Merge pull request #715 from FunAudioLLM/dev/lyuxiang.lx

Dev/lyuxiang.lx
This commit is contained in:
Xiang Lyu
2024-12-16 09:55:27 +08:00
committed by GitHub
15 changed files with 1050 additions and 97 deletions

3
.gitignore vendored
View File

@@ -48,4 +48,5 @@ compile_commands.json
*.pt
pretrained_models/*
*_pb2_grpc.py
*_pb2.py
*_pb2.py
*.tar

View File

@@ -85,6 +85,7 @@ If you are expert in this field, and you are only interested in training your ow
``` python
# SDK模型下载
from modelscope import snapshot_download
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
snapshot_download('iic/CosyVoice-300M-25Hz', local_dir='pretrained_models/CosyVoice-300M-25Hz')
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
@@ -95,6 +96,7 @@ snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice
``` sh
# git模型下载请确保已安装git lfs
mkdir -p pretrained_models
git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
git clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hz
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
@@ -109,11 +111,13 @@ Notice that this step is not necessary. If you do not install `ttsfrd` package,
``` sh
cd pretrained_models/CosyVoice-ttsfrd/
unzip resource.zip -d .
pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl
pip install ttsfrd_dependency-0.1-py3-none-any.whl
pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
```
**Basic Usage**
We strongly recommend using `CosyVoice2-0.5B` for better performance.
For zero_shot/cross_lingual inference, please use `CosyVoice-300M` model.
For sft inference, please use `CosyVoice-300M-SFT` model.
For instruct inference, please use `CosyVoice-300M-Instruct` model.
@@ -124,36 +128,45 @@ export PYTHONPATH=third_party/Matcha-TTS
```
``` python
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
from cosyvoice.utils.file_utils import load_wav
import torchaudio
# cosyvoice2
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=True, load_onnx=False, load_trt=False)
# zero_shot usage
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# cosyvoice
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=True, load_onnx=False, fp16=True)
# sft usage
print(cosyvoice.list_avaliable_spks())
# change stream=True for chunk stream inference
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], 22050)
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-25Hz') # or change to pretrained_models/CosyVoice-300M for 50Hz inference
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], 22050)
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# cross_lingual usage
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], 22050)
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
# vc usage
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
source_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_vc(source_speech_16k, prompt_speech_16k, stream=False)):
torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], 22050)
torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], 22050)
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
```
**Start web demo**
@@ -207,4 +220,4 @@ You can also scan the QR code to join our official Dingding chat group.
5. We borrowed a lot of code from [WeNet](https://github.com/wenet-e2e/wenet).
## Disclaimer
The content provided above is for academic purposes only and is intended to demonstrate technical capabilities. Some examples are sourced from the internet. If any content infringes on your rights, please contact us to request its removal.
The content provided above is for academic purposes only and is intended to demonstrate technical capabilities. Some examples are sourced from the internet. If any content infringes on your rights, please contact us to request its removal.

