VllmQwen2LM(Qwen2LM):
|
||||
def __init__(
|
||||
self,
|
||||
model_dir,
|
||||
mix_ratio: List[int] = [5, 15],
|
||||
):
|
||||
self.fp16 = False
|
||||
self.half = lambda: None
|
||||
self.mix_ratio = mix_ratio
|
||||
# ---------------------------------------------
|
||||
# vllm engine 的参数配置
|
||||
engine_args = AsyncEngineArgs(
|
||||
model=model_dir,
|
||||
**ENGINE_ARGS,
|
||||
)
|
||||
self.llm_engine: AsyncLLMEngine = AsyncLLMEngine.from_engine_args(engine_args)
|
||||
|
||||
self.speech_token_size = 6564 # 6561 + 3
|
||||
self.llm_token_size = 151936 # llm vocab_size
|
||||
self.sos_eos_token_id = self.speech_token_size + self.llm_token_size + 1
|
||||
self.task_token_id = self.sos_eos_token_id + 1
|
||||
self.zero_token_id = self.task_token_id + 1
|
||||
|
||||
# vllm 的推理任务需要在一个固定的事件循环中,因此启动一个后台线程运行转用于推理任务
|
||||
self.loop = asyncio.new_event_loop()
|
||||
self.loop_thread = threading.Thread(target=self._run_event_loop, daemon=True)
|
||||
self.loop_thread.start()
|
||||
|
||||
def _run_event_loop(self):
|
||||
asyncio.set_event_loop(self.loop)
|
||||
self.loop.run_forever()
|
||||
|
||||
async def async_llm_inference(self, out_queue, prompt_token_ids, request_id, stop_token_ids, max_tokens):
|
||||
sampling_params = SamplingParams(**SAMPLING_PARAMS)
|
||||
sampling_params.stop_token_ids = stop_token_ids or [6561]
|
||||
if max_tokens:
|
||||
sampling_params.max_tokens = max_tokens
|
||||
async for output in self.llm_engine.generate(
|
||||
{
|
||||
"prompt_token_ids": prompt_token_ids,
|
||||
},
|
||||
sampling_params=sampling_params,
|
||||
request_id=request_id or f"{time.time()}",
|
||||
):
|
||||
out_queue.put((output.outputs[0], output.finished))
|
||||
|
||||
def llm_inference(self, prompt_token_ids: List[int], request_id: str=None, stop_token_ids=None, max_tokens=None):
|
||||
out_queue = queue.Queue()
|
||||
asyncio.run_coroutine_threadsafe(
|
||||
self.async_llm_inference(out_queue, prompt_token_ids, request_id, stop_token_ids, max_tokens), self.loop
|
||||
)
|
||||
# 接收 out_queue 返回的结果
|
||||
finished = False
|
||||
while not finished:
|
||||
(output, finished) = out_queue.get_nowait() if not out_queue.empty() else out_queue.get()
|
||||
yield output
|
||||
|
||||
def inference(
|
||||
self,
|
||||
text: torch.Tensor,
|
||||
text_len: torch.Tensor,
|
||||
prompt_text: torch.Tensor,
|
||||
prompt_text_len: torch.Tensor,
|
||||
prompt_speech_token: torch.Tensor,
|
||||
prompt_speech_token_len: torch.Tensor,
|
||||
embedding: torch.Tensor,
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
) -> Generator[torch.Tensor|int, None, None]:
|
||||
prompt_text = tensor_to_list(prompt_text + torch.tensor(6564))
|
||||
prompt_speech_token = tensor_to_list(prompt_speech_token)
|
||||
|
||||
text = tensor_to_list(text + torch.tensor(6564))
|
||||
prompt_token_ids = [self.sos_eos_token_id] + prompt_text + text + \
|
||||
[self.task_token_id] + prompt_speech_token
|
||||
max_tokens = len(text) * 20
|
||||
for output in self.llm_inference(
|
||||
prompt_token_ids,
|
||||
stop_token_ids=[6561],
|
||||
max_tokens=max_tokens,
|
||||
):
|
||||
if output.token_ids[-1] == 6561:
|
||||
need_add_tokens = output.token_ids[:-1]
|
||||
else:
|
||||
need_add_tokens = output.token_ids
|
||||
for token in need_add_tokens:
|
||||
yield token
|
||||
|
||||
def inference_bistream(
|
||||
self,
|
||||
text: Generator,
|
||||
prompt_text: torch.Tensor,
|
||||
prompt_text_len: torch.Tensor,
|
||||
prompt_speech_token: torch.Tensor,
|
||||
prompt_speech_token_len: torch.Tensor,
|
||||
embedding: torch.Tensor,
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
) -> Generator[torch.Tensor, None, None]:
|
||||
prompt_text = tensor_to_list(prompt_text + torch.tensor(6564))
|
||||
prompt_speech_token = tensor_to_list(prompt_speech_token)
|
||||
|
||||
last_tokens = []
|
||||
prompt_token_ids = [self.sos_eos_token_id]
|
||||
text_tokens_cache = prompt_text
|
||||
for this_text in text:
|
||||
this_text = tensor_to_list(this_text + torch.tensor(6564))
|
||||
# text need tokens
|
||||
assert isinstance(this_text, list), "text need token ids List[int]."
|
||||
text_tokens_cache += this_text
|
||||
while len(prompt_speech_token) != 0:
|
||||
if len(text_tokens_cache) >= self.mix_ratio[0]:
|
||||
text_input_token = text_tokens_cache[:self.mix_ratio[0]]
|
||||
speech_input_token = prompt_speech_token[:self.mix_ratio[1]]
|
||||
prompt_token_ids += text_input_token + speech_input_token
|
||||
# reset the last cache
|
||||
text_tokens_cache = text_tokens_cache[self.mix_ratio[0]:]
|
||||
prompt_speech_token = prompt_speech_token[self.mix_ratio[1]:]
|
||||
else:
|
||||
break
|
||||
if len(prompt_speech_token) == 0:
|
||||
if (len(last_tokens) > 0 and last_tokens[-1] == 6563) or len(prompt_token_ids) == 1:
|
||||
if len(text_tokens_cache) >= self.mix_ratio[0]:
|
||||
text_tokens_temp = text_tokens_cache[:self.mix_ratio[0]]
|
||||
prompt_token_ids += text_tokens_temp
|
||||
text_tokens_cache = text_tokens_cache[self.mix_ratio[0]:]
|
||||
else:
|
||||
continue
|
||||
for output in self.llm_inference(prompt_token_ids, stop_token_ids=[6563]):
|
||||
last_tokens = output.token_ids
|
||||
if last_tokens[-1] == 6563:
|
||||
need_add_tokens = last_tokens[:-1]
|
||||
else:
|
||||
need_add_tokens = last_tokens
|
||||
for token in need_add_tokens:
|
||||
yield token
|
||||
prompt_token_ids.extend(need_add_tokens)
|
||||
prompt_token_ids += text_tokens_cache + [self.task_token_id]
|
||||
for output in self.llm_inference(prompt_token_ids, stop_token_ids=[6561]):
|
||||
if output.token_ids[-1] == 6561:
|
||||
need_add_tokens = output.token_ids[:-1]
|
||||
else:
|
||||
need_add_tokens = output.token_ids
|
||||
for token in need_add_tokens:
|
||||
yield token
|
||||
263
cosyvoice/llm/vllm_use_cosyvoice2_model.py
Normal file
263
cosyvoice/llm/vllm_use_cosyvoice2_model.py
Normal file
@@ -0,0 +1,263 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py
|
||||
# Copyright 2024 The Qwen team.
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
|
||||
from typing import Iterable, List, Optional, Set, Tuple, Union, Iterator, overload, TypedDict, Mapping, Any
|
||||
from typing_extensions import TypeVar
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from vllm.attention import AttentionMetadata
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from vllm.model_executor.models.interfaces import T
|
||||
from vllm.model_executor.models.qwen2 import Qwen2Model
|
||||
|
||||
from vllm.model_executor.models.utils import AutoWeightsLoader, maybe_prefix, merge_multimodal_embeddings
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
IGNORE_ID = -1
|
||||
|
||||
|
||||
class CosyVoice2Model(nn.Module):
|
||||
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
],
|
||||
"gate_up_proj": [
|
||||
"gate_proj",
|
||||
"up_proj",
|
||||
],
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
|
||||
self.config = config
|
||||
self.lora_config = lora_config
|
||||
self.quant_config = quant_config
|
||||
|
||||
self.llm_input_size = 896
|
||||
self.llm_output_size = 896
|
||||
|
||||
self.speech_token_size = 6561+3
|
||||
self.llm_token_size = config.vocab_size
|
||||
|
||||
# 2. build speech token language model related modules
|
||||
self.sos_eos = 0
|
||||
self.task_id = 1
|
||||
self.fill_token = 2
|
||||
|
||||
|
||||
self.allow_patterns_overrides = ["llm.*"]
|
||||
self.llm_embedding = torch.nn.Embedding(2, self.llm_input_size)
|
||||
self.model = Qwen2Model(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(prefix, "model"))
|
||||
|
||||
# self.llm_decoder = nn.Linear(self.llm_output_size, self.speech_token_size)
|
||||
self.llm_decoder = ParallelLMHead(self.speech_token_size,
|
||||
self.llm_output_size,
|
||||
bias=True,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(
|
||||
prefix, "llm_decoder"))
|
||||
self.logits_processor = LogitsProcessor(self.speech_token_size)
|
||||
|
||||
# length_normalized_loss: bool = True,
|
||||
# lsm_weight: float = 0.0,
|
||||
# self.criterion_ce = LabelSmoothingLoss(
|
||||
# size=self.speech_token_size,
|
||||
# padding_idx=IGNORE_ID,
|
||||
# smoothing=lsm_weight,
|
||||
# normalize_length=length_normalized_loss,
|
||||
# )
|
||||
|
||||
# 3. [Optional] build speech token related modules
|
||||
self.speech_embedding = torch.nn.Embedding(self.speech_token_size, self.llm_input_size)
|
||||
|
||||
# 4. sampling method
|
||||
## use vllm sampling method
|
||||
self.sampler = get_sampler()
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
self.mix_ratio: List[int] = [5, 15]
|
||||
|
||||
# 定义特殊token常量
|
||||
self.llm_token_id_delta = torch.tensor(self.speech_token_size, dtype=torch.int32)
|
||||
self.sos_eos_token_id = torch.tensor((self.llm_token_id_delta + self.llm_token_size + 1), dtype=torch.int32) # 163840 + 6564 = 170404
|
||||
self.task_token_id = self.sos_eos_token_id + torch.tensor(1, dtype=torch.int32) # 170405
|
||||
self.zero_token_id = self.task_token_id + torch.tensor(1, dtype=torch.int32)
|
||||
|
||||
self.zero_embed_buffer = torch.zeros(
|
||||
(vllm_config.scheduler_config.max_num_seqs, self.llm_input_size),
|
||||
dtype=self.llm_embedding.weight.dtype,
|
||||
device=self.llm_embedding.weight.device
|
||||
)
|
||||
self.inputs_embed_buffer = torch.zeros(
|
||||
(vllm_config.scheduler_config.max_num_batched_tokens, self.llm_input_size),
|
||||
dtype=self.llm_embedding.weight.dtype,
|
||||
device=self.llm_embedding.weight.device,
|
||||
)
|
||||
|
||||
def get_sos_eos_emb(self):
|
||||
return self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
|
||||
def get_task_id_emb(self):
|
||||
return self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
|
||||
def get_input_embeddings(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
multimodal_embeddings: Optional[T] = None,
|
||||
attn_metadata: Optional["AttentionMetadata"] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Returns the input embeddings merged from the text embeddings from
|
||||
input_ids and the multimodal embeddings generated from multimodal
|
||||
kwargs.
|
||||
"""
|
||||
# 创建掩码,标记哪些 token_id 属于音频 Token
|
||||
mask = input_ids < self.speech_token_size
|
||||
|
||||
# 获取 input_ids 的原始形状
|
||||
input_shape = input_ids.shape
|
||||
# 展平 input_ids 和掩码以便统一处理
|
||||
flat_input_ids = input_ids.view(-1)
|
||||
flat_mask = mask.view(-1)
|
||||
|
||||
inputs_embeds = self.inputs_embed_buffer[:flat_input_ids.shape[0]]
|
||||
inputs_embeds.zero_()
|
||||
|
||||
# Process speech tokens
|
||||
if flat_mask.any():
|
||||
speech_token_ids = flat_input_ids[flat_mask]
|
||||
inputs_embeds[flat_mask] = self.speech_embedding(speech_token_ids)
|
||||
|
||||
# 处理大于 delta 的 token_id
|
||||
if (~flat_mask).any():
|
||||
llm_token_ids = flat_input_ids[~flat_mask]
|
||||
llm_embeds = torch.zeros_like(inputs_embeds[~flat_mask])
|
||||
|
||||
sos_eos_mask = llm_token_ids == self.sos_eos_token_id
|
||||
task_mask = llm_token_ids == self.task_token_id
|
||||
zero_mask = llm_token_ids == self.zero_token_id
|
||||
normal_mask = ~(sos_eos_mask | task_mask | zero_mask)
|
||||
|
||||
# 分层处理逻辑
|
||||
# 第一优先级:SOS/EOS标记
|
||||
if sos_eos_mask.any():
|
||||
llm_embeds[sos_eos_mask] = self.llm_embedding.weight[self.sos_eos].unsqueeze(0)
|
||||
|
||||
# 第二优先级:任务标记
|
||||
if task_mask.any():
|
||||
llm_embeds[task_mask] = self.llm_embedding.weight[self.task_id].unsqueeze(0)
|
||||
|
||||
# 第二优先级:空音频标记
|
||||
if zero_mask.any():
|
||||
llm_embeds[zero_mask] = self.zero_embed_buffer[:len(llm_embeds[zero_mask])]
|
||||
|
||||
# 常规LLM token
|
||||
if normal_mask.any():
|
||||
original_ids = llm_token_ids[normal_mask] - self.llm_token_id_delta
|
||||
# print('original_ids: ',original_ids)
|
||||
llm_embeds[normal_mask] = self.model.get_input_embeddings(original_ids)
|
||||
|
||||
inputs_embeds[~flat_mask] = llm_embeds
|
||||
|
||||
inputs_embeds = inputs_embeds.view(*input_shape, self.llm_input_size)
|
||||
|
||||
# 合并多模态嵌入(如果有)
|
||||
if multimodal_embeddings is not None:
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids, inputs_embeds, multimodal_embeddings,
|
||||
self.config.audio_token_index
|
||||
)
|
||||
return inputs_embeds
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.get_input_embeddings(
|
||||
input_ids,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
return self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata, intermediate_tensors,
|
||||
inputs_embeds)
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.llm_decoder, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
@staticmethod
|
||||
def convert_weights(weights: Iterable[Tuple[str, torch.Tensor]]) -> Iterable[Tuple[str, torch.Tensor]]:
|
||||
for name, param in weights:
|
||||
# 处理Qwen2Model核心参数
|
||||
if name.startswith("llm."):
|
||||
if name.startswith("llm.model.model."):
|
||||
name = name.replace("llm.model.model.", "model.")
