Merge branch 'dev/lyuxiang.lx' into main

This commit is contained in:
Xiang Lyu
2025-01-08 11:21:06 +08:00
committed by GitHub
2 changed files with 22 additions and 2 deletions

View File

@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import threading
import torch
import torch.nn.functional as F
from matcha.models.components.flow_matching import BASECFM
@@ -30,6 +31,7 @@ class ConditionalCFM(BASECFM):
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
# Just change the architecture of the estimator here
self.estimator = estimator
self.lock = threading.Lock()
@torch.inference_mode()
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
@@ -120,7 +122,25 @@ class ConditionalCFM(BASECFM):
return sol[-1].float()
def forward_estimator(self, x, mask, mu, t, spks, cond):
return self.estimator.forward(x, mask, mu, t, spks, cond)
if isinstance(self.estimator, torch.nn.Module):
return self.estimator.forward(x, mask, mu, t, spks, cond)
else:
with self.lock:
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
self.estimator.set_input_shape('t', (2,))
self.estimator.set_input_shape('spks', (2, 80))
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
# run trt engine
self.estimator.execute_v2([x.contiguous().data_ptr(),
mask.contiguous().data_ptr(),
mu.contiguous().data_ptr(),
t.contiguous().data_ptr(),
spks.contiguous().data_ptr(),
cond.contiguous().data_ptr(),
x.data_ptr()])
return x
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
"""Computes diffusion loss

View File

@@ -4,7 +4,7 @@ conformer==0.3.2
deepspeed==0.14.2; sys_platform == 'linux'
diffusers==0.27.2
gdown==5.1.0
gradio==4.32.2
gradio==5.4.0
grpcio==1.57.0
grpcio-tools==1.57.0
huggingface-hub==0.25.2