View File

@@ -18,7 +18,7 @@ from hyperpyyaml import load_hyperpyyaml
from modelscope import snapshot_download
import torch
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
from cosyvoice.cli.model import CosyVoiceModel
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
from cosyvoice.utils.file_utils import logging
@@ -38,6 +38,7 @@ class CosyVoice:
'{}/spk2info.pt'.format(model_dir),
instruct,
configs['allowed_special'])
self.sample_rate = configs['sample_rate']
if torch.cuda.is_available() is False and (fp16 is True or load_jit is True):
load_jit = False
fp16 = False
@@ -64,7 +65,7 @@ class CosyVoice:
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / 22050
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
@@ -74,11 +75,11 @@ class CosyVoice:
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
if len(i) < 0.5 * len(prompt_text):
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / 22050
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
@@ -87,11 +88,11 @@ class CosyVoice:
if self.frontend.instruct is True:
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / 22050
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
@@ -105,16 +106,52 @@ class CosyVoice:
start_time = time.time()
logging.info('synthesis text {}'.format(i))
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / 22050
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k)
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
start_time = time.time()
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
speech_len = model_output['tts_speech'].shape[1] / 22050
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
yield model_output
start_time = time.time()
class CosyVoice2(CosyVoice):
def __init__(self, model_dir, load_jit=False, load_onnx=False, load_trt=False):
instruct = True if '-Instruct' in model_dir else False
self.model_dir = model_dir
if not os.path.exists(model_dir):
model_dir = snapshot_download(model_dir)
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'Qwen2-0.5B-CosyVoice-BlankEN')})
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
configs['feat_extractor'],
'{}/campplus.onnx'.format(model_dir),
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
'{}/spk2info.pt'.format(model_dir),
instruct,
configs['allowed_special'])
self.sample_rate = configs['sample_rate']
if torch.cuda.is_available() is False and load_jit is True:
load_jit = False
logging.warning('cpu do not support jit, force set to False')
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'])
self.model.load('{}/llm.pt'.format(model_dir),
'{}/flow.pt'.format(model_dir),
'{}/hift.pt'.format(model_dir))
if load_jit:
self.model.load_jit('{}/flow.encoder.fp32.zip'.format(model_dir))
if load_trt is True and load_onnx is True:
load_onnx = False
logging.warning('can not set both load_trt and load_onnx to True, force set load_onnx to False')
if load_onnx:
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
if load_trt:
self.model.load_trt('{}/flow.decoder.estimator.fp16.Volta.plan'.format(model_dir))
del configs

View File

@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import json
import onnxruntime
import torch
import numpy as np
@@ -66,9 +67,7 @@ class CosyVoiceFrontEnd:
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
'failed to initialize ttsfrd resource'
self.frd.set_lang_type('pinyin')
self.frd.enable_pinyin_mix(True)
self.frd.set_breakmodel_index(1)
self.frd.set_lang_type('pinyinvg')
else:
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False)
self.en_tn_model = EnNormalizer()
@@ -112,26 +111,28 @@ class CosyVoiceFrontEnd:
text = text.strip()
if contains_chinese(text):
if self.use_ttsfrd:
text = self.frd.get_frd_extra_info(text, 'input')
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
text = ''.join(texts)
else:
text = self.zh_tn_model.normalize(text)
text = text.replace("\n", "")
text = replace_blank(text)
text = replace_corner_mark(text)
text = text.replace(".", "")
text = text.replace(" - ", "")
text = remove_bracket(text)
text = re.sub(r'[,、]+$', '', text)
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
token_min_n=60, merge_len=20, comma_split=False))
text = text.replace("\n", "")
text = replace_blank(text)
text = replace_corner_mark(text)
text = text.replace(".", "")
text = text.replace(" - ", "")
text = remove_bracket(text)
text = re.sub(r'[,、]+$', '', text)
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
token_min_n=60, merge_len=20, comma_split=False))
else:
if self.use_ttsfrd:
text = self.frd.get_frd_extra_info(text, 'input')
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
text = ''.join(texts)
else:
text = self.en_tn_model.normalize(text)
text = spell_out_number(text, self.inflect_parser)
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
token_min_n=60, merge_len=20, comma_split=False))
text = spell_out_number(text, self.inflect_parser)
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