|
||||
else:
|
||||
continue
|
||||
# print('weights name: ', name)
|
||||
yield name, param
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||||
weights = self.convert_weights(weights)
|
||||
loader = AutoWeightsLoader(self)
|
||||
loader.load_weights(weights)
|
||||
58836
cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken
Normal file
58836
cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken
Normal file
File diff suppressed because it is too large
Load Diff
279
cosyvoice/tokenizer/tokenizer.py
Normal file
279
cosyvoice/tokenizer/tokenizer.py
Normal file
@@ -0,0 +1,279 @@
|
||||
import base64
|
||||
import os
|
||||
from functools import lru_cache
|
||||
from typing import Optional
|
||||
import torch
|
||||
from transformers import AutoTokenizer
|
||||
from whisper.tokenizer import Tokenizer
|
||||
|
||||
import tiktoken
|
||||
|
||||
LANGUAGES = {
|
||||
"en": "english",
|
||||
"zh": "chinese",
|
||||
"de": "german",
|
||||
"es": "spanish",
|
||||
"ru": "russian",
|
||||
"ko": "korean",
|
||||
"fr": "french",
|
||||
"ja": "japanese",
|
||||
"pt": "portuguese",
|
||||
"tr": "turkish",
|
||||
"pl": "polish",
|
||||
"ca": "catalan",
|
||||
"nl": "dutch",
|
||||
"ar": "arabic",
|
||||
"sv": "swedish",
|
||||
"it": "italian",
|
||||
"id": "indonesian",
|
||||
"hi": "hindi",
|
||||
"fi": "finnish",
|
||||
"vi": "vietnamese",
|
||||
"he": "hebrew",
|
||||
"uk": "ukrainian",
|
||||
"el": "greek",
|
||||
"ms": "malay",
|
||||
"cs": "czech",
|
||||
"ro": "romanian",
|
||||
"da": "danish",
|
||||
"hu": "hungarian",
|
||||
"ta": "tamil",
|
||||
"no": "norwegian",
|
||||
"th": "thai",
|
||||
"ur": "urdu",
|
||||
"hr": "croatian",
|
||||
"bg": "bulgarian",
|
||||
"lt": "lithuanian",
|
||||
"la": "latin",
|
||||
"mi": "maori",
|
||||
"ml": "malayalam",
|
||||
"cy": "welsh",
|
||||
"sk": "slovak",
|
||||
"te": "telugu",
|
||||
"fa": "persian",
|
||||
"lv": "latvian",
|
||||
"bn": "bengali",
|
||||
"sr": "serbian",
|
||||
"az": "azerbaijani",
|
||||
"sl": "slovenian",
|
||||
"kn": "kannada",
|
||||
"et": "estonian",
|
||||
"mk": "macedonian",
|
||||
"br": "breton",
|
||||
"eu": "basque",
|
||||
"is": "icelandic",
|
||||
"hy": "armenian",
|
||||
"ne": "nepali",
|
||||
"mn": "mongolian",
|
||||
"bs": "bosnian",
|
||||
"kk": "kazakh",
|
||||
"sq": "albanian",
|
||||
"sw": "swahili",
|
||||
"gl": "galician",
|
||||
"mr": "marathi",
|
||||
"pa": "punjabi",
|
||||
"si": "sinhala",
|
||||
"km": "khmer",
|
||||
"sn": "shona",
|
||||
"yo": "yoruba",
|
||||
"so": "somali",
|
||||
"af": "afrikaans",
|
||||
"oc": "occitan",
|
||||
"ka": "georgian",
|
||||
"be": "belarusian",
|
||||
"tg": "tajik",
|
||||
"sd": "sindhi",
|
||||
"gu": "gujarati",
|
||||
"am": "amharic",
|
||||
"yi": "yiddish",
|
||||
"lo": "lao",
|
||||
"uz": "uzbek",
|
||||
"fo": "faroese",
|
||||
"ht": "haitian creole",
|
||||
"ps": "pashto",
|
||||
"tk": "turkmen",
|
||||
"nn": "nynorsk",
|
||||
"mt": "maltese",
|
||||
"sa": "sanskrit",
|
||||
"lb": "luxembourgish",
|
||||
"my": "myanmar",
|
||||
"bo": "tibetan",
|
||||
"tl": "tagalog",
|
||||
"mg": "malagasy",
|
||||
"as": "assamese",
|
||||
"tt": "tatar",
|
||||
"haw": "hawaiian",
|
||||
"ln": "lingala",
|
||||
"ha": "hausa",
|
||||
"ba": "bashkir",
|
||||
"jw": "javanese",
|
||||
"su": "sundanese",
|
||||
"yue": "cantonese",
|
||||
"minnan": "minnan",
|
||||
"wuyu": "wuyu",
|
||||
"dialect": "dialect",
|
||||
"zh/en": "zh/en",
|
||||
"en/zh": "en/zh",
|
||||
}
|
||||
|
||||
# language code lookup by name, with a few language aliases
|
||||
TO_LANGUAGE_CODE = {
|
||||
**{language: code for code, language in LANGUAGES.items()},
|
||||
"burmese": "my",
|
||||
"valencian": "ca",
|
||||
"flemish": "nl",
|
||||
"haitian": "ht",
|
||||
"letzeburgesch": "lb",
|
||||
"pushto": "ps",
|
||||
"panjabi": "pa",
|
||||
"moldavian": "ro",
|
||||
"moldovan": "ro",
|
||||
"sinhalese": "si",
|
||||
"castilian": "es",
|
||||
"mandarin": "zh",
|
||||
}
|
||||
|
||||
AUDIO_EVENT = {
|
||||
"ASR": "ASR",
|
||||
"AED": "AED",
|
||||
"SER": "SER",
|
||||
"Speech": "Speech",
|
||||
"/Speech": "/Speech",
|
||||
"BGM": "BGM",
|
||||
"/BGM": "/BGM",
|
||||
"Laughter": "Laughter",
|
||||
"/Laughter": "/Laughter",
|
||||
"Applause": "Applause",
|
||||
"/Applause": "/Applause",
|
||||
}
|
||||
|
||||
EMOTION = {
|
||||
"HAPPY": "HAPPY",
|
||||
"SAD": "SAD",
|
||||
"ANGRY": "ANGRY",
|
||||
"NEUTRAL": "NEUTRAL",
|
||||
}
|
||||
|
||||
TTS_Vocal_Token = {
|
||||
"TTS/B": "TTS/B",
|
||||
"TTS/O": "TTS/O",
|
||||
"TTS/Q": "TTS/Q",
|
||||
"TTS/A": "TTS/A",
|
||||
"TTS/CO": "TTS/CO",
|
||||
"TTS/CL": "TTS/CL",
|
||||
"TTS/H": "TTS/H",
|
||||
**{f"TTS/SP{i:02d}": f"TTS/SP{i:02d}" for i in range(1, 14)}
|
||||
}
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
||||
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
||||
ranks = {
|
||||
base64.b64decode(token): int(rank)
|
||||
for token, rank in (line.split() for line in open(vocab_path) if line)
|
||||
}
|
||||
n_vocab = len(ranks)
|
||||
special_tokens = {}
|
||||
|
||||
specials = [
|
||||
"<|endoftext|>",
|
||||
"<|startoftranscript|>",
|
||||
*[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]],
|
||||
*[f"<|{audio_event}|>" for audio_event in list(AUDIO_EVENT.keys())],
|
||||
*[f"<|{emotion}|>" for emotion in list(EMOTION.keys())],
|
||||
"<|translate|>",
|
||||
"<|transcribe|>",
|
||||
"<|startoflm|>",
|
||||
"<|startofprev|>",
|
||||
"<|nospeech|>",
|
||||
"<|notimestamps|>",
|
||||
*[f"<|SPECIAL_TOKEN_{i}|>" for i in range(1, 31)], # register special tokens for ASR
|
||||
*[f"<|{tts}|>" for tts in list(TTS_Vocal_Token.keys())], # register special tokens for TTS
|
||||
*[f"<|{i * 0.02:.2f}|>" for i in range(1501)],
|
||||
]
|
||||
|
||||
for token in specials:
|
||||
special_tokens[token] = n_vocab
|
||||
n_vocab += 1
|
||||
|
||||
return tiktoken.Encoding(
|
||||
name=os.path.basename(vocab_path),
|
||||
explicit_n_vocab=n_vocab,
|
||||
pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
|
||||
mergeable_ranks=ranks,
|
||||
special_tokens=special_tokens,
|
||||
)
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def get_tokenizer(
|
||||
multilingual: bool,
|
||||
*,
|
||||
num_languages: int = 99,
|
||||
language: Optional[str] = None,
|
||||
task: Optional[str] = None, # Literal["transcribe", "translate", None]
|
||||
) -> Tokenizer:
|
||||
if language is not None:
|
||||
language = language.lower()
|
||||
if language not in LANGUAGES:
|
||||
if language in TO_LANGUAGE_CODE:
|
||||
language = TO_LANGUAGE_CODE[language]
|
||||
else:
|
||||
raise ValueError(f"Unsupported language: {language}")
|
||||
|
||||
if multilingual:
|
||||
encoding_name = "multilingual_zh_ja_yue_char_del"
|
||||
language = language or "en"
|
||||
task = task or "transcribe"
|
||||
else:
|
||||
encoding_name = "gpt2"
|
||||
language = None
|
||||
task = None
|
||||
|
||||
encoding = get_encoding(name=encoding_name, num_languages=num_languages)
|
||||
|
||||
return Tokenizer(
|
||||
encoding=encoding, num_languages=num_languages, language=language, task=task
|
||||
)
|
||||
|
||||
|
||||
class QwenTokenizer():
|
||||
def __init__(self, token_path, skip_special_tokens=True):
|
||||
super().__init__()
|
||||
# NOTE: non-chat model, all these special tokens keep randomly initialized.
|
||||
special_tokens = {
|
||||
'eos_token': '<|endoftext|>',
|
||||
'pad_token': '<|endoftext|>',
|
||||
'additional_special_tokens': [
|
||||
'<|im_start|>', '<|im_end|>', '<|endofprompt|>',
|
||||
'[breath]', '<strong>', '</strong>', '[noise]',
|
||||
'[laughter]', '[cough]', '[clucking]', '[accent]',
|
||||
'[quick_breath]',
|
||||
"<laughter>", "</laughter>",
|
||||
"[hissing]", "[sigh]", "[vocalized-noise]",
|
||||
"[lipsmack]", "[mn]"
|
||||
]
|
||||
}
|
||||
self.special_tokens = special_tokens
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(token_path)
|
||||
self.tokenizer.add_special_tokens(special_tokens)
|
||||
self.skip_special_tokens = skip_special_tokens
|
||||
|
||||
def encode(self, text, **kwargs):
|
||||
tokens = self.tokenizer([text], return_tensors="pt")
|
||||
tokens = tokens["input_ids"][0].cpu().tolist()
|
||||
return tokens
|
||||
|
||||
def decode(self, tokens):
|
||||
tokens = torch.tensor(tokens, dtype=torch.int64)
|
||||
text = self.tokenizer.batch_decode([tokens], skip_special_tokens=self.skip_special_tokens)[0]
|
||||
return text
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def get_qwen_tokenizer(
|
||||
token_path: str,
|
||||
skip_special_tokens: bool
|
||||
) -> QwenTokenizer:
|
||||
return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
|
||||
@@ -222,7 +222,7 @@ class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
||||
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
||||
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
||||
|
||||
def rel_shift(self, x):
|
||||
def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Compute relative positional encoding.
|
||||
|
||||
Args:
|
||||
@@ -233,10 +233,14 @@ class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
||||
torch.Tensor: Output tensor.
|
||||
|
||||
"""
|
||||
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
||||
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
|
||||
device=x.device,
|
||||
dtype=x.dtype)
|
||||
x_padded = torch.cat([zero_pad, x], dim=-1)
|
||||
|
||||
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
||||
x_padded = x_padded.view(x.size()[0],
|
||||
x.size()[1],
|
||||
x.size(3) + 1, x.size(2))
|
||||
x = x_padded[:, :, 1:].view_as(x)[
|
||||
:, :, :, : x.size(-1) // 2 + 1
|
||||
] # only keep the positions from 0 to time2
|
||||
|
||||
@@ -174,7 +174,7 @@ class TransformerDecoder(torch.nn.Module):
|
||||
memory_mask)
|
||||
return x
|
||||
|
||||
@torch.jit.ignore(drop=True)
|
||||
@torch.jit.unused
|
||||
def forward_layers_checkpointed(self, x: torch.Tensor,
|
||||
tgt_mask: torch.Tensor,
|
||||
memory: torch.Tensor,
|
||||
|
||||
@@ -212,7 +212,7 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, d_model, dropout_rate, max_len=5000):
|
||||
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
|
||||
"""Construct an PositionalEncoding object."""
|
||||
super(EspnetRelPositionalEncoding, self).__init__()
|
||||
self.d_model = d_model
|
||||
@@ -221,7 +221,7 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||
|
||||
def extend_pe(self, x):
|
||||
def extend_pe(self, x: torch.Tensor):
|
||||
"""Reset the positional encodings."""
|
||||
if self.pe is not None:
|
||||
# self.pe contains both positive and negative parts
|
||||
@@ -253,7 +253,8 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
|
||||
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0):
|
||||
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \
|
||||
-> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Add positional encoding.
|
||||
|
||||
Args:
|
||||
@@ -288,6 +289,6 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
|
||||
"""
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2 - size + 1 : self.pe.size(1) // 2 + size,
|
||||
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
|
||||
]
|
||||
return pos_emb
|
||||
|
||||
@@ -169,7 +169,7 @@ class BaseEncoder(torch.nn.Module):
|
||||
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||
return xs
|
||||
|
||||
@torch.jit.ignore(drop=True)
|
||||
@torch.jit.unused
|
||||
def forward_layers_checkpointed(self, xs: torch.Tensor,
|
||||
chunk_masks: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
@@ -180,6 +180,7 @@ class BaseEncoder(torch.nn.Module):
|
||||
mask_pad)
|
||||
return xs
|
||||
|
||||
@torch.jit.export
|
||||
def forward_chunk(
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
@@ -270,6 +271,7 @@ class BaseEncoder(torch.nn.Module):
|
||||
|
||||
return (xs, r_att_cache, r_cnn_cache)
|
||||
|
||||
@torch.jit.unused
|
||||
def forward_chunk_by_chunk(
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
|
||||
@@ -49,8 +49,8 @@ class TransformerEncoderLayer(nn.Module):
|
||||
super().__init__()
|
||||
self.self_attn = self_attn
|
||||
self.feed_forward = feed_forward
|
||||
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
||||
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
||||
self.norm1 = nn.LayerNorm(size, eps=1e-12)
|
||||
self.norm2 = nn.LayerNorm(size, eps=1e-12)
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
self.size = size
|
||||
self.normalize_before = normalize_before
|
||||
@@ -142,17 +142,17 @@ class ConformerEncoderLayer(nn.Module):
|
||||
self.feed_forward = feed_forward
|
||||
self.feed_forward_macaron = feed_forward_macaron
|
||||
self.conv_module = conv_module
|
||||
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
|
||||
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
|
||||
self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module
|
||||
self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module
|
||||
if feed_forward_macaron is not None:
|
||||
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
|
||||
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12)
|
||||
self.ff_scale = 0.5
|
||||
else:
|
||||
self.ff_scale = 1.0
|
||||
if self.conv_module is not None:
|
||||
self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module
|
||||
self.norm_conv = nn.LayerNorm(size, eps=1e-12) # for the CNN module
|
||||
self.norm_final = nn.LayerNorm(
|
||||
size, eps=1e-5) # for the final output of the block
|
||||
size, eps=1e-12) # for the final output of the block
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
self.size = size
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
318
cosyvoice/transformer/upsample_encoder.py
Normal file
318
cosyvoice/transformer/upsample_encoder.py
Normal file
@@ -0,0 +1,318 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
||||
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
||||
# 2024 Alibaba Inc (Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
"""Encoder definition."""
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from cosyvoice.transformer.convolution import ConvolutionModule
|
||||
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
|
||||
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
||||
from cosyvoice.utils.class_utils import (
|
||||
COSYVOICE_EMB_CLASSES,
|
||||
COSYVOICE_SUBSAMPLE_CLASSES,
|
||||
COSYVOICE_ATTENTION_CLASSES,
|
||||
COSYVOICE_ACTIVATION_CLASSES,
|
||||
)
|
||||
from cosyvoice.utils.mask import make_pad_mask
|
||||
from cosyvoice.utils.mask import add_optional_chunk_mask
|
||||
|
||||
|
||||
class Upsample1D(nn.Module):
|
||||
"""A 1D upsampling layer with an optional convolution.
|
||||
|
||||
Parameters:
|
||||
channels (`int`):
|
||||
number of channels in the inputs and outputs.
|
||||
use_conv (`bool`, default `False`):
|
||||
option to use a convolution.
|
||||
use_conv_transpose (`bool`, default `False`):
|
||||
option to use a convolution transpose.
|
||||
out_channels (`int`, optional):
|
||||
number of output channels. Defaults to `channels`.
|
||||
"""
|
||||
|
||||
def __init__(self, channels: int, out_channels: int, stride: int = 2):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.stride = stride
|
||||
# In this mode, first repeat interpolate, than conv with stride=1
|
||||
self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
|
||||
|
||||
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor):
|
||||
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
|
||||
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
|
||||
outputs = self.conv(outputs)
|
||||
return outputs, input_lengths * self.stride
|
||||
|
||||
|
||||
class PreLookaheadLayer(nn.Module):
|
||||
def __init__(self, channels: int, pre_lookahead_len: int = 1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.pre_lookahead_len = pre_lookahead_len
|
||||
self.conv1 = nn.Conv1d(
|
||||
channels, channels,
|
||||
kernel_size=pre_lookahead_len + 1,
|
||||
stride=1, padding=0,
|
||||
)
|
||||
self.conv2 = nn.Conv1d(
|
||||
channels, channels,
|
||||
kernel_size=3, stride=1, padding=0,
|
||||
)
|
||||
|
||||
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
inputs: (batch_size, seq_len, channels)
|
||||
"""
|
||||
outputs = inputs.transpose(1, 2).contiguous()
|
||||
# look ahead
|
||||
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
||||
outputs = F.leaky_relu(self.conv1(outputs))
|
||||
# outputs
|
||||
outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0)
|
||||
outputs = self.conv2(outputs)
|
||||
outputs = outputs.transpose(1, 2).contiguous()
|
||||
|
||||
# residual connection
|
||||
outputs = outputs + inputs
|
||||
return outputs
|
||||
|
||||
|
||||
class UpsampleConformerEncoder(torch.nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int = 256,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "conv2d",
|
||||
pos_enc_layer_type: str = "rel_pos",
|
||||
normalize_before: bool = True,
|
||||
static_chunk_size: int = 0,
|
||||
use_dynamic_chunk: bool = False,
|
||||
global_cmvn: torch.nn.Module = None,
|
||||
use_dynamic_left_chunk: bool = False,
|
||||
positionwise_conv_kernel_size: int = 1,
|
||||
macaron_style: bool = True,
|
||||
selfattention_layer_type: str = "rel_selfattn",
|
||||
activation_type: str = "swish",
|
||||
use_cnn_module: bool = True,
|
||||
cnn_module_kernel: int = 15,
|
||||
causal: bool = False,
|
||||
cnn_module_norm: str = "batch_norm",
|
||||
key_bias: bool = True,
|
||||
gradient_checkpointing: bool = False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
input_size (int): input dim
|
||||
output_size (int): dimension of attention
|
||||
attention_heads (int): the number of heads of multi head attention
|
||||
linear_units (int): the hidden units number of position-wise feed
|
||||
forward
|
||||
num_blocks (int): the number of decoder blocks
|
||||
dropout_rate (float): dropout rate
|
||||
attention_dropout_rate (float): dropout rate in attention
|
||||
positional_dropout_rate (float): dropout rate after adding
|
||||
positional encoding
|
||||
input_layer (str): input layer type.
