update vc/tts code

This commit is contained in:
lyuxiang.lx
2024-09-26 11:53:10 +08:00
parent 49015f63e6
commit 72b89a52fb
5 changed files with 74 additions and 21 deletions

View File

@@ -35,7 +35,7 @@ class CosyVoiceModel:
self.token_max_hop_len = 200
self.token_overlap_len = 20
# mel fade in out
self.mel_overlap_len = 34
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
self.mel_window = np.hamming(2 * self.mel_overlap_len)
# hift cache
self.mel_cache_len = 20
@@ -54,9 +54,10 @@ class CosyVoiceModel:
self.hift_cache_dict = {}
def load(self, llm_model, flow_model, hift_model):
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
self.llm.to(self.device).eval()
self.llm.half()
if self.llm is not None:
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
self.llm.to(self.device).eval()
self.llm.half()
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
self.flow.to(self.device).eval()
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
@@ -131,11 +132,11 @@ class CosyVoiceModel:
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
return tts_speech
def inference(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
# this_uuid is used to track variables related to this inference thread
this_uuid = str(uuid.uuid1())
with self.lock:
@@ -148,7 +149,8 @@ class CosyVoiceModel:
while True:
time.sleep(0.1)
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len], dim=1)
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
.unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
@@ -164,7 +166,7 @@ class CosyVoiceModel:
break
p.join()
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
@@ -175,7 +177,58 @@ class CosyVoiceModel:
else:
# deal with all tokens
p.join()
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=True,
speed=speed)
yield {'tts_speech': this_tts_speech.cpu()}
with self.lock:
self.tts_speech_token_dict.pop(this_uuid)
self.llm_end_dict.pop(this_uuid)
self.mel_overlap_dict.pop(this_uuid)
self.hift_cache_dict.pop(this_uuid)
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
# this_uuid is used to track variables related to this inference thread
this_uuid = str(uuid.uuid1())
with self.lock:
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = None, None
if stream is True:
token_hop_len = self.token_min_hop_len
while True:
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
.unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=False)
yield {'tts_speech': this_tts_speech.cpu()}
with self.lock:
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
# increase token_hop_len for better speech quality
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
break
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid], dim=1).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
finalize=True)
yield {'tts_speech': this_tts_speech.cpu()}
else:
# deal with all tokens
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,

View File

@@ -125,7 +125,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
h, h_lengths = self.encoder(token, token_len)
h = self.encoder_proj(h)
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2)
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
# get conditions
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)

View File

@@ -49,13 +49,14 @@ class InterpolateRegulator(nn.Module):
olens = ylens
return out * mask, olens
def inference(self, x1, x2, mel_len1, mel_len2):
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
# x in (B, T, D)
if x2.shape[1] > 40:
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=34, mode='linear')
x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - 34 * 2, mode='linear')
x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=34, mode='linear')
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2,
mode='linear')
x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
else:
x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')

View File

@@ -1,9 +1,7 @@
import base64
import os
import string
from dataclasses import dataclass, field
from functools import cached_property, lru_cache
from typing import Dict, List, Optional, Tuple
from functools import lru_cache
from typing import Optional
from whisper.tokenizer import Tokenizer
import tiktoken

View File

@@ -145,6 +145,7 @@ def fade_in_out(fade_in_mel, fade_out_mel, window):
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
return fade_in_mel.to(device)
def set_all_random_seed(seed):
random.seed(seed)
np.random.seed(seed)