Merge pull request #404 from FunAudioLLM/dev/lyuxiang.lx

Dev/lyuxiang.lx
This commit is contained in:
Xiang Lyu
2024-09-18 17:43:45 +08:00
committed by GitHub
2 changed files with 70 additions and 55 deletions

View File

@@ -13,14 +13,50 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from concurrent.futures import ThreadPoolExecutor, as_completed
import onnxruntime
import torch
import torchaudio
from tqdm import tqdm
import onnxruntime
import torchaudio.compliance.kaldi as kaldi
from tqdm import tqdm
def single_job(utt):
audio, sample_rate = torchaudio.load(utt2wav[utt])
if sample_rate != 16000:
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
feat = kaldi.fbank(audio,
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat = feat - feat.mean(dim=0, keepdim=True)
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
return utt, embedding
def main(args):
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
utt2embedding, spk2embedding = {}, {}
for future in tqdm(as_completed(all_task)):
utt, embedding = future.result()
utt2embedding[utt] = embedding
spk = utt2spk[utt]
if spk not in spk2embedding:
spk2embedding[spk] = []
spk2embedding[spk].append(embedding)
for k, v in spk2embedding.items():
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dir", type=str)
parser.add_argument("--onnx_path", type=str)
parser.add_argument("--num_thread", type=int, default=8)
args = parser.parse_args()
utt2wav, utt2spk = {}, {}
with open('{}/wav.scp'.format(args.dir)) as f:
for l in f:
@@ -36,35 +72,6 @@ def main(args):
option.intra_op_num_threads = 1
providers = ["CPUExecutionProvider"]
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
executor = ThreadPoolExecutor(max_workers=args.num_thread)
utt2embedding, spk2embedding = {}, {}
for utt in tqdm(utt2wav.keys()):
audio, sample_rate = torchaudio.load(utt2wav[utt])
if sample_rate != 16000:
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
feat = kaldi.fbank(audio,
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat = feat - feat.mean(dim=0, keepdim=True)
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
utt2embedding[utt] = embedding
spk = utt2spk[utt]
if spk not in spk2embedding:
spk2embedding[spk] = []
spk2embedding[spk].append(embedding)
for k, v in spk2embedding.items():
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir))
torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dir',
type=str)
parser.add_argument('--onnx_path',
type=str)
args = parser.parse_args()
main(args)

View File

@@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from concurrent.futures import ThreadPoolExecutor, as_completed
import logging
import torch
from tqdm import tqdm
@@ -22,7 +23,36 @@ import torchaudio
import whisper
def single_job(utt):
audio, sample_rate = torchaudio.load(utt2wav[utt])
if sample_rate != 16000:
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
if audio.shape[1] / 16000 > 30:
logging.warning('do not support extract speech token for audio longer than 30s')
speech_token = []
else:
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
return utt, speech_token
def main(args):
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
utt2speech_token = {}
for future in tqdm(as_completed(all_task)):
utt, speech_token = future.result()
utt2speech_token[utt] = speech_token
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dir", type=str)
parser.add_argument("--onnx_path", type=str)
parser.add_argument("--num_thread", type=int, default=8)
args = parser.parse_args()
utt2wav = {}
with open('{}/wav.scp'.format(args.dir)) as f:
for l in f:
@@ -34,28 +64,6 @@ def main(args):
option.intra_op_num_threads = 1
providers = ["CUDAExecutionProvider"]
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
executor = ThreadPoolExecutor(max_workers=args.num_thread)
utt2speech_token = {}
for utt in tqdm(utt2wav.keys()):
audio, sample_rate = torchaudio.load(utt2wav[utt])
if sample_rate != 16000:
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
if audio.shape[1] / 16000 > 30:
logging.warning('do not support extract speech token for audio longer than 30s')
speech_token = []
else:
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
utt2speech_token[utt] = speech_token
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dir',
type=str)
parser.add_argument('--onnx_path',
type=str)
args = parser.parse_args()
main(args)