|
||||
optional [linear, conv2d, conv2d6, conv2d8]
|
||||
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
||||
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
||||
normalize_before (bool):
|
||||
True: use layer_norm before each sub-block of a layer.
|
||||
False: use layer_norm after each sub-block of a layer.
|
||||
static_chunk_size (int): chunk size for static chunk training and
|
||||
decoding
|
||||
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
||||
training or not, You can only use fixed chunk(chunk_size > 0)
|
||||
or dyanmic chunk size(use_dynamic_chunk = True)
|
||||
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
||||
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
||||
dynamic chunk training
|
||||
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
||||
gradient_checkpointing: rerunning a forward-pass segment for each
|
||||
checkpointed segment during backward.
|
||||
"""
|
||||
super().__init__()
|
||||
self._output_size = output_size
|
||||
|
||||
self.global_cmvn = global_cmvn
|
||||
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
||||
input_size,
|
||||
output_size,
|
||||
dropout_rate,
|
||||
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
||||
positional_dropout_rate),
|
||||
)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
||||
self.static_chunk_size = static_chunk_size
|
||||
self.use_dynamic_chunk = use_dynamic_chunk
|
||||
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
||||
self.gradient_checkpointing = gradient_checkpointing
|
||||
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
||||
# self-attention module definition
|
||||
encoder_selfattn_layer_args = (
|
||||
attention_heads,
|
||||
output_size,
|
||||
attention_dropout_rate,
|
||||
key_bias,
|
||||
)
|
||||
# feed-forward module definition
|
||||
positionwise_layer_args = (
|
||||
output_size,
|
||||
linear_units,
|
||||
dropout_rate,
|
||||
activation,
|
||||
)
|
||||
# convolution module definition
|
||||
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
||||
cnn_module_norm, causal)
|
||||
self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
|
||||
self.encoders = torch.nn.ModuleList([
|
||||
ConformerEncoderLayer(
|
||||
output_size,
|
||||
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
||||
*encoder_selfattn_layer_args),
|
||||
PositionwiseFeedForward(*positionwise_layer_args),
|
||||
PositionwiseFeedForward(
|
||||
*positionwise_layer_args) if macaron_style else None,
|
||||
ConvolutionModule(
|
||||
*convolution_layer_args) if use_cnn_module else None,
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
) for _ in range(num_blocks)
|
||||
])
|
||||
self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2)
|
||||
self.up_embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
||||
input_size,
|
||||
output_size,
|
||||
dropout_rate,
|
||||
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
||||
positional_dropout_rate),
|
||||
)
|
||||
self.up_encoders = torch.nn.ModuleList([
|
||||
ConformerEncoderLayer(
|
||||
output_size,
|
||||
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
||||
*encoder_selfattn_layer_args),
|
||||
PositionwiseFeedForward(*positionwise_layer_args),
|
||||
PositionwiseFeedForward(
|
||||
*positionwise_layer_args) if macaron_style else None,
|
||||
ConvolutionModule(
|
||||
*convolution_layer_args) if use_cnn_module else None,
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
) for _ in range(4)
|
||||
])
|
||||
|
||||
def output_size(self) -> int:
|
||||
return self._output_size
|
||||
|
||||
def forward(
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
xs_lens: torch.Tensor,
|
||||
decoding_chunk_size: int = 0,
|
||||
num_decoding_left_chunks: int = -1,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Embed positions in tensor.
|
||||
|
||||
Args:
|
||||
xs: padded input tensor (B, T, D)
|
||||
xs_lens: input length (B)
|
||||
decoding_chunk_size: decoding chunk size for dynamic chunk
|
||||
0: default for training, use random dynamic chunk.
|
||||
<0: for decoding, use full chunk.
|
||||
>0: for decoding, use fixed chunk size as set.
|
||||
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
||||
the chunk size is decoding_chunk_size.
|
||||
>=0: use num_decoding_left_chunks
|
||||
<0: use all left chunks
|
||||
Returns:
|
||||
encoder output tensor xs, and subsampled masks
|
||||
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
||||
masks: torch.Tensor batch padding mask after subsample
|
||||
(B, 1, T' ~= T/subsample_rate)
|
||||
NOTE(xcsong):
|
||||
We pass the `__call__` method of the modules instead of `forward` to the
|
||||
checkpointing API because `__call__` attaches all the hooks of the module.
|
||||
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
||||
"""
|
||||
T = xs.size(1)
|
||||
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
||||
if self.global_cmvn is not None:
|
||||
xs = self.global_cmvn(xs)
|
||||
xs, pos_emb, masks = self.embed(xs, masks)
|
||||
mask_pad = masks # (B, 1, T/subsample_rate)
|
||||
chunk_masks = add_optional_chunk_mask(xs, masks,
|
||||
self.use_dynamic_chunk,
|
||||
self.use_dynamic_left_chunk,
|
||||
decoding_chunk_size,
|
||||
self.static_chunk_size,
|
||||
num_decoding_left_chunks)
|
||||
# lookahead + conformer encoder
|
||||
xs = self.pre_lookahead_layer(xs)
|
||||
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
||||
|
||||
# upsample + conformer encoder
|
||||
xs = xs.transpose(1, 2).contiguous()
|
||||
xs, xs_lens = self.up_layer(xs, xs_lens)
|
||||
xs = xs.transpose(1, 2).contiguous()
|
||||
T = xs.size(1)
|
||||
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
||||
xs, pos_emb, masks = self.up_embed(xs, masks)
|
||||
mask_pad = masks # (B, 1, T/subsample_rate)
|
||||
chunk_masks = add_optional_chunk_mask(xs, masks,
|
||||
self.use_dynamic_chunk,
|
||||
self.use_dynamic_left_chunk,
|
||||
decoding_chunk_size,
|
||||
self.static_chunk_size * self.up_layer.stride,
|
||||
num_decoding_left_chunks)
|
||||
xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
|
||||
|
||||
if self.normalize_before:
|
||||
xs = self.after_norm(xs)
|
||||
# Here we assume the mask is not changed in encoder layers, so just
|
||||
# return the masks before encoder layers, and the masks will be used
|
||||
# for cross attention with decoder later
|
||||
return xs, masks
|
||||
|
||||
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
mask_pad: torch.Tensor) -> torch.Tensor:
|
||||
for layer in self.encoders:
|
||||
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||
return xs
|
||||
|
||||
def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
mask_pad: torch.Tensor) -> torch.Tensor:
|
||||
for layer in self.up_encoders:
|
||||
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||
return xs
|
||||
@@ -32,6 +32,10 @@ from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
||||
RelPositionMultiHeadedAttention)
|
||||
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
||||
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
||||
from cosyvoice.llm.llm import TransformerLM, Qwen2LM
|
||||
from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec
|
||||
from cosyvoice.hifigan.generator import HiFTGenerator
|
||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
||||
|
||||
|
||||
COSYVOICE_ACTIVATION_CLASSES = {
|
||||
@@ -68,3 +72,12 @@ COSYVOICE_ATTENTION_CLASSES = {
|
||||
"selfattn": MultiHeadedAttention,
|
||||
"rel_selfattn": RelPositionMultiHeadedAttention,
|
||||
}
|
||||
|
||||
|
||||
def get_model_type(configs):
|
||||
# NOTE CosyVoice2Model inherits CosyVoiceModel
|
||||
if isinstance(configs['llm'], TransformerLM) and isinstance(configs['flow'], MaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
||||
return CosyVoiceModel
|
||||
if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
||||
return CosyVoice2Model
|
||||
raise TypeError('No valid model type found!')
|
||||
|
||||
@@ -15,8 +15,10 @@
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
"""Unility functions for Transformer."""
|
||||
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
IGNORE_ID = -1
|
||||
@@ -101,3 +103,64 @@ def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
# Repetition Aware Sampling in VALL-E 2
|
||||
def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
|
||||
top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
|
||||
rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
|
||||
if rep_num >= win_size * tau_r:
|
||||
top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
|
||||
return top_ids
|
||||
|
||||
|
||||
def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
|
||||
prob, indices = [], []
|
||||
cum_prob = 0.0
|
||||
sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
|
||||
for i in range(len(sorted_idx)):
|
||||
# sampling both top-p and numbers.
|
||||
if cum_prob < top_p and len(prob) < top_k:
|
||||
cum_prob += sorted_value[i]
|
||||
prob.append(sorted_value[i])
|
||||
indices.append(sorted_idx[i])
|
||||
else:
|
||||
break
|
||||
prob = torch.tensor(prob).to(weighted_scores)
|
||||
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
|
||||
top_ids = indices[prob.multinomial(1, replacement=True)]
|
||||
return top_ids
|
||||
|
||||
|
||||
def random_sampling(weighted_scores, decoded_tokens, sampling):
|
||||
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
|
||||
return top_ids
|
||||
|
||||
|
||||
def fade_in_out(fade_in_mel, fade_out_mel, window):
|
||||
device = fade_in_mel.device
|
||||
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
|
||||
mel_overlap_len = int(window.shape[0] / 2)
|
||||
if fade_in_mel.device == torch.device('cpu'):
|
||||
fade_in_mel = fade_in_mel.clone()
|
||||
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
|
||||
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
|
||||
return fade_in_mel.to(device)
|
||||
|
||||
|
||||
def set_all_random_seed(seed):
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
|
||||
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
||||
assert mask.dtype == torch.bool
|
||||
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
|
||||
mask = mask.to(dtype)
|
||||
# attention mask bias
|
||||
# NOTE(Mddct): torch.finfo jit issues
|
||||
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
|
||||
mask = (1.0 - mask) * -1.0e+10
|
||||
return mask
|
||||
|
||||
@@ -25,13 +25,14 @@ from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, l
|
||||
|
||||
class Executor:
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self, gan: bool = False):
|
||||
self.gan = gan
|
||||
self.step = 0
|
||||
self.epoch = 0
|
||||
self.rank = int(os.environ.get('RANK', 0))
|
||||
self.device = torch.device('cuda:{}'.format(self.rank))
|
||||
|
||||
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join):
|
||||
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join):
|
||||
''' Train one epoch
|
||||
'''
|
||||
|
||||
@@ -64,13 +65,72 @@ class Executor:
|
||||
context = nullcontext
|
||||
|
||||
with context():
|
||||
info_dict = batch_forward(model, batch_dict, info_dict)
|
||||
info_dict = batch_backward(model, info_dict)
|
||||
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
||||
info_dict = batch_backward(model, scaler, info_dict)
|
||||
|
||||
info_dict = update_parameter_and_lr(model, optimizer, scheduler, info_dict)
|
||||
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
||||
log_per_step(writer, info_dict)
|
||||
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
||||
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
||||
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||
dist.barrier()
|
||||
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
||||
model.train()
|
||||
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||
self.step += 1
|
||||
dist.barrier()
|
||||
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
||||
|
||||
def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
||||
writer, info_dict, scaler, group_join):
|
||||
''' Train one epoch
|
||||
'''
|
||||
|
||||
lr = optimizer.param_groups[0]['lr']
|
||||
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
||||
logging.info('using accumulate grad, new batch size is {} times'
|
||||
' larger than before'.format(info_dict['accum_grad']))
|
||||
# A context manager to be used in conjunction with an instance of
|
||||
# torch.nn.parallel.DistributedDataParallel to be able to train
|
||||
# with uneven inputs across participating processes.
|
||||
model.train()
|
||||
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
||||
with model_context():
|
||||
for batch_idx, batch_dict in enumerate(train_data_loader):
|
||||
info_dict["tag"] = "TRAIN"
|
||||
info_dict["step"] = self.step
|
||||
info_dict["epoch"] = self.epoch
|
||||
info_dict["batch_idx"] = batch_idx
|
||||
if cosyvoice_join(group_join, info_dict):
|
||||
break
|
||||
|
||||
# Disable gradient synchronizations across DDP processes.
|
||||
# Within this context, gradients will be accumulated on module
|
||||
# variables, which will later be synchronized.
|
||||
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
||||
context = model.no_sync
|
||||
# Used for single gpu training and DDP gradient synchronization
|
||||
# processes.
|
||||
else:
|
||||
context = nullcontext
|
||||
|
||||
with context():
|
||||
batch_dict['turn'] = 'discriminator'
|
||||
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
||||
info_dict = batch_backward(model, scaler, info_dict)
|
||||
info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
|
||||
optimizer.zero_grad()
|
||||
log_per_step(writer, info_dict)
|
||||
with context():
|
||||
batch_dict['turn'] = 'generator'
|
||||
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
||||
info_dict = batch_backward(model, scaler, info_dict)
|
||||
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
||||
optimizer_d.zero_grad()
|
||||
log_per_step(writer, info_dict)
|
||||
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
||||
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
||||
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||
dist.barrier()
|
||||
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
||||
model.train()
|
||||
@@ -95,7 +155,9 @@ class Executor:
|
||||
num_utts = len(batch_dict["utts"])
|
||||
total_num_utts += num_utts
|
||||
|
||||
info_dict = batch_forward(model, batch_dict, info_dict)
|
||||
if self.gan is True:
|
||||
batch_dict['turn'] = 'generator'
|
||||
info_dict = batch_forward(model, batch_dict, None, info_dict)
|
||||
|
||||
for k, v in info_dict['loss_dict'].items():
|
||||
if k not in total_loss_dict:
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu, Zetao Hu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -15,6 +15,10 @@
|
||||
|
||||
import json
|
||||
import torchaudio
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
|
||||
|
||||
def read_lists(list_file):
|
||||
@@ -24,6 +28,7 @@ def read_lists(list_file):
|
||||
lists.append(line.strip())
|
||||
return lists
|
||||
|
||||
|
||||
def read_json_lists(list_file):
|
||||
lists = read_lists(list_file)
|
||||
results = {}
|
||||
@@ -32,22 +37,53 @@ def read_json_lists(list_file):
|
||||
results.update(json.load(fin))
|
||||
return results
|
||||
|
||||
|
||||
def load_wav(wav, target_sr):
|
||||
speech, sample_rate = torchaudio.load(wav)
|
||||
speech, sample_rate = torchaudio.load(wav, backend='soundfile')
|
||||
speech = speech.mean(dim=0, keepdim=True)
|
||||
if sample_rate != target_sr:
|
||||
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
||||
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
||||
return speech
|
||||
|
||||
def speed_change(waveform, sample_rate, speed_factor: str):
|
||||
effects = [
|
||||
["tempo", speed_factor], # speed_factor
|
||||
["rate", f"{sample_rate}"]
|
||||
]
|
||||
augmented_waveform, new_sample_rate = torchaudio.sox_effects.apply_effects_tensor(
|
||||
waveform,
|
||||
sample_rate,
|
||||
effects
|
||||
)
|
||||
return augmented_waveform, new_sample_rate
|
||||
|
||||
def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
||||
import tensorrt as trt
|
||||
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
|
||||
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
|
||||
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
|
||||
input_names = ["x", "mask", "mu", "t", "spks", "cond"]
|
||||
|
||||
logging.info("Converting onnx to trt...")