token_min_n=60, merge_len=20, comma_split=False))
if split is False:
return text
return texts
@@ -142,11 +143,11 @@ class CosyVoiceFrontEnd:
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
return model_input
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate):
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
embedding = self._extract_spk_embedding(prompt_speech_16k)
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
@@ -157,8 +158,8 @@ class CosyVoiceFrontEnd:
'llm_embedding': embedding, 'flow_embedding': embedding}
return model_input
def frontend_cross_lingual(self, tts_text, prompt_speech_16k):
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k)
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate):
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate)
# in cross lingual mode, we remove prompt in llm
del model_input['prompt_text']
del model_input['prompt_text_len']
@@ -175,10 +176,10 @@ class CosyVoiceFrontEnd:
model_input['prompt_text_len'] = instruct_text_token_len
return model_input
def frontend_vc(self, source_speech_16k, prompt_speech_16k):
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
embedding = self._extract_spk_embedding(prompt_speech_16k)
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,

View File

@@ -57,15 +57,15 @@ class CosyVoiceModel:
self.hift_cache_dict = {}
def load(self, llm_model, flow_model, hift_model):
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=False)
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
self.llm.to(self.device).eval()
if self.fp16 is True:
self.llm.half()
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=False)
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
self.flow.to(self.device).eval()
# in case hift_model is a hifigan model
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
self.hift.load_state_dict(hift_state_dict, strict=False)
self.hift.load_state_dict(hift_state_dict, strict=True)
self.hift.to(self.device).eval()
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
@@ -255,3 +255,168 @@ class CosyVoiceModel:
self.llm_end_dict.pop(this_uuid)
self.mel_overlap_dict.pop(this_uuid)
self.hift_cache_dict.pop(this_uuid)
class CosyVoice2Model:
def __init__(self,
llm: torch.nn.Module,
flow: torch.nn.Module,
hift: torch.nn.Module):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.llm = llm
self.flow = flow
self.hift = hift
self.token_hop_len = 2 * self.flow.input_frame_rate
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
# hift cache
self.mel_cache_len = 8
self.source_cache_len = int(self.mel_cache_len * 480)
# speech fade in out
self.speech_window = np.hamming(2 * self.source_cache_len)
# rtf and decoding related
self.stream_scale_factor = 1
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.lock = threading.Lock()
# dict used to store session related variable
self.tts_speech_token_dict = {}
self.llm_end_dict = {}
self.hift_cache_dict = {}
def load(self, llm_model, flow_model, hift_model):
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
self.llm.to(self.device).eval()
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
self.flow.to(self.device).eval()
self.flow.decoder.fp16 = False
# in case hift_model is a hifigan model
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
self.hift.load_state_dict(hift_state_dict, strict=True)
self.hift.to(self.device).eval()
def load_jit(self, flow_encoder_model):
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
self.flow.encoder = flow_encoder
def load_onnx(self, flow_decoder_estimator_model):
import onnxruntime
option = onnxruntime.SessionOptions()
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
option.intra_op_num_threads = 1
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
del self.flow.decoder.estimator
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
def load_trt(self, flow_decoder_estimator_model):
del self.flow.decoder.estimator
import tensorrt as trt
with open(flow_decoder_estimator_model, 'rb') as f:
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
self.flow.decoder.fp16 = True
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
with self.llm_context:
for i in self.llm.inference(text=text.to(self.device),
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
prompt_text=prompt_text.to(self.device),
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
prompt_speech_token=llm_prompt_speech_token.to(self.device),
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
embedding=llm_embedding.to(self.device)):
self.tts_speech_token_dict[uuid].append(i)
self.llm_end_dict[uuid] = True
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
tts_mel, _ = self.flow.inference(token=token.to(self.device),
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
prompt_token=prompt_token.to(self.device),
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
prompt_feat=prompt_feat.to(self.device),
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
embedding=embedding.to(self.device),