|
||||
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
||||
logger = trt.Logger(trt.Logger.INFO)
|
||||
builder = trt.Builder(logger)
|
||||
network = builder.create_network(network_flags)
|
||||
parser = trt.OnnxParser(network, logger)
|
||||
config = builder.create_builder_config()
|
||||
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 30) # 1GB
|
||||
if fp16:
|
||||
config.set_flag(trt.BuilderFlag.FP16)
|
||||
profile = builder.create_optimization_profile()
|
||||
# load onnx model
|
||||
with open(onnx_model, "rb") as f:
|
||||
if not parser.parse(f.read()):
|
||||
for error in range(parser.num_errors):
|
||||
print(parser.get_error(error))
|
||||
raise ValueError('failed to parse {}'.format(onnx_model))
|
||||
# set input shapes
|
||||
for i in range(len(input_names)):
|
||||
profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i])
|
||||
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
|
||||
# set input and output data type
|
||||
for i in range(network.num_inputs):
|
||||
input_tensor = network.get_input(i)
|
||||
input_tensor.dtype = tensor_dtype
|
||||
for i in range(network.num_outputs):
|
||||
output_tensor = network.get_output(i)
|
||||
output_tensor.dtype = tensor_dtype
|
||||
config.add_optimization_profile(profile)
|
||||
engine_bytes = builder.build_serialized_network(network, config)
|
||||
# save trt engine
|
||||
with open(trt_model, "wb") as f:
|
||||
f.write(engine_bytes)
|
||||
|
||||
@@ -13,8 +13,10 @@
|
||||
# limitations under the License.
|
||||
|
||||
import re
|
||||
import regex
|
||||
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]+')
|
||||
|
||||
|
||||
# whether contain chinese character
|
||||
def contains_chinese(text):
|
||||
return bool(chinese_char_pattern.search(text))
|
||||
@@ -79,6 +81,13 @@ def split_paragraph(text: str, tokenize, lang="zh", token_max_n=80, token_min_n=
|
||||
pounc = ['.', '?', '!', ';', ':']
|
||||
if comma_split:
|
||||
pounc.extend([',', ','])
|
||||
|
||||
if text[-1] not in pounc:
|
||||
if lang == "zh":
|
||||
text += "。"
|
||||
else:
|
||||
text += "."
|
||||
|
||||
st = 0
|
||||
utts = []
|
||||
for i, c in enumerate(text):
|
||||
@@ -91,11 +100,7 @@ def split_paragraph(text: str, tokenize, lang="zh", token_max_n=80, token_min_n=
|
||||
st = i + 2
|
||||
else:
|
||||
st = i + 1
|
||||
if len(utts) == 0:
|
||||
if lang == "zh":
|
||||
utts.append(text + '。')
|
||||
else:
|
||||
utts.append(text + '.')
|
||||
|
||||
final_utts = []
|
||||
cur_utt = ""
|
||||
for utt in utts:
|
||||
@@ -123,3 +128,9 @@ def replace_blank(text: str):
|
||||
else:
|
||||
out_str.append(c)
|
||||
return "".join(out_str)
|
||||
|
||||
|
||||
def is_only_punctuation(text):
|
||||
# Regular expression: Match strings that consist only of punctuation marks or are empty.
|
||||
punctuation_pattern = r'^[\p{P}\p{S}]*$'
|
||||
return bool(regex.fullmatch(punctuation_pattern, text))
|
||||
|
||||
20
cosyvoice/utils/losses.py
Normal file
20
cosyvoice/utils/losses.py
Normal file
@@ -0,0 +1,20 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
|
||||
loss = 0
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
m_DG = torch.median((dr - dg))
|
||||
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
|
||||
loss += tau - F.relu(tau - L_rel)
|
||||
return loss
|
||||
|
||||
|
||||
def mel_loss(real_speech, generated_speech, mel_transforms):
|
||||
loss = 0
|
||||
for transform in mel_transforms:
|
||||
mel_r = transform(real_speech)
|
||||
mel_g = transform(generated_speech)
|
||||
loss += F.l1_loss(mel_g, mel_r)
|
||||
return loss
|
||||
@@ -15,6 +15,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
'''
|
||||
def subsequent_mask(
|
||||
size: int,
|
||||
@@ -86,7 +87,7 @@ def subsequent_mask(
|
||||
return mask
|
||||
|
||||
|
||||
def subsequent_chunk_mask(
|
||||
def subsequent_chunk_mask_deprecated(
|
||||
size: int,
|
||||
chunk_size: int,
|
||||
num_left_chunks: int = -1,
|
||||
@@ -124,6 +125,41 @@ def subsequent_chunk_mask(
|
||||
return ret
|
||||
|
||||
|
||||
def subsequent_chunk_mask(
|
||||
size: int,
|
||||
chunk_size: int,
|
||||
num_left_chunks: int = -1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> torch.Tensor:
|
||||
"""Create mask for subsequent steps (size, size) with chunk size,
|
||||
this is for streaming encoder
|
||||
|
||||
Args:
|
||||
size (int): size of mask
|
||||
chunk_size (int): size of chunk
|
||||
num_left_chunks (int): number of left chunks
|
||||
<0: use full chunk
|
||||
>=0: use num_left_chunks
|
||||
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
||||
|
||||
Returns:
|
||||
torch.Tensor: mask
|
||||
|
||||
Examples:
|
||||
>>> subsequent_chunk_mask(4, 2)
|
||||
[[1, 1, 0, 0],
|
||||
[1, 1, 0, 0],
|
||||
[1, 1, 1, 1],
|
||||
[1, 1, 1, 1]]
|
||||
"""
|
||||
# NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
|
||||
# actually this is not needed after we have inference cache implemented, will remove it later
|
||||
pos_idx = torch.arange(size, device=device)
|
||||
block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
|
||||
ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
|
||||
return ret
|
||||
|
||||
|
||||
def add_optional_chunk_mask(xs: torch.Tensor,
|
||||
masks: torch.Tensor,
|
||||
use_dynamic_chunk: bool,
|
||||
@@ -195,6 +231,10 @@ def add_optional_chunk_mask(xs: torch.Tensor,
|
||||
chunk_masks = masks & chunk_masks # (B, L, L)
|
||||
else:
|
||||
chunk_masks = masks
|
||||
assert chunk_masks.dtype == torch.bool
|
||||
if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
|
||||
logging.warning('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
|
||||
chunk_masks[chunk_masks.sum(dim=-1)==0] = True
|
||||
return chunk_masks
|
||||
|
||||
|
||||
|
||||
@@ -567,8 +567,7 @@ class NoamAnnealing(_LRScheduler):
|
||||
min_lr=0.0,
|
||||
last_epoch=-1):
|
||||
self._normalize = d_model**(-0.5)
|
||||
assert not (warmup_steps is not None
|
||||
and warmup_ratio is not None), \
|
||||
assert not (warmup_steps is not None and warmup_ratio is not None), \
|
||||
"Either use particular number of step or ratio"
|
||||
assert warmup_ratio is None or max_steps is not None, \
|
||||
"If there is a ratio, there should be a total steps"
|
||||
|
||||
@@ -14,7 +14,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from contextlib import nullcontext
|
||||
import logging
|
||||
import os
|
||||
import torch
|
||||
@@ -51,9 +50,10 @@ def init_distributed(args):
|
||||
return world_size, local_rank, rank
|
||||
|
||||
|
||||
def init_dataset_and_dataloader(args, configs):
|
||||
train_dataset = Dataset(args.train_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=True, partition=True)
|
||||
cv_dataset = Dataset(args.cv_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=False, partition=False)
|
||||
def init_dataset_and_dataloader(args, configs, gan):
|
||||
data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
|
||||
train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True)
|
||||
cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False)
|
||||
|
||||
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
||||
train_data_loader = DataLoader(train_dataset,
|
||||
@@ -69,7 +69,6 @@ def init_dataset_and_dataloader(args, configs):
|
||||
return train_dataset, cv_dataset, train_data_loader, cv_data_loader
|
||||
|
||||
|
||||
|
||||
def check_modify_and_save_config(args, configs):
|
||||
if args.train_engine == "torch_ddp":
|
||||
configs['train_conf']["dtype"] = 'fp32'
|
||||
@@ -84,7 +83,8 @@ def check_modify_and_save_config(args, configs):
|
||||
configs['train_conf']["dtype"] = "fp32"
|
||||
assert ds_configs["train_micro_batch_size_per_gpu"] == 1
|
||||
# if use deepspeed, override ddp config
|
||||
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] * configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
|
||||
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] *
|
||||
configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
|
||||
configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
|
||||
configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
|
||||
configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
|
||||
@@ -108,38 +108,80 @@ def wrap_cuda_model(args, model):
|
||||
return model
|
||||
|
||||
|
||||
def init_optimizer_and_scheduler(args, configs, model):
|
||||
if configs['train_conf']['optim'] == 'adam':
|
||||
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||
elif configs['train_conf']['optim'] == 'adamw':
|
||||
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||
def init_optimizer_and_scheduler(args, configs, model, gan):
|
||||
if gan is False:
|
||||
if configs['train_conf']['optim'] == 'adam':
|
||||
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||
elif configs['train_conf']['optim'] == 'adamw':
|
||||
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||
else:
|
||||
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||
|
||||
if configs['train_conf']['scheduler'] == 'warmuplr':
|
||||
scheduler_type = WarmupLR
|
||||
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||
scheduler_type = NoamHoldAnnealing
|
||||
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||
scheduler_type = ConstantLR
|
||||
scheduler = ConstantLR(optimizer)
|
||||
else:
|
||||
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||
|
||||
# use deepspeed optimizer for speedup
|
||||
if args.train_engine == "deepspeed":
|
||||
def scheduler(opt):
|
||||
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
|
||||
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||
args=args,
|
||||
model=model,
|
||||
optimizer=None,
|
||||
lr_scheduler=scheduler,
|
||||
model_parameters=model.parameters())
|
||||
|
||||
optimizer_d, scheduler_d = None, None
|
||||
|
||||
else:
|
||||
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||
# currently we wrap generator and discriminator in one model, so we cannot use deepspeed
|
||||
if configs['train_conf']['optim'] == 'adam':
|
||||
optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
||||
elif configs['train_conf']['optim'] == 'adamw':
|
||||
optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
||||
else:
|
||||
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||
|
||||
if configs['train_conf']['scheduler'] == 'warmuplr':
|
||||
scheduler_type = WarmupLR
|
||||
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||
scheduler_type = NoamHoldAnnealing
|
||||
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||
scheduler_type = ConstantLR
|
||||
scheduler = ConstantLR(optimizer)
|
||||
else:
|
||||
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||
if configs['train_conf']['scheduler'] == 'warmuplr':
|
||||
scheduler_type = WarmupLR
|
||||
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||
scheduler_type = NoamHoldAnnealing
|
||||
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||
scheduler_type = ConstantLR
|
||||
scheduler = ConstantLR(optimizer)
|
||||
else:
|
||||
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||
|
||||
# use deepspeed optimizer for speedup
|
||||
if args.train_engine == "deepspeed":
|
||||
def scheduler(opt):
|
||||
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
|
||||
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||
args=args,
|
||||
model=model,
|
||||
optimizer=None,
|
||||
lr_scheduler=scheduler,
|
||||
model_parameters=model.parameters())
|
||||
if configs['train_conf']['optim_d'] == 'adam':
|
||||
optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
||||
elif configs['train_conf']['optim_d'] == 'adamw':
|
||||
optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
||||
else:
|
||||
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||
|
||||
return model, optimizer, scheduler
|
||||
if configs['train_conf']['scheduler_d'] == 'warmuplr':
|
||||
scheduler_type = WarmupLR
|
||||
scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
||||
elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
|
||||
scheduler_type = NoamHoldAnnealing
|
||||
scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
||||
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||
scheduler_type = ConstantLR
|
||||
scheduler_d = ConstantLR(optimizer_d)
|
||||
else:
|
||||
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||
return model, optimizer, scheduler, optimizer_d, scheduler_d
|
||||
|
||||
|
||||
def init_summarywriter(args):
|
||||
@@ -157,7 +199,7 @@ def save_model(model, model_name, info_dict):
|
||||
|
||||
if info_dict["train_engine"] == "torch_ddp":
|
||||
if rank == 0:
|
||||
torch.save(model.module.state_dict(), save_model_path)
|
||||
torch.save({**model.module.state_dict(), 'epoch': info_dict['epoch'], 'step': info_dict['step']}, save_model_path)
|
||||
else:
|
||||
with torch.no_grad():
|
||||
model.save_checkpoint(save_dir=model_dir,
|
||||
@@ -193,7 +235,7 @@ def cosyvoice_join(group_join, info_dict):
|
||||
return False
|
||||
|
||||
|
||||
def batch_forward(model, batch, info_dict):
|
||||
def batch_forward(model, batch, scaler, info_dict):
|
||||
device = int(os.environ.get('LOCAL_RANK', 0))
|
||||
|
||||
dtype = info_dict["dtype"]
|
||||
@@ -205,7 +247,7 @@ def batch_forward(model, batch, info_dict):
|
||||
dtype = torch.float32
|
||||
|
||||
if info_dict['train_engine'] == 'torch_ddp':
|
||||
autocast = nullcontext()
|
||||
autocast = torch.cuda.amp.autocast(enabled=scaler is not None)
|
||||
else:
|
||||
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
|
||||
|
||||
@@ -214,27 +256,41 @@ def batch_forward(model, batch, info_dict):
|
||||
return info_dict
|
||||
|
||||
|
||||
def batch_backward(model, info_dict):
|
||||
def batch_backward(model, scaler, info_dict):
|
||||
if info_dict["train_engine"] == "deepspeed":
|
||||
scaled_loss = model.backward(info_dict['loss_dict']['loss'])
|
||||
else:
|
||||
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
|
||||
scaled_loss.backward()
|
||||
if scaler is not None:
|
||||
scaler.scale(scaled_loss).backward()
|
||||
else:
|
||||
scaled_loss.backward()
|
||||
|
||||
info_dict['loss_dict']['loss'] = scaled_loss
|
||||
return info_dict
|
||||
|
||||
|
||||
def update_parameter_and_lr(model, optimizer, scheduler, info_dict):
|
||||
def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
|
||||
grad_norm = 0.0
|
||||
if info_dict['train_engine'] == "deepspeed":
|
||||
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
|
||||
model.step()
|
||||
grad_norm = model.get_global_grad_norm()
|
||||
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
|
||||
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||
if torch.isfinite(grad_norm):
|
||||
optimizer.step()
|
||||
# Use mixed precision training
|
||||
if scaler is not None:
|
||||
scaler.unscale_(optimizer)
|
||||
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||
# We don't check grad here since that if the gradient
|
||||
# has inf/nan values, scaler.step will skip
|
||||
# optimizer.step().
|
||||
if torch.isfinite(grad_norm):
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
else:
|
||||
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||
if torch.isfinite(grad_norm):
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
scheduler.step()
|
||||
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
||||
|
||||
51
docker/Dockerfile
Normal file
51
docker/Dockerfile
Normal file
@@ -0,0 +1,51 @@
|
||||
FROM nvidia/cuda:12.4.1-cudnn-devel-ubuntu22.04
|
||||
|
||||
ARG VENV_NAME="cosyvoice"
|
||||
ENV VENV=$VENV_NAME
|
||||
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
||||
|
||||
ENV DEBIAN_FRONTEN=noninteractive
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
SHELL ["/bin/bash", "--login", "-c"]
|
||||
|
||||
RUN apt-get update -y --fix-missing
|
||||
RUN apt-get install -y git build-essential curl wget ffmpeg unzip git git-lfs sox libsox-dev && \
|
||||
apt-get clean && \
|
||||
git lfs install
|
||||
|
||||
# ==================================================================
|
||||
# conda install and conda forge channel as default
|
||||
# ------------------------------------------------------------------
|
||||
# Install miniforge
|
||||
RUN wget --quiet https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh -O ~/miniforge.sh && \
|
||||
/bin/bash ~/miniforge.sh -b -p /opt/conda && \
|
||||
rm ~/miniforge.sh && \
|
||||
ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \
|
||||
echo "source /opt/conda/etc/profile.d/conda.sh" >> /opt/nvidia/entrypoint.d/100.conda.sh && \
|
||||
echo "source /opt/conda/etc/profile.d/conda.sh" >> ~/.bashrc && \
|
||||
echo "conda activate ${VENV}" >> /opt/nvidia/entrypoint.d/110.conda_default_env.sh && \
|
||||
echo "conda activate ${VENV}" >> $HOME/.bashrc
|
||||
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
|
||||
RUN conda config --add channels conda-forge && \
|
||||
conda config --set channel_priority strict
|
||||
# ------------------------------------------------------------------
|
||||
# ~conda
|
||||
# ==================================================================
|
||||
|
||||
RUN conda create -y -n ${VENV} python=3.10
|
||||
ENV CONDA_DEFAULT_ENV=${VENV}
|
||||
ENV PATH /opt/conda/bin:/opt/conda/envs/${VENV}/bin:$PATH
|
||||
|
||||
WORKDIR /workspace
|
||||
|
||||
ENV PYTHONPATH="${PYTHONPATH}:/workspace/CosyVoice:/workspace/CosyVoice/third_party/Matcha-TTS"
|
||||
|
||||
RUN git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
|
||||
|
||||
RUN conda activate ${VENV} && conda install -y -c conda-forge pynini==2.1.5
|
||||
RUN conda activate ${VENV} && cd CosyVoice && \
|
||||
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||
|
||||
WORKDIR /workspace/CosyVoice
|
||||
@@ -18,7 +18,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||
llm_input_size: !ref <llm_input_size>
|
||||
llm_output_size: !ref <llm_output_size>
|
||||
text_token_size: 51866
|
||||
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
speech_token_size: 4096
|
||||
length_normalized_loss: True
|
||||
lsm_weight: 0
|
||||
@@ -31,7 +31,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
num_blocks: 3
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0
|
||||
attention_dropout_rate: 0.0
|
||||
normalize_before: True
|
||||
input_layer: 'linear'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
@@ -49,11 +49,16 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
num_blocks: 7
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: 'linear_legacy'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
static_chunk_size: 1
|
||||
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||
top_p: 0.8
|
||||
top_k: 25
|
||||
win_size: 10
|
||||
tau_r: 0.1
|
||||
|
||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
input_size: 512
|
||||
@@ -61,7 +66,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
output_type: 'mel'
|
||||
vocab_size: 4096
|
||||
input_frame_rate: 50
|
||||
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
only_mask_loss: True
|
||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
output_size: 512
|
||||
@@ -97,7 +102,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
in_channels: 320
|
||||
out_channels: 80
|
||||
channels: [256, 256]
|
||||
dropout: 0
|
||||
dropout: 0.0
|
||||
attention_head_dim: 64
|
||||
n_blocks: 4
|
||||
num_mid_blocks: 8
|
||||
@@ -128,9 +133,28 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
in_channels: 80
|
||||
cond_channels: 512
|
||||
|
||||
# gan related module
|
||||
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1024
|
||||
num_mels: 80
|
||||
sampling_rate: !ref <sample_rate>
|
||||
hop_size: 256
|
||||
win_size: 1024
|
||||
fmin: 0
|
||||
fmax: null
|
||||
center: False
|
||||
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||
generator: !ref <hift>
|
||||
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
||||
mel_spec_transform: [
|
||||
!ref <mel_spec_transform1>
|
||||
]
|
||||
|
||||
# processor functions
|
||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||
multilingual: True
|
||||
num_languages: 100
|
||||
language: 'en'
|
||||
@@ -146,6 +170,8 @@ filter: !name:cosyvoice.dataset.processor.filter
|
||||
token_min_length: 1
|
||||
resample: !name:cosyvoice.dataset.processor.resample
|
||||
resample_rate: !ref <sample_rate>
|
||||
truncate: !name:cosyvoice.dataset.processor.truncate
|
||||
truncate_length: 24576 # must be a multiplier of hop_size
|
||||
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1024
|
||||
num_mels: 80
|
||||
@@ -157,6 +183,9 @@ feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
center: False
|
||||
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||
feat_extractor: !ref <feat_extractor>
|
||||
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||
sample_rate: !ref <sample_rate>
|
||||
hop_size: 256
|
||||
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||
normalize: True
|
||||
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||
@@ -182,8 +211,22 @@ data_pipeline: [
|
||||
!ref <batch>,
|
||||
!ref <padding>,
|
||||
]
|
||||
data_pipeline_gan: [
|
||||
!ref <parquet_opener>,
|
||||
!ref <tokenize>,
|
||||
!ref <filter>,
|
||||
!ref <resample>,
|
||||
!ref <truncate>,
|
||||
!ref <compute_fbank>,
|
||||
!ref <compute_f0>,
|
||||
!ref <parse_embedding>,
|
||||
!ref <shuffle>,
|
||||
!ref <sort>,
|
||||
!ref <batch>,
|
||||
!ref <padding>,
|
||||
]
|
||||
|
||||
# train conf
|
||||
# llm flow train conf
|
||||
train_conf:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
@@ -195,4 +238,20 @@ train_conf:
|
||||
grad_clip: 5
|
||||
accum_grad: 2
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
|
||||
# gan train conf
|
||||
train_conf_gan:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.0002 # use small lr for gan training
|
||||
scheduler: constantlr
|
||||
optim_d: adam
|
||||
optim_conf_d:
|
||||
lr: 0.0002 # use small lr for gan training
|
||||
scheduler_d: constantlr
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 1 # in gan training, accum_grad must be 1
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
@@ -18,7 +18,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||
llm_input_size: !ref <llm_input_size>
|
||||
llm_output_size: !ref <llm_output_size>
|
||||
text_token_size: 51866
|
||||
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
speech_token_size: 4096
|
||||
length_normalized_loss: True
|
||||
lsm_weight: 0
|
||||
@@ -31,7 +31,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0
|
||||
attention_dropout_rate: 0.0
|
||||
normalize_before: True
|
||||
input_layer: 'linear'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
@@ -49,11 +49,16 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
num_blocks: 14
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: 'linear_legacy'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
static_chunk_size: 1
|
||||
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||
top_p: 0.8
|
||||
top_k: 25
|
||||
win_size: 10
|
||||
tau_r: 0.1
|
||||
|
||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
input_size: 512
|
||||
@@ -61,7 +66,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
output_type: 'mel'
|
||||
vocab_size: 4096
|
||||
input_frame_rate: 50
|
||||
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
only_mask_loss: True
|
||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
output_size: 512
|
||||
@@ -97,7 +102,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
in_channels: 320
|
||||
out_channels: 80
|
||||
channels: [256, 256]
|
||||
dropout: 0
|
||||
dropout: 0.0
|
||||
attention_head_dim: 64
|
||||
n_blocks: 4
|
||||
num_mid_blocks: 12
|
||||
@@ -128,9 +133,28 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
in_channels: 80
|
||||
cond_channels: 512
|
||||
|
||||
# gan related module
|
||||
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1024
|
||||
num_mels: 80
|
||||
sampling_rate: !ref <sample_rate>
|
||||
hop_size: 256
|
||||
win_size: 1024
|
||||
fmin: 0
|
||||
fmax: null
|
||||
center: False
|
||||
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||
generator: !ref <hift>
|
||||
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
||||
mel_spec_transform: [
|
||||
!ref <mel_spec_transform1>
|
||||
]
|
||||
|
||||
# processor functions
|
||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||
multilingual: True
|
||||
num_languages: 100
|
||||
language: 'en'
|
||||
@@ -146,6 +170,8 @@ filter: !name:cosyvoice.dataset.processor.filter
|
||||
token_min_length: 1
|
||||
resample: !name:cosyvoice.dataset.processor.resample
|
||||
resample_rate: !ref <sample_rate>
|
||||
truncate: !name:cosyvoice.dataset.processor.truncate
|
||||
truncate_length: 24576 # must be a multiplier of hop_size
|
||||
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1024
|
||||
num_mels: 80
|
||||
@@ -157,6 +183,9 @@ feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
center: False
|
||||
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||
feat_extractor: !ref <feat_extractor>
|
||||
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||
sample_rate: !ref <sample_rate>
|
||||
hop_size: 256
|
||||
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||
normalize: True
|
||||
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||
@@ -165,7 +194,7 @@ sort: !name:cosyvoice.dataset.processor.sort
|
||||
sort_size: 500 # sort_size should be less than shuffle_size
|
||||
batch: !name:cosyvoice.dataset.processor.batch
|
||||
batch_type: 'dynamic'
|
||||
max_frames_in_batch: 2000
|
||||
max_frames_in_batch: 2000 # change to 1400 in gan train on v100 16g
|
||||
padding: !name:cosyvoice.dataset.processor.padding
|
||||
use_spk_embedding: False # change to True during sft
|
||||
|
||||
@@ -182,8 +211,22 @@ data_pipeline: [
|
||||
!ref <batch>,
|
||||
!ref <padding>,
|
||||
]
|
||||
data_pipeline_gan: [
|
||||
!ref <parquet_opener>,
|
||||
!ref <tokenize>,
|
||||
!ref <filter>,
|
||||
!ref <resample>,
|
||||
!ref <truncate>,
|
||||
!ref <compute_fbank>,
|
||||
!ref <compute_f0>,
|
||||
!ref <parse_embedding>,
|
||||
!ref <shuffle>,
|
||||
!ref <sort>,
|
||||
!ref <batch>,
|
||||
!ref <padding>,
|
||||
]
|
||||
|
||||
# train conf
|
||||
# llm flow train conf
|
||||
train_conf:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
@@ -195,4 +238,20 @@ train_conf:
|
||||
grad_clip: 5
|
||||
accum_grad: 2
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
|
||||
# gan train conf
|
||||
train_conf_gan:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.0002 # use small lr for gan training
|
||||
scheduler: constantlr
|
||||
optim_d: adam
|
||||
optim_conf_d:
|
||||
lr: 0.0002 # use small lr for gan training
|
||||
scheduler_d: constantlr
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 1 # in gan training, accum_grad must be 1
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
@@ -7,6 +7,7 @@ from tqdm import tqdm
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
||||
def main():
|
||||
wavs = list(glob.glob('{}/*/*/*wav'.format(args.src_dir)))
|
||||
|
||||
@@ -41,6 +42,7 @@ def main():
|
||||
f.write('{} {}\n'.format(k, ' '.join(v)))
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--src_dir',
|
||||
|
||||
@@ -83,9 +83,9 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
fi
|
||||
cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
|
||||
cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
|
||||
for model in llm; do
|
||||
for model in llm flow hifigan; do
|
||||
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
||||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
|
||||
cosyvoice/bin/train.py \
|
||||
--train_engine $train_engine \
|
||||
--config conf/cosyvoice.yaml \
|
||||
@@ -99,7 +99,28 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
--num_workers ${num_workers} \
|
||||
--prefetch ${prefetch} \
|
||||
--pin_memory \
|
||||
--use_amp \
|
||||
--deepspeed_config ./conf/ds_stage2.json \
|
||||
--deepspeed.save_states model+optimizer
|
||||
done
|
||||
fi
|
||||
|
||||
# average model
|
||||
average_num=5
|
||||
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||
for model in llm flow hifigan; do
|
||||
decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
|
||||
echo "do model average and final checkpoint is $decode_checkpoint"
|
||||
python cosyvoice/bin/average_model.py \
|
||||
--dst_model $decode_checkpoint \
|
||||
--src_path `pwd`/exp/cosyvoice/$model/$train_engine \
|
||||
--num ${average_num} \
|
||||
--val_best
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
|
||||
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
||||
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
||||
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
||||
fi
|
||||
1
examples/libritts/cosyvoice2/cosyvoice
Symbolic link
1
examples/libritts/cosyvoice2/cosyvoice
Symbolic link
@@ -0,0 +1 @@
|
||||
../../../cosyvoice
|
||||
1
examples/libritts/cosyvoice2/tools
Symbolic link
1
examples/libritts/cosyvoice2/tools
Symbolic link
@@ -0,0 +1 @@
|
||||
../../../tools
|
||||
@@ -18,7 +18,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||
llm_input_size: !ref <llm_input_size>
|
||||
llm_output_size: !ref <llm_output_size>
|
||||
text_token_size: 51866
|
||||
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
speech_token_size: 4096
|
||||
length_normalized_loss: True
|
||||
lsm_weight: 0
|
||||
@@ -54,6 +54,11 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
static_chunk_size: 1
|
||||
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||
top_p: 0.8
|
||||
top_k: 25
|
||||
win_size: 10
|
||||
tau_r: 0.1
|
||||
|
||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
input_size: 512
|
||||
@@ -61,7 +66,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
output_type: 'mel'
|
||||
vocab_size: 4096
|
||||
input_frame_rate: 50
|
||||
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
only_mask_loss: True
|
||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
output_size: 512
|
||||
@@ -130,7 +135,7 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
|
||||
# processor functions
|
||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||
multilingual: True
|
||||
num_languages: 100
|
||||
language: 'en'
|
||||
|
||||
@@ -18,7 +18,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||
llm_input_size: !ref <llm_input_size>
|
||||
llm_output_size: !ref <llm_output_size>
|
||||
text_token_size: 51866
|
||||
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
speech_token_size: 4096
|
||||
length_normalized_loss: True
|
||||
lsm_weight: 0
|
||||
@@ -54,6 +54,11 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
static_chunk_size: 1
|
||||
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||
top_p: 0.8
|
||||
top_k: 25
|
||||
win_size: 10
|
||||
tau_r: 0.1
|
||||
|
||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
input_size: 512
|
||||
@@ -61,7 +66,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
output_type: 'mel'
|
||||
vocab_size: 4096
|
||||
input_frame_rate: 50
|
||||
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
only_mask_loss: True
|
||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
output_size: 512
|
||||
@@ -130,7 +135,7 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
|
||||
# processor functions
|
||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||
multilingual: True
|
||||
num_languages: 100
|
||||
language: 'en'
|
||||
|
||||
@@ -6,6 +6,7 @@ from tqdm import tqdm
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
||||
def main():
|
||||
utt2wav, utt2text, utt2spk, spk2utt = {}, {}, {}, {}
|
||||
with open(os.path.join(args.src_dir, "TRANS.txt"), "r") as f:
|
||||
@@ -40,6 +41,7 @@ def main():
|
||||
f.write('{} {}\n'.format(k, ' '.join(v)))
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--src_dir',
|
||||
|
||||
@@ -83,7 +83,7 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
fi
|
||||
cp data/train/parquet/data.list data/train.data.list
|
||||
cp data/dev/parquet/data.list data/dev.data.list
|
||||
for model in llm; do
|
||||
for model in llm flow; do
|
||||
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
||||
cosyvoice/bin/train.py \
|
||||
@@ -102,4 +102,10 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
--deepspeed_config ./conf/ds_stage2.json \
|
||||
--deepspeed.save_states model+optimizer
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
||||
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
||||
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
||||
fi
|
||||
@@ -1,9 +1,10 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
--extra-index-url https://download.pytorch.org/whl/cu121
|
||||
--extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/ # https://github.com/microsoft/onnxruntime/issues/21684
|
||||
conformer==0.3.2
|
||||
deepspeed==0.14.2; sys_platform == 'linux'
|
||||
diffusers==0.27.2
|
||||
diffusers==0.29.0
|
||||
gdown==5.1.0
|
||||
gradio==4.32.2
|
||||
gradio==5.4.0
|
||||
grpcio==1.57.0
|
||||
grpcio-tools==1.57.0
|
||||
hydra-core==1.3.2
|
||||
@@ -15,17 +16,24 @@ matplotlib==3.7.5
|
||||
modelscope==1.15.0
|
||||
networkx==3.1
|
||||
omegaconf==2.3.0
|
||||
onnxruntime-gpu==1.16.0; sys_platform == 'linux'
|
||||
onnxruntime==1.16.0; sys_platform == 'darwin' or sys_platform == 'windows'
|
||||
onnx==1.16.0
|
||||
onnxruntime-gpu==1.18.0; sys_platform == 'linux'
|
||||
onnxruntime==1.18.0; sys_platform == 'darwin' or sys_platform == 'windows'
|
||||
openai-whisper==20231117
|
||||
protobuf==4.25
|
||||
pydantic==2.7.0
|
||||
pyworld==0.3.4
|
||||
rich==13.7.1
|
||||
soundfile==0.12.1
|
||||
tensorboard==2.14.0
|
||||
torch==2.0.1
|
||||
torchaudio==2.0.2
|
||||
tensorrt-cu12==10.0.1; sys_platform == 'linux'
|
||||
tensorrt-cu12-bindings==10.0.1; sys_platform == 'linux'
|
||||
tensorrt-cu12-libs==10.0.1; sys_platform == 'linux'
|
||||
torch==2.3.1
|
||||
torchaudio==2.3.1
|
||||
transformers==4.40.1
|
||||
uvicorn==0.30.0
|
||||
wget==3.2
|
||||
fastapi==0.111.0
|
||||
fastapi==0.115.6
|
||||
fastapi-cli==0.0.4
|
||||
WeTextProcessing==1.0.3
|
||||
|
||||
40
requirements_vllm.txt
Normal file
40
requirements_vllm.txt
Normal file
@@ -0,0 +1,40 @@
|
||||
vllm==0.7.3
|
||||
pydantic==2.10.6
|
||||
torch==2.5.1
|
||||
torchaudio==2.5.1
|
||||
|
||||
conformer==0.3.2
|
||||
|
||||
diffusers==0.32.2
|
||||
gdown==5.1.0
|
||||
grpcio==1.57.0
|
||||
grpcio-tools==1.57.0
|
||||
hydra-core==1.3.2
|
||||
HyperPyYAML==1.2.2
|
||||
inflect==7.3.1
|
||||
librosa==0.10.2
|
||||
|
||||
lightning==2.5.0.post0
|
||||
matplotlib==3.7.5
|
||||
modelscope==1.15.0
|
||||
|
||||
networkx==3.4.2
|
||||
omegaconf==2.3.0
|
||||
onnx==1.17.0
|
||||
|
||||
onnxruntime-gpu==1.19.0; sys_platform == 'linux'
|
||||
|
||||
#openai-whisper==20231117
|
||||
openai-whisper==20240930
|
||||
protobuf==4.25
|
||||
pyworld==0.3.4
|
||||
rich==13.7.1
|
||||
soundfile==0.12.1
|
||||
tensorboard==2.14.0
|
||||
wget==3.2
|
||||
WeTextProcessing==1.0.3
|
||||
|
||||
# trt use
|
||||
tensorrt-cu12==10.0.1
|
||||
tensorrt-cu12-bindings==10.0.1
|
||||
tensorrt-cu12-libs==10.0.1
|
||||
@@ -1,56 +1,69 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import logging
|
||||
import requests
|
||||
import torch
|
||||
import torchaudio
|
||||
import numpy as np
|
||||
|
||||
def saveResponse(path, response):
|
||||
# 以二进制写入模式打开文件
|
||||
with open(path, 'wb') as file:
|
||||
# 将响应的二进制内容写入文件
|
||||
file.write(response.content)
|
||||
|
||||
def main():
|
||||
api = args.api_base
|
||||
url = "http://{}:{}/inference_{}".format(args.host, args.port, args.mode)
|
||||
if args.mode == 'sft':
|
||||
url = api + "/api/inference/sft"
|
||||
payload={
|
||||
'tts': args.tts_text,
|
||||
'role': args.spk_id
|
||||
}
|
||||
response = requests.request("POST", url, data=payload)
|
||||
saveResponse(args.tts_wav, response)
|
||||
elif args.mode == 'zero_shot':
|
||||
url = api + "/api/inference/zero-shot"
|
||||
payload={
|
||||
'tts': args.tts_text,
|
||||
'prompt': args.prompt_text
|
||||
}
|
||||
files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))]
|
||||
response = requests.request("POST", url, data=payload, files=files)
|
||||
saveResponse(args.tts_wav, response)
|
||||
elif args.mode == 'cross_lingual':
|
||||
url = api + "/api/inference/cross-lingual"
|
||||
payload={
|
||||
'tts': args.tts_text,
|
||||
}
|
||||
files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))]
|
||||
response = requests.request("POST", url, data=payload, files=files)
|
||||
saveResponse(args.tts_wav, response)
|
||||
else:
|
||||
url = api + "/api/inference/instruct"
|
||||
payload = {
|
||||
'tts': args.tts_text,
|
||||
'role': args.spk_id,
|
||||
'instruct': args.instruct_text
|
||||
'tts_text': args.tts_text,
|
||||
'spk_id': args.spk_id
|
||||
}
|
||||
response = requests.request("POST", url, data=payload)
|
||||
saveResponse(args.tts_wav, response)
|
||||
logging.info("Response save to {}", args.tts_wav)
|
||||
response = requests.request("GET", url, data=payload, stream=True)
|
||||
elif args.mode == 'zero_shot':
|
||||
payload = {
|
||||
'tts_text': args.tts_text,
|
||||
'prompt_text': args.prompt_text
|
||||
}
|
||||
files = [('prompt_wav', ('prompt_wav', open(args.prompt_wav, 'rb'), 'application/octet-stream'))]
|
||||
response = requests.request("GET", url, data=payload, files=files, stream=True)
|
||||
elif args.mode == 'cross_lingual':
|
||||
payload = {
|
||||
'tts_text': args.tts_text,
|
||||
}
|
||||
files = [('prompt_wav', ('prompt_wav', open(args.prompt_wav, 'rb'), 'application/octet-stream'))]
|
||||
response = requests.request("GET", url, data=payload, files=files, stream=True)
|
||||
else:
|
||||
payload = {
|
||||
'tts_text': args.tts_text,
|
||||
'spk_id': args.spk_id,
|
||||
'instruct_text': args.instruct_text
|
||||
}
|
||||
response = requests.request("GET", url, data=payload, stream=True)
|
||||
tts_audio = b''
|
||||
for r in response.iter_content(chunk_size=16000):
|
||||
tts_audio += r
|
||||
tts_speech = torch.from_numpy(np.array(np.frombuffer(tts_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||
logging.info('save response to {}'.format(args.tts_wav))
|
||||
torchaudio.save(args.tts_wav, tts_speech, target_sr)
|
||||
logging.info('get response')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--api_base',
|
||||
parser.add_argument('--host',
|
||||
type=str,
|
||||
default='http://127.0.0.1:6006')
|
||||
default='0.0.0.0')
|
||||
parser.add_argument('--port',
|
||||
type=int,
|
||||
default='50000')
|
||||
parser.add_argument('--mode',
|
||||
default='sft',
|
||||
choices=['sft', 'zero_shot', 'cross_lingual', 'instruct'],
|
||||
@@ -66,10 +79,11 @@ if __name__ == "__main__":
|
||||
default='希望你以后能够做的比我还好呦。')
|
||||
parser.add_argument('--prompt_wav',
|
||||
type=str,
|
||||
default='../../../zero_shot_prompt.wav')
|
||||
default='../../../asset/zero_shot_prompt.wav')
|
||||
parser.add_argument('--instruct_text',
|
||||
type=str,
|
||||
default='Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
|
||||
default='Theo \'Crimson\', is a fiery, passionate rebel leader. \
|
||||
Fights with fervor for justice, but struggles with impulsiveness.')
|
||||
parser.add_argument('--tts_wav',
|
||||
type=str,
|
||||
default='demo.wav')
|
||||
|
||||
@@ -1,119 +1,101 @@
|
||||
# Set inference model
|
||||
# export MODEL_DIR=pretrained_models/CosyVoice-300M-Instruct
|
||||
# For development
|
||||
# fastapi dev --port 6006 fastapi_server.py
|
||||
# For production deployment
|
||||
# fastapi run --port 6006 fastapi_server.py
|
||||
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import sys
|
||||
import io,time
|
||||
from fastapi import FastAPI, Response, File, UploadFile, Form
|
||||
from fastapi.responses import HTMLResponse
|
||||
from fastapi.middleware.cors import CORSMiddleware #引入 CORS中间件模块
|
||||
from contextlib import asynccontextmanager
|
||||
import argparse
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
from fastapi import FastAPI, UploadFile, Form, File
|
||||
from fastapi.responses import StreamingResponse
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
import uvicorn
|
||||
import numpy as np
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchaudio
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
|
||||
class LaunchFailed(Exception):
|
||||
pass
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT")
|
||||
if model_dir:
|
||||
logging.info("MODEL_DIR is {}", model_dir)
|
||||
app.cosyvoice = CosyVoice(model_dir)
|
||||
# sft usage
|
||||
logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks())
|
||||
else:
|
||||
raise LaunchFailed("MODEL_DIR environment must set")
|
||||
yield
|
||||
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
#设置允许访问的域名
|
||||
origins = ["*"] #"*",即为所有,也可以改为允许的特定ip。
|
||||
app = FastAPI()
|
||||
# set cross region allowance
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=origins, #设置允许的origins来源
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"], # 设置允许跨域的http方法,比如 get、post、put等。
|
||||
allow_headers=["*"]) #允许跨域的headers,可以用来鉴别来源等作用。
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"])
|
||||
|
||||
def buildResponse(output):
|
||||
buffer = io.BytesIO()
|
||||
torchaudio.save(buffer, output, 22050, format="wav")
|
||||
buffer.seek(0)
|
||||
return Response(content=buffer.read(-1), media_type="audio/wav")
|
||||
|
||||
@app.post("/api/inference/sft")
|
||||
@app.get("/api/inference/sft")
|
||||
async def sft(tts: str = Form(), role: str = Form()):
|
||||
start = time.process_time()
|
||||
output = app.cosyvoice.inference_sft(tts, role)
|
||||
end = time.process_time()
|
||||
logging.info("infer time is {} seconds", end-start)
|
||||
return buildResponse(output['tts_speech'])
|
||||
def generate_data(model_output):
|
||||
for i in model_output:
|
||||
tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
|
||||
yield tts_audio
|
||||
|
||||
@app.post("/api/inference/zero-shot")
|
||||
async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()):
|
||||
start = time.process_time()
|
||||
prompt_speech = load_wav(audio.file, 16000)
|
||||
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
||||
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
||||
|
||||
output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k)
|
||||
end = time.process_time()
|
||||
logging.info("infer time is {} seconds", end-start)
|
||||
return buildResponse(output['tts_speech'])
|
||||
@app.get("/inference_sft")
|
||||
@app.post("/inference_sft")
|
||||
async def inference_sft(tts_text: str = Form(), spk_id: str = Form()):
|
||||
model_output = cosyvoice.inference_sft(tts_text, spk_id)
|
||||
return StreamingResponse(generate_data(model_output))
|
||||
|
||||
@app.post("/api/inference/cross-lingual")
|
||||
async def crossLingual(tts: str = Form(), audio: UploadFile = File()):
|
||||
start = time.process_time()
|
||||
prompt_speech = load_wav(audio.file, 16000)
|
||||
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
||||
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
||||
|
||||
output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k)
|
||||
end = time.process_time()
|
||||
logging.info("infer time is {} seconds", end-start)
|
||||
return buildResponse(output['tts_speech'])
|
||||
@app.get("/inference_zero_shot")
|
||||
@app.post("/inference_zero_shot")
|
||||
async def inference_zero_shot(tts_text: str = Form(), prompt_text: str = Form(), prompt_wav: UploadFile = File()):
|
||||
prompt_speech_16k = load_wav(prompt_wav.file, 16000)
|
||||
model_output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
|
||||
return StreamingResponse(generate_data(model_output))
|
||||
|
||||
@app.post("/api/inference/instruct")
|
||||
@app.get("/api/inference/instruct")
|
||||
async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()):
|
||||
start = time.process_time()
|
||||
output = app.cosyvoice.inference_instruct(tts, role, instruct)
|
||||
end = time.process_time()
|
||||
logging.info("infer time is {} seconds", end-start)
|
||||
return buildResponse(output['tts_speech'])
|
||||
|
||||
@app.get("/api/roles")
|
||||
async def roles():
|
||||
return {"roles": app.cosyvoice.list_avaliable_spks()}
|
||||
@app.get("/inference_cross_lingual")
|
||||
@app.post("/inference_cross_lingual")
|
||||
async def inference_cross_lingual(tts_text: str = Form(), prompt_wav: UploadFile = File()):
|
||||
prompt_speech_16k = load_wav(prompt_wav.file, 16000)
|
||||
model_output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k)
|
||||
return StreamingResponse(generate_data(model_output))
|
||||
|
||||
@app.get("/", response_class=HTMLResponse)
|
||||
async def root():
|
||||
return """
|
||||
<!DOCTYPE html>
|
||||
<html lang=zh-cn>
|
||||
<head>
|
||||
<meta charset=utf-8>
|
||||
<title>Api information</title>
|
||||
</head>
|
||||
<body>
|
||||
Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. <a href='./docs'>Documents of API</a>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
|
||||
@app.get("/inference_instruct")
|
||||
@app.post("/inference_instruct")
|
||||
async def inference_instruct(tts_text: str = Form(), spk_id: str = Form(), instruct_text: str = Form()):
|
||||
model_output = cosyvoice.inference_instruct(tts_text, spk_id, instruct_text)
|
||||
return StreamingResponse(generate_data(model_output))
|
||||
|
||||
@app.get("/inference_instruct2")
|
||||
@app.post("/inference_instruct2")
|
||||
async def inference_instruct2(tts_text: str = Form(), instruct_text: str = Form(), prompt_wav: UploadFile = File()):
|
||||
prompt_speech_16k = load_wav(prompt_wav.file, 16000)
|
||||
model_output = cosyvoice.inference_instruct2(tts_text, instruct_text, prompt_speech_16k)
|
||||
return StreamingResponse(generate_data(model_output))
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--port',
|
||||
type=int,
|
||||
default=50000)
|
||||
parser.add_argument('--model_dir',
|
||||
type=str,
|
||||
default='iic/CosyVoice-300M',
|
||||
help='local path or modelscope repo id')
|
||||
args = parser.parse_args()
|
||||
try:
|
||||
cosyvoice = CosyVoice(args.model_dir)
|
||||
except Exception:
|
||||
try:
|
||||
cosyvoice = CosyVoice2(args.model_dir)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
||||
@@ -61,8 +61,11 @@ def main():
|
||||
request.instruct_request.CopyFrom(instruct_request)
|
||||
|
||||
response = stub.Inference(request)
|
||||
tts_audio = b''
|
||||
for r in response:
|
||||
tts_audio += r.tts_audio
|
||||
tts_speech = torch.from_numpy(np.array(np.frombuffer(tts_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||
logging.info('save response to {}'.format(args.tts_wav))
|
||||
tts_speech = torch.from_numpy(np.array(np.frombuffer(response.tts_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||
torchaudio.save(args.tts_wav, tts_speech, target_sr)
|
||||
logging.info('get response')
|
||||
|
||||
@@ -90,10 +93,11 @@ if __name__ == "__main__":
|
||||
default='希望你以后能够做的比我还好呦。')
|
||||
parser.add_argument('--prompt_wav',
|
||||
type=str,
|
||||
default='../../../zero_shot_prompt.wav')
|
||||
default='../../../asset/zero_shot_prompt.wav')
|
||||
parser.add_argument('--instruct_text',
|
||||
type=str,
|
||||
default='Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
|
||||
default='Theo \'Crimson\', is a fiery, passionate rebel leader. \
|
||||
Fights with fervor for justice, but struggles with impulsiveness.')
|
||||
parser.add_argument('--tts_wav',
|
||||
type=str,
|
||||
default='demo.wav')
|
||||
|
||||
@@ -4,7 +4,7 @@ package cosyvoice;
|
||||
option go_package = "protos/";
|
||||
|
||||
service CosyVoice{
|
||||
rpc Inference(Request) returns (Response) {}
|
||||
rpc Inference(Request) returns (stream Response) {}
|
||||
}
|
||||
|
||||
message Request{
|
||||
|
||||
@@ -13,9 +13,6 @@
|
||||
# limitations under the License.
|
||||
import os
|
||||
import sys
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from concurrent import futures
|
||||
import argparse
|
||||
import cosyvoice_pb2
|
||||
@@ -25,14 +22,24 @@ logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
import grpc
|
||||
import torch
|
||||
import numpy as np
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
|
||||
|
||||
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
|
||||
def __init__(self, args):
|
||||
self.cosyvoice = CosyVoice(args.model_dir)
|
||||
try:
|
||||
self.cosyvoice = CosyVoice(args.model_dir)
|
||||
except Exception:
|
||||
try:
|
||||
self.cosyvoice = CosyVoice2(args.model_dir)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
logging.info('grpc service initialized')
|
||||
|
||||
def Inference(self, request, context):
|
||||
@@ -43,7 +50,9 @@ class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
|
||||
logging.info('get zero_shot inference request')
|
||||
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.zero_shot_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
||||
model_output = self.cosyvoice.inference_zero_shot(request.zero_shot_request.tts_text, request.zero_shot_request.prompt_text, prompt_speech_16k)
|
||||
model_output = self.cosyvoice.inference_zero_shot(request.zero_shot_request.tts_text,
|
||||
request.zero_shot_request.prompt_text,
|
||||
prompt_speech_16k)
|
||||
elif request.HasField('cross_lingual_request'):
|
||||
logging.info('get cross_lingual inference request')
|
||||
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.cross_lingual_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||
@@ -51,12 +60,16 @@ class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
|
||||
model_output = self.cosyvoice.inference_cross_lingual(request.cross_lingual_request.tts_text, prompt_speech_16k)
|
||||
else:
|
||||
logging.info('get instruct inference request')
|
||||
model_output = self.cosyvoice.inference_instruct(request.instruct_request.tts_text, request.instruct_request.spk_id, request.instruct_request.instruct_text)
|
||||
model_output = self.cosyvoice.inference_instruct(request.instruct_request.tts_text,
|
||||
request.instruct_request.spk_id,
|
||||
request.instruct_request.instruct_text)
|
||||
|
||||
logging.info('send inference response')
|
||||
response = cosyvoice_pb2.Response()
|
||||
response.tts_audio = (model_output['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
|
||||
return response
|
||||
for i in model_output:
|
||||
response = cosyvoice_pb2.Response()
|
||||
response.tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
|
||||
yield response
|
||||
|
||||
|
||||
def main():
|
||||
grpcServer = grpc.server(futures.ThreadPoolExecutor(max_workers=args.max_conc), maximum_concurrent_rpcs=args.max_conc)
|
||||
|
||||
486
speed_test.ipynb
Normal file
486
speed_test.ipynb
Normal file
@@ -0,0 +1,486 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 测试效果\n",
|
||||
"\n",
|
||||
"- 测试代码: [speed_test.ipynb](speed_test.ipynb)\n",
|
||||
"- 测试环境: Intel i5-12400 CPU, 48GB RAM, 1x NVIDIA GeForce RTX 4070\n",
|
||||
"- 运行环境: Ubuntu 24.04.1 LTS, cuda 12.4, python 3.10.16\n",
|
||||
"- 测试说明: 单任务执行的数据(非并发测试)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 默认情况下使用"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import time\n",
|
||||
"import asyncio\n",
|
||||
"import torchaudio\n",
|
||||
"\n",
|
||||
"import sys\n",
|
||||
"sys.path.append('third_party/Matcha-TTS')\n",
|
||||
"\n",
|
||||
"from cosyvoice.cli.cosyvoice import CosyVoice2\n",
|
||||
"from cosyvoice.utils.file_utils import load_wav\n",
|
||||
"\n",
|
||||
"prompt_text = '希望你以后能够做得比我还好哟'\n",
|
||||
"prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)\n",
|
||||
"\n",
|
||||
"# cosyvoice = CosyVoice2('./pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=True)\n",
|
||||
"cosyvoice = CosyVoice2('./pretrained_models/CosyVoice2-0.5B', load_jit=True, load_trt=True, fp16=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 使用vllm加速llm推理\n",
|
||||
"\n",
|
||||
"#### 1. **安装依赖**\n",
|
||||
"\n",
|
||||
"(该依赖环境下可以运行原本cosyvoice2代码)\n",
|
||||
"```bash\n",
|
||||
"pip install -r requirements_vllm.txt\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"#### 2. **文件复制**\n",
|
||||
"将 pretrained_models/CosyVoice2-0.5B/CosyVoice-BlankEN 文件夹下的部分文件复制到下载的CosyVoice2-0.5B模型文件夹下,并替换 config.json 文件中的 Qwen2ForCausalLM 为 CosyVoice2Model。\n",
|
||||
"```bash\n",
|
||||
"cp pretrained_models/CosyVoice2-0.5B/CosyVoice-BlankEN/{config.json,tokenizer_config.json,vocab.json,merges.txt} pretrained_models/CosyVoice2-0.5B/\n",
|
||||
"sed -i 's/Qwen2ForCausalLM/CosyVoice2Model/' pretrained_models/CosyVoice2-0.5B/config.json\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"#### **注意:**\n",
|
||||
"\n",
|
||||
"- 使用 load_trt 后,需要进行 **预热** 10次推理以上,使用流式推理预热效果较好\n",
|
||||
"- 在 jupyter notebook 中,如果要使用 **vllm** 运行下列代码,需要将vllm_use_cosyvoice2_model.py正确复制到 vllm 包中,并注册到 _VLLM_MODELS 字典中。运行下面的 code 完成"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import shutil\n",
|
||||
"\n",
|
||||
"# 获取vllm包的安装路径\n",
|
||||
"try:\n",
|
||||
" import vllm\n",
|
||||
"except ImportError:\n",
|
||||
" raise ImportError(\"vllm package not installed\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"vllm_path = os.path.dirname(vllm.__file__)\n",
|
||||
"print(f\"vllm package path: {vllm_path}\")\n",
|
||||
"\n",
|
||||
"# 定义目标路径\n",
|
||||
"target_dir = os.path.join(vllm_path, \"model_executor\", \"models\")\n",
|
||||
"target_file = os.path.join(target_dir, \"cosyvoice2.py\")\n",
|
||||
"\n",
|
||||
"# 复制模型文件\n",
|
||||
"source_file = \"./cosyvoice/llm/vllm_use_cosyvoice2_model.py\"\n",
|
||||
"if not os.path.exists(source_file):\n",
|
||||
" raise FileNotFoundError(f\"Source file {source_file} not found\")\n",
|
||||
"\n",
|
||||
"shutil.copy(source_file, target_file)\n",
|
||||
"print(f\"Copied {source_file} to {target_file}\")\n",
|
||||
"\n",
|
||||
"# 修改registry.py文件\n",
|
||||
"registry_path = os.path.join(target_dir, \"registry.py\")\n",
|
||||
"new_entry = ' \"CosyVoice2Model\": (\"cosyvoice2\", \"CosyVoice2Model\"), # noqa: E501\\n'\n",
|
||||
"\n",
|
||||
"# 读取并修改文件内容\n",
|
||||
"with open(registry_path, \"r\") as f:\n",
|
||||
" lines = f.readlines()\n",
|
||||
"\n",
|
||||
"# 检查是否已存在条目\n",
|
||||
"entry_exists = any(\"CosyVoice2Model\" in line for line in lines)\n",
|
||||
"\n",
|
||||
"if not entry_exists:\n",
|
||||
" # 寻找插入位置\n",
|
||||
" insert_pos = None\n",
|
||||
" for i, line in enumerate(lines):\n",
|
||||
" if line.strip().startswith(\"**_FALLBACK_MODEL\"):\n",
|
||||
" insert_pos = i + 1\n",
|
||||
" break\n",
|
||||
" \n",
|
||||
" if insert_pos is None:\n",
|
||||
" raise ValueError(\"Could not find insertion point in registry.py\")\n",
|
||||
" \n",
|
||||
" # 插入新条目\n",
|
||||
" lines.insert(insert_pos, new_entry)\n",
|
||||
" \n",
|
||||
" # 写回文件\n",
|
||||
" with open(registry_path, \"w\") as f:\n",
|
||||
" f.writelines(lines)\n",
|
||||
" print(\"Successfully updated registry.py\")\n",
|
||||
"else:\n",
|
||||
" print(\"Entry already exists in registry.py, skipping modification\")\n",
|
||||
"\n",
|
||||
"print(\"All operations completed successfully!\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"failed to import ttsfrd, use WeTextProcessing instead\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Sliding Window Attention is enabled but not implemented for `sdpa`; unexpected results may be encountered.\n",
|
||||
"/opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/diffusers/models/lora.py:393: FutureWarning: `LoRACompatibleLinear` is deprecated and will be removed in version 1.0.0. Use of `LoRACompatibleLinear` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`.\n",
|
||||
" deprecate(\"LoRACompatibleLinear\", \"1.0.0\", deprecation_message)\n",
|
||||
"2025-03-08 00:37:04,867 INFO input frame rate=25\n",
|
||||
"/opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:115: UserWarning: Specified provider 'CUDAExecutionProvider' is not in available provider names.Available providers: 'AzureExecutionProvider, CPUExecutionProvider'\n",
|
||||
" warnings.warn(\n",
|
||||
"2025-03-08 00:37:06,103 WETEXT INFO found existing fst: /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/zh_tn_tagger.fst\n",
|
||||
"2025-03-08 00:37:06,103 INFO found existing fst: /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/zh_tn_tagger.fst\n",
|
||||
"2025-03-08 00:37:06,104 WETEXT INFO /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/zh_tn_verbalizer.fst\n",
|
||||
"2025-03-08 00:37:06,104 INFO /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/zh_tn_verbalizer.fst\n",
|
||||
"2025-03-08 00:37:06,104 WETEXT INFO skip building fst for zh_normalizer ...\n",
|
||||
"2025-03-08 00:37:06,104 INFO skip building fst for zh_normalizer ...\n",
|
||||
"2025-03-08 00:37:06,313 WETEXT INFO found existing fst: /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/en_tn_tagger.fst\n",
|
||||
"2025-03-08 00:37:06,313 INFO found existing fst: /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/en_tn_tagger.fst\n",
|
||||
"2025-03-08 00:37:06,314 WETEXT INFO /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/en_tn_verbalizer.fst\n",
|
||||
"2025-03-08 00:37:06,314 INFO /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/en_tn_verbalizer.fst\n",
|
||||
"2025-03-08 00:37:06,314 WETEXT INFO skip building fst for en_normalizer ...\n",
|
||||
"2025-03-08 00:37:06,314 INFO skip building fst for en_normalizer ...\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO 03-08 00:37:07 __init__.py:207] Automatically detected platform cuda.\n",
|
||||
"WARNING 03-08 00:37:07 registry.py:352] Model architecture CosyVoice2Model is already registered, and will be overwritten by the new model class <class 'cosyvoice.llm.vllm_use_cosyvoice2_model.CosyVoice2Model'>.\n",
|
||||
"WARNING 03-08 00:37:07 config.py:2517] Casting torch.bfloat16 to torch.float16.\n",
|
||||
"INFO 03-08 00:37:07 config.py:560] This model supports multiple tasks: {'embed', 'classify', 'reward', 'generate', 'score'}. Defaulting to 'generate'.\n",
|
||||
"INFO 03-08 00:37:07 config.py:1624] Chunked prefill is enabled with max_num_batched_tokens=1024.\n",
|
||||
"WARNING 03-08 00:37:08 utils.py:2164] CUDA was previously initialized. We must use the `spawn` multiprocessing start method. Setting VLLM_WORKER_MULTIPROC_METHOD to 'spawn'. See https://docs.vllm.ai/en/latest/getting_started/troubleshooting.html#python-multiprocessing for more information.\n",
|
||||
"INFO 03-08 00:37:10 __init__.py:207] Automatically detected platform cuda.\n",
|
||||
"INFO 03-08 00:37:11 core.py:50] Initializing a V1 LLM engine (v0.7.3.dev213+gede41bc7.d20250219) with config: model='./pretrained_models/CosyVoice2-0.5B', speculative_config=None, tokenizer='./pretrained_models/CosyVoice2-0.5B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=1024, download_dir=None, load_format=auto, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar'), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=./pretrained_models/CosyVoice2-0.5B, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={\"level\":3,\"custom_ops\":[\"none\"],\"splitting_ops\":[\"vllm.unified_attention\",\"vllm.unified_attention_with_output\"],\"use_inductor\":true,\"compile_sizes\":[],\"use_cudagraph\":true,\"cudagraph_num_of_warmups\":1,\"cudagraph_capture_sizes\":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],\"max_capture_size\":512}\n",
|
||||
"WARNING 03-08 00:37:11 utils.py:2298] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,list_loras,load_config,pin_lora,remove_lora,scheduler_config not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x771e56fb9a50>\n",
|
||||
"INFO 03-08 00:37:11 parallel_state.py:948] rank 0 in world size 1 is assigned as DP rank 0, PP rank 0, TP rank 0\n",
|
||||
"INFO 03-08 00:37:11 gpu_model_runner.py:1055] Starting to load model ./pretrained_models/CosyVoice2-0.5B...\n",
|
||||
"INFO 03-08 00:37:11 cuda.py:157] Using Flash Attention backend on V1 engine.\n",
|
||||
"WARNING 03-08 00:37:11 topk_topp_sampler.py:46] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.\n",
|
||||
"WARNING 03-08 00:37:11 rejection_sampler.py:47] FlashInfer is not available. Falling back to the PyTorch-native implementation of rejection sampling. For the best performance, please install FlashInfer.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/torch/utils/_device.py:106: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
||||
" return func(*args, **kwargs)\n",
|
||||
"Loading pt checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s]\n",
|
||||
"Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 1.12it/s]\n",
|
||||
"Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 1.12it/s]\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO 03-08 00:37:12 gpu_model_runner.py:1068] Loading model weights took 0.9532 GB and 1.023026 seconds\n",
|
||||
"INFO 03-08 00:37:16 backends.py:408] Using cache directory: /home/qihua/.cache/vllm/torch_compile_cache/29f70599cb/rank_0 for vLLM's torch.compile\n",
|
||||
"INFO 03-08 00:37:16 backends.py:418] Dynamo bytecode transform time: 3.62 s\n",
|
||||
"INFO 03-08 00:37:16 backends.py:115] Directly load the compiled graph for shape None from the cache\n",
|
||||
"INFO 03-08 00:37:19 monitor.py:33] torch.compile takes 3.62 s in total\n",
|
||||
"INFO 03-08 00:37:20 kv_cache_utils.py:524] GPU KV cache size: 216,560 tokens\n",
|
||||
"INFO 03-08 00:37:20 kv_cache_utils.py:527] Maximum concurrency for 1,024 tokens per request: 211.48x\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2025-03-08 00:37:30,767 DEBUG Using selector: EpollSelector\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO 03-08 00:37:30 gpu_model_runner.py:1375] Graph capturing finished in 11 secs, took 0.37 GiB\n",
|
||||
"INFO 03-08 00:37:30 core.py:116] init engine (profile, create kv cache, warmup model) took 17.82 seconds\n",
|
||||
"inference_processor\n",
|
||||
"[03/08/2025-00:37:31] [TRT] [I] Loaded engine size: 158 MiB\n",
|
||||
"[03/08/2025-00:37:31] [TRT] [I] [MS] Running engine with multi stream info\n",
|
||||
"[03/08/2025-00:37:31] [TRT] [I] [MS] Number of aux streams is 1\n",
|
||||
"[03/08/2025-00:37:31] [TRT] [I] [MS] Number of total worker streams is 2\n",
|
||||
"[03/08/2025-00:37:31] [TRT] [I] [MS] The main stream provided by execute/enqueue calls is the first worker stream\n",
|
||||
"[03/08/2025-00:37:32] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +4545, now: CPU 0, GPU 4681 (MiB)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n",
|
||||
"inference_processor\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import time\n",
|
||||
"import asyncio\n",
|
||||
"import torchaudio\n",
|
||||
"\n",
|
||||
"import sys\n",
|
||||
"sys.path.append('third_party/Matcha-TTS')\n",
|
||||
"\n",
|
||||
"from cosyvoice.cli.cosyvoice import CosyVoice2\n",
|
||||
"from cosyvoice.utils.file_utils import load_wav\n",
|
||||
"\n",
|
||||
"prompt_text = '希望你以后能够做得比我还好哟'\n",
|
||||
"prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)\n",
|
||||
"\n",
|
||||
"# cosyvoice = CosyVoice2(\n",
|
||||
"# './pretrained_models/CosyVoice2-0.5B', \n",
|
||||
"# load_jit=False, \n",
|
||||
"# load_trt=False, \n",
|
||||
"# fp16=True, \n",
|
||||
"# use_vllm=True,\n",
|
||||
"# )\n",
|
||||
"cosyvoice = CosyVoice2(\n",
|
||||
" './pretrained_models/CosyVoice2-0.5B', \n",
|
||||
" load_jit=True, \n",
|
||||
" load_trt=True, \n",
|
||||
" fp16=True, \n",
|
||||
" use_vllm=True,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" 0%| | 0/1 [00:00<?, ?it/s]2025-03-08 00:38:59,777 INFO synthesis text 收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。\n",
|
||||
"2025-03-08 00:39:00,917 INFO yield speech len 11.68, rtf 0.09757431402598342\n",
|
||||
"100%|██████████| 1/1 [00:01<00:00, 1.47s/it]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', prompt_text, prompt_speech_16k, stream=False)):\n",
|
||||
" torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" 0%| | 0/1 [00:00<?, ?it/s]2025-03-08 00:39:01,208 INFO synthesis text 收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。\n",
|
||||
"2025-03-08 00:39:01,587 INFO yield speech len 1.84, rtf 0.20591642545617145\n",
|
||||
"2025-03-08 00:39:01,790 INFO yield speech len 2.0, rtf 0.10057318210601807\n",
|
||||
"2025-03-08 00:39:02,116 INFO yield speech len 2.0, rtf 0.16271138191223145\n",
|
||||
"2025-03-08 00:39:02,367 INFO yield speech len 2.0, rtf 0.1247786283493042\n",
|
||||
"2025-03-08 00:39:02,640 INFO yield speech len 2.0, rtf 0.13561689853668213\n",
|
||||
"2025-03-08 00:39:02,980 INFO yield speech len 1.88, rtf 0.1803158445561186\n",
|
||||
"100%|██████████| 1/1 [00:02<00:00, 2.05s/it]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', prompt_text, prompt_speech_16k, stream=True)):\n",
|
||||
" torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2025-03-08 00:39:02,990 INFO get tts_text generator, will skip text_normalize!\n",
|
||||
" 0%| | 0/1 [00:00<?, ?it/s]2025-03-08 00:39:02,991 INFO get tts_text generator, will return _extract_text_token_generator!\n",
|
||||
"2025-03-08 00:39:03,236 INFO synthesis text <generator object text_generator at 0x79c694dae340>\n",
|
||||
"2025-03-08 00:39:03,237 INFO not enough text token to decode, wait for more\n",
|
||||
"2025-03-08 00:39:03,252 INFO get fill token, need to append more text token\n",
|
||||
"2025-03-08 00:39:03,253 INFO append 5 text token\n",
|
||||
"2025-03-08 00:39:03,311 INFO get fill token, need to append more text token\n",
|
||||
"2025-03-08 00:39:03,312 INFO append 5 text token\n",
|
||||
"2025-03-08 00:39:03,456 INFO no more text token, decode until met eos\n",
|
||||
"2025-03-08 00:39:04,861 INFO yield speech len 15.16, rtf 0.1072180145334128\n",
|
||||
"100%|██████████| 1/1 [00:01<00:00, 1.88s/it]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"def text_generator():\n",
|
||||
" yield '收到好友从远方寄来的生日礼物,'\n",
|
||||
" yield '那份意外的惊喜与深深的祝福'\n",
|
||||
" yield '让我心中充满了甜蜜的快乐,'\n",
|
||||
" yield '笑容如花儿般绽放。'\n",
|
||||
"\n",
|
||||
" \n",
|
||||
"for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), prompt_text, prompt_speech_16k, stream=False)):\n",
|
||||
" torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2025-03-08 00:39:04,878 INFO get tts_text generator, will skip text_normalize!\n",
|
||||
" 0%| | 0/1 [00:00<?, ?it/s]2025-03-08 00:39:04,880 INFO get tts_text generator, will return _extract_text_token_generator!\n",
|
||||
"2025-03-08 00:39:05,151 INFO synthesis text <generator object text_generator at 0x79c694dad690>\n",
|
||||
"2025-03-08 00:39:05,152 INFO not enough text token to decode, wait for more\n",
|
||||
"2025-03-08 00:39:05,169 INFO get fill token, need to append more text token\n",
|
||||
"2025-03-08 00:39:05,169 INFO append 5 text token\n",
|
||||
"2025-03-08 00:39:05,292 INFO get fill token, need to append more text token\n",
|
||||
"2025-03-08 00:39:05,293 INFO append 5 text token\n",
|
||||
"2025-03-08 00:39:05,438 INFO no more text token, decode until met eos\n",
|
||||
"2025-03-08 00:39:05,638 INFO yield speech len 1.84, rtf 0.26492670826289966\n",
|
||||
"2025-03-08 00:39:05,841 INFO yield speech len 2.0, rtf 0.10065567493438721\n",
|
||||
"2025-03-08 00:39:06,164 INFO yield speech len 2.0, rtf 0.16065263748168945\n",
|
||||
"2025-03-08 00:39:06,422 INFO yield speech len 2.0, rtf 0.12791669368743896\n",
|
||||
"2025-03-08 00:39:06,697 INFO yield speech len 2.0, rtf 0.13690149784088135\n",
|
||||
"2025-03-08 00:39:06,998 INFO yield speech len 2.0, rtf 0.14957869052886963\n",
|
||||
"2025-03-08 00:39:07,335 INFO yield speech len 1.0, rtf 0.3356931209564209\n",
|
||||
"100%|██████████| 1/1 [00:02<00:00, 2.46s/it]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"def text_generator():\n",
|
||||
" yield '收到好友从远方寄来的生日礼物,'\n",
|
||||
" yield '那份意外的惊喜与深深的祝福'\n",
|
||||
" yield '让我心中充满了甜蜜的快乐,'\n",
|
||||
" yield '笑容如花儿般绽放。'\n",
|
||||
"for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), prompt_text, prompt_speech_16k, stream=True)):\n",
|
||||
" torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" 0%| | 0/1 [00:00<?, ?it/s]2025-03-08 00:39:07,592 INFO synthesis text 收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。\n",
|
||||
"2025-03-08 00:39:08,925 INFO yield speech len 11.24, rtf 0.11861237342671567\n",
|
||||
"100%|██████████| 1/1 [00:01<00:00, 1.58s/it]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# instruct usage\n",
|
||||
"for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):\n",
|
||||
" torchaudio.save('instruct2_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "cosyvoice",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.16"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -13,14 +13,50 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
import onnxruntime
|
||||
import torch
|
||||
import torchaudio
|
||||
from tqdm import tqdm
|
||||
import onnxruntime
|
||||
import torchaudio.compliance.kaldi as kaldi
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def single_job(utt):
|
||||
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
||||
if sample_rate != 16000:
|
||||
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
||||
feat = kaldi.fbank(audio,
|
||||
num_mel_bins=80,
|
||||
dither=0,
|
||||
sample_frequency=16000)
|
||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||||
return utt, embedding
|
||||
|
||||
|
||||
def main(args):
|
||||
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
||||
utt2embedding, spk2embedding = {}, {}
|
||||
for future in tqdm(as_completed(all_task)):
|
||||
utt, embedding = future.result()
|
||||
utt2embedding[utt] = embedding
|
||||
spk = utt2spk[utt]
|
||||
if spk not in spk2embedding:
|
||||
spk2embedding[spk] = []
|
||||
spk2embedding[spk].append(embedding)
|
||||
for k, v in spk2embedding.items():
|
||||
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
||||
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
||||
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--dir", type=str)
|
||||
parser.add_argument("--onnx_path", type=str)
|
||||
parser.add_argument("--num_thread", type=int, default=8)
|
||||
args = parser.parse_args()
|
||||
|
||||
utt2wav, utt2spk = {}, {}
|
||||
with open('{}/wav.scp'.format(args.dir)) as f:
|
||||
for l in f:
|
||||
@@ -36,34 +72,6 @@ def main(args):
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ["CPUExecutionProvider"]
|
||||
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
||||
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
||||
|
||||
utt2embedding, spk2embedding = {}, {}
|
||||
for utt in tqdm(utt2wav.keys()):
|
||||
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
||||
if sample_rate != 16000:
|
||||
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
||||
feat = kaldi.fbank(audio,
|
||||
num_mel_bins=80,
|
||||
dither=0,
|
||||
sample_frequency=16000)
|
||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||||
utt2embedding[utt] = embedding
|
||||
spk = utt2spk[utt]
|
||||
if spk not in spk2embedding:
|
||||
spk2embedding[spk] = []
|
||||
spk2embedding[spk].append(embedding)
|
||||
for k, v in spk2embedding.items():
|
||||
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
||||
|
||||
torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir))
|
||||
torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir))
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--dir',
|
||||
type=str)
|
||||
parser.add_argument('--onnx_path',
|
||||
type=str)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
import logging
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
@@ -22,7 +23,39 @@ import torchaudio
|
||||
import whisper
|
||||
|
||||
|
||||
def single_job(utt):
|
||||
audio, sample_rate = torchaudio.load(utt2wav[utt], backend='soundfile')
|
||||
if sample_rate != 16000:
|
||||
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
||||
# Convert audio to mono
|
||||
if audio.shape[0] > 1:
|
||||
audio = audio.mean(dim=0, keepdim=True)
|
||||
if audio.shape[1] / 16000 > 30:
|
||||
logging.warning('do not support extract speech token for audio longer than 30s')
|
||||
speech_token = []
|
||||
else:
|
||||
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
||||
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
||||
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
||||
return utt, speech_token
|
||||
|
||||
|
||||
def main(args):
|
||||
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
||||
utt2speech_token = {}
|
||||
for future in tqdm(as_completed(all_task)):
|
||||
utt, speech_token = future.result()
|
||||
utt2speech_token[utt] = speech_token
|
||||
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--dir", type=str)
|
||||
parser.add_argument("--onnx_path", type=str)
|
||||
parser.add_argument("--num_thread", type=int, default=8)
|
||||
args = parser.parse_args()
|
||||
|
||||
utt2wav = {}
|
||||
with open('{}/wav.scp'.format(args.dir)) as f:
|
||||
for l in f:
|
||||
@@ -34,28 +67,6 @@ def main(args):
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ["CUDAExecutionProvider"]
|
||||
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
||||
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
||||
|
||||
utt2speech_token = {}
|
||||
for utt in tqdm(utt2wav.keys()):
|
||||
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
||||
if sample_rate != 16000:
|
||||
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
||||
if audio.shape[1] / 16000 > 30:
|
||||
logging.warning('do not support extract speech token for audio longer than 30s')
|
||||
speech_token = []
|
||||
else:
|
||||
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
||||
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
||||
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
||||
utt2speech_token[utt] = speech_token
|
||||
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--dir',
|
||||
type=str)
|
||||
parser.add_argument('--onnx_path',
|
||||
type=str)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
@@ -53,6 +53,7 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
|
||||
json.dump({k: parquet_file for k in list(set(spk_list))}, f, ensure_ascii=False, indent=2)
|
||||
logging.info('spend time {}'.format(time.time() - start_time))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--num_utts_per_parquet',
|
||||
|
||||
116
webui.py
116
webui.py
@@ -13,9 +13,6 @@
|
||||
# limitations under the License.
|
||||
import os
|
||||
import sys
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
|
||||
import argparse
|
||||
import gradio as gr
|
||||
import numpy as np
|
||||
@@ -23,15 +20,20 @@ import torch
|
||||
import torchaudio
|
||||
import random
|
||||
import librosa
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import load_wav, logging
|
||||
from cosyvoice.utils.common import set_all_random_seed
|
||||
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
|
||||
instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成音频按钮',
|
||||
'3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮',
|
||||
'跨语种复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 点击生成音频按钮',
|
||||
'自然语言控制': '1. 选择预训练音色\n2. 输入instruct文本\n3. 点击生成音频按钮'}
|
||||
stream_mode_list = [('否', False), ('是', True)]
|
||||
max_val = 0.8
|
||||
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
from cosyvoice.utils.file_utils import load_wav, speed_change
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
|
||||
def generate_seed():
|
||||
seed = random.randint(1, 100000000)
|
||||
@@ -40,13 +42,7 @@ def generate_seed():
|
||||
"value": seed
|
||||
}
|
||||
|
||||
def set_all_random_seed(seed):
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
max_val = 0.8
|
||||
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
||||
speech, _ = librosa.effects.trim(
|
||||
speech, top_db=top_db,
|
||||
@@ -55,18 +51,16 @@ def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
||||
)
|
||||
if speech.abs().max() > max_val:
|
||||
speech = speech / speech.abs().max() * max_val
|
||||
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
|
||||
speech = torch.concat([speech, torch.zeros(1, int(cosyvoice.sample_rate * 0.2))], dim=1)
|
||||
return speech
|
||||
|
||||
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
|
||||
instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成音频按钮',
|
||||
'3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮',
|
||||
'跨语种复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 点击生成音频按钮',
|
||||
'自然语言控制': '1. 选择预训练音色\n2. 输入instruct文本\n3. 点击生成音频按钮'}
|
||||
|
||||
def change_instruction(mode_checkbox_group):
|
||||
return instruct_dict[mode_checkbox_group]
|
||||
|
||||
def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, speed_factor):
|
||||
|
||||
def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
||||
seed, stream, speed):
|
||||
if prompt_wav_upload is not None:
|
||||
prompt_wav = prompt_wav_upload
|
||||
elif prompt_wav_record is not None:
|
||||
@@ -75,86 +69,87 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
|
||||
prompt_wav = None
|
||||
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
|
||||
if mode_checkbox_group in ['自然语言控制']:
|
||||
if cosyvoice.frontend.instruct is False:
|
||||
if cosyvoice.instruct is False:
|
||||
gr.Warning('您正在使用自然语言控制模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M-Instruct模型'.format(args.model_dir))
|
||||
return (target_sr, default_data)
|
||||
yield (cosyvoice.sample_rate, default_data)
|
||||
if instruct_text == '':
|
||||
gr.Warning('您正在使用自然语言控制模式, 请输入instruct文本')
|
||||
return (target_sr, default_data)
|
||||
yield (cosyvoice.sample_rate, default_data)
|
||||
if prompt_wav is not None or prompt_text != '':
|
||||
gr.Info('您正在使用自然语言控制模式, prompt音频/prompt文本会被忽略')
|
||||
# if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
|
||||
if mode_checkbox_group in ['跨语种复刻']:
|
||||
if cosyvoice.frontend.instruct is True:
|
||||
if cosyvoice.instruct is True:
|
||||
gr.Warning('您正在使用跨语种复刻模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M模型'.format(args.model_dir))
|
||||
return (target_sr, default_data)
|
||||
yield (cosyvoice.sample_rate, default_data)
|
||||
if instruct_text != '':
|
||||
gr.Info('您正在使用跨语种复刻模式, instruct文本会被忽略')
|
||||
if prompt_wav is None:
|
||||
gr.Warning('您正在使用跨语种复刻模式, 请提供prompt音频')
|
||||
return (target_sr, default_data)
|
||||
yield (cosyvoice.sample_rate, default_data)
|
||||
gr.Info('您正在使用跨语种复刻模式, 请确保合成文本和prompt文本为不同语言')
|
||||
# if in zero_shot cross_lingual, please make sure that prompt_text and prompt_wav meets requirements
|
||||
if mode_checkbox_group in ['3s极速复刻', '跨语种复刻']:
|
||||
if prompt_wav is None:
|
||||
gr.Warning('prompt音频为空,您是否忘记输入prompt音频?')
|
||||
return (target_sr, default_data)
|
||||
yield (cosyvoice.sample_rate, default_data)
|
||||
if torchaudio.info(prompt_wav).sample_rate < prompt_sr:
|
||||
gr.Warning('prompt音频采样率{}低于{}'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr))
|
||||
return (target_sr, default_data)
|
||||
yield (cosyvoice.sample_rate, default_data)
|
||||
# sft mode only use sft_dropdown
|
||||
if mode_checkbox_group in ['预训练音色']:
|
||||
if instruct_text != '' or prompt_wav is not None or prompt_text != '':
|
||||
gr.Info('您正在使用预训练音色模式,prompt文本/prompt音频/instruct文本会被忽略!')
|
||||
if sft_dropdown == '':
|
||||
gr.Warning('没有可用的预训练音色!')
|
||||
yield (cosyvoice.sample_rate, default_data)
|
||||
# zero_shot mode only use prompt_wav prompt text
|
||||
if mode_checkbox_group in ['3s极速复刻']:
|
||||
if prompt_text == '':
|
||||
gr.Warning('prompt文本为空,您是否忘记输入prompt文本?')
|
||||
return (target_sr, default_data)
|
||||
yield (cosyvoice.sample_rate, default_data)
|
||||
if instruct_text != '':
|
||||
gr.Info('您正在使用3s极速复刻模式,预训练音色/instruct文本会被忽略!')
|
||||
|
||||
if mode_checkbox_group == '预训练音色':
|
||||
logging.info('get sft inference request')
|
||||
set_all_random_seed(seed)
|
||||
output = cosyvoice.inference_sft(tts_text, sft_dropdown)
|
||||
for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream, speed=speed):
|
||||
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
||||
elif mode_checkbox_group == '3s极速复刻':
|
||||
logging.info('get zero_shot inference request')
|
||||
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
||||
set_all_random_seed(seed)
|
||||
output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
|
||||
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed):
|
||||
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
||||
elif mode_checkbox_group == '跨语种复刻':
|
||||
logging.info('get cross_lingual inference request')
|
||||
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
||||
set_all_random_seed(seed)
|
||||
output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k)
|
||||
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed):
|
||||
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
||||
else:
|
||||
logging.info('get instruct inference request')
|
||||
set_all_random_seed(seed)
|
||||
output = cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text)
|
||||
for i in cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text, stream=stream, speed=speed):
|
||||
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
||||
|
||||
if speed_factor != 1.0:
|
||||
try:
|
||||
audio_data, sample_rate = speed_change(output["tts_speech"], target_sr, str(speed_factor))
|
||||
audio_data = audio_data.numpy().flatten()
|
||||
except Exception as e:
|
||||
print(f"Failed to change speed of audio: \n{e}")
|
||||
else:
|
||||
audio_data = output['tts_speech'].numpy().flatten()
|
||||
|
||||
return (target_sr, audio_data)
|
||||
|
||||
def main():
|
||||
with gr.Blocks() as demo:
|
||||
gr.Markdown("### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) 预训练模型 [CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) [CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) [CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)")
|
||||
gr.Markdown("### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \
|
||||
预训练模型 [CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \
|
||||
[CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) \
|
||||
[CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)")
|
||||
gr.Markdown("#### 请输入需要合成的文本,选择推理模式,并按照提示步骤进行操作")
|
||||
|
||||
tts_text = gr.Textbox(label="输入合成文本", lines=1, value="我是通义实验室语音团队全新推出的生成式语音大模型,提供舒适自然的语音合成能力。")
|
||||
speed_factor = gr.Slider(minimum=0.25, maximum=4, step=0.05, label="语速调节", value=1.0, interactive=True)
|
||||
with gr.Row():
|
||||
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0])
|
||||
instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5)
|
||||
sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=0.25)
|
||||
stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1])
|
||||
speed = gr.Number(value=1, label="速度调节(仅支持非流式推理)", minimum=0.5, maximum=2.0, step=0.1)
|
||||
with gr.Column(scale=0.25):
|
||||
seed_button = gr.Button(value="\U0001F3B2")
|
||||
seed = gr.Number(value=0, label="随机推理种子")
|
||||
@@ -167,16 +162,18 @@ def main():
|
||||
|
||||
generate_button = gr.Button("生成音频")
|
||||
|
||||
audio_output = gr.Audio(label="合成音频")
|
||||
audio_output = gr.Audio(label="合成音频", autoplay=True, streaming=True)
|
||||
|
||||
seed_button.click(generate_seed, inputs=[], outputs=seed)
|
||||
generate_button.click(generate_audio,
|
||||
inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, speed_factor],
|
||||
inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
||||
seed, stream, speed],
|
||||
outputs=[audio_output])
|
||||
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
|
||||
demo.queue(max_size=4, default_concurrency_limit=2)
|
||||
demo.launch(server_name='0.0.0.0', server_port=args.port)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--port',
|
||||
@@ -184,11 +181,20 @@ if __name__ == '__main__':
|
||||
default=8000)
|
||||
parser.add_argument('--model_dir',
|
||||
type=str,
|
||||
default='iic/CosyVoice-300M',
|
||||
default='pretrained_models/CosyVoice2-0.5B',
|
||||
help='local path or modelscope repo id')
|
||||
args = parser.parse_args()
|
||||
cosyvoice = CosyVoice(args.model_dir)
|
||||
sft_spk = cosyvoice.list_avaliable_spks()
|
||||
prompt_sr, target_sr = 16000, 22050
|
||||
default_data = np.zeros(target_sr)
|
||||
try:
|
||||
cosyvoice = CosyVoice(args.model_dir)
|
||||
except Exception:
|
||||
try:
|
||||
cosyvoice = CosyVoice2(args.model_dir)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
|
||||
sft_spk = cosyvoice.list_available_spks()
|
||||
if len(sft_spk) == 0:
|
||||
sft_spk = ['']
|
||||
prompt_sr = 16000
|
||||
default_data = np.zeros(cosyvoice.sample_rate)
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user