finalize=finalize)
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
# append hift cache
if self.hift_cache_dict[uuid] is not None:
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
else:
hift_cache_source = torch.zeros(1, 1, 0)
# keep overlap mel and hift cache
if finalize is False:
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
if self.hift_cache_dict[uuid] is not None:
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
'source': tts_source[:, :, -self.source_cache_len:],
'speech': tts_speech[:, -self.source_cache_len:]}
tts_speech = tts_speech[:, :-self.source_cache_len]
else:
if speed != 1.0:
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
if self.hift_cache_dict[uuid] is not None:
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
return tts_speech
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
# this_uuid is used to track variables related to this inference thread
this_uuid = str(uuid.uuid1())
with self.lock:
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
self.hift_cache_dict[this_uuid] = None
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
p.start()
if stream is True:
token_offset = 0
while True:
time.sleep(0.1)
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]) \
.unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
token_offset=token_offset,
finalize=False)
token_offset += self.token_hop_len
yield {'tts_speech': this_tts_speech.cpu()}
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
break
p.join()
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
token_offset=token_offset,
finalize=True)
yield {'tts_speech': this_tts_speech.cpu()}
else:
# deal with all tokens
p.join()
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
this_tts_speech = self.token2wav(token=this_tts_speech_token,
prompt_token=flow_prompt_speech_token,
prompt_feat=prompt_speech_feat,
embedding=flow_embedding,
uuid=this_uuid,
token_offset=0,
finalize=True,
speed=speed)
yield {'tts_speech': this_tts_speech.cpu()}
with self.lock:
self.tts_speech_token_dict.pop(this_uuid)
self.llm_end_dict.pop(this_uuid)

View File

@@ -13,16 +13,83 @@
# limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import pack, rearrange, repeat
from cosyvoice.utils.common import mask_to_bias
from cosyvoice.utils.mask import add_optional_chunk_mask
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
from matcha.models.components.transformer import BasicTransformerBlock
class Transpose(torch.nn.Module):
def __init__(self, dim0: int, dim1: int):
super().__init__()
self.dim0 = dim0
self.dim1 = dim1
def forward(self, x: torch.Tensor):
x = torch.transpose(x, self.dim0, self.dim1)
return x
class CausalBlock1D(Block1D):
def __init__(self, dim: int, dim_out: int):
super(CausalBlock1D, self).__init__(dim, dim_out)
self.block = torch.nn.Sequential(
CausalConv1d(dim, dim_out, 3),
Transpose(1, 2),
nn.LayerNorm(dim_out),
Transpose(1, 2),
nn.Mish(),
)
def forward(self, x: torch.Tensor, mask: torch.Tensor):
output = self.block(x * mask)
return output * mask
class CausalResnetBlock1D(ResnetBlock1D):
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
self.block1 = CausalBlock1D(dim, dim_out)
self.block2 = CausalBlock1D(dim_out, dim_out)
class CausalConv1d(torch.nn.Conv1d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros',
device=None,
dtype=None
) -> None:
super(CausalConv1d, self).__init__(in_channels, out_channels,
kernel_size, stride,
padding=0, dilation=dilation,
groups=groups, bias=bias,
padding_mode=padding_mode,
device=device, dtype=dtype)
assert stride == 1
self.causal_padding = (kernel_size - 1, 0)
def forward(self, x: torch.Tensor):
x = F.pad(x, self.causal_padding)
x = super(CausalConv1d, self).forward(x)
return x
class ConditionalDecoder(nn.Module):
def __init__(
self,
in_channels,
out_channels,
causal=False,
channels=(256, 256),
dropout=0.05,
attention_head_dim=64,
@@ -39,7 +106,7 @@ class ConditionalDecoder(nn.Module):
channels = tuple(channels)
self.in_channels = in_channels
self.out_channels = out_channels
self.causal = causal
self.time_embeddings = SinusoidalPosEmb(in_channels)
time_embed_dim = channels[0] * 4
self.time_mlp = TimestepEmbedding(
@@ -56,7 +123,8 @@ class ConditionalDecoder(nn.Module):
input_channel = output_channel
output_channel = channels[i]
is_last = i == len(channels) - 1
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal \
else ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
@@ -70,14 +138,16 @@ class ConditionalDecoder(nn.Module):
]
)
downsample = (
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
Downsample1D(output_channel) if not is_last else \
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
)
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
for _ in range(num_mid_blocks):
input_channel = channels[-1]
out_channels = channels[-1]
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
@@ -99,7 +169,11 @@ class ConditionalDecoder(nn.Module):
input_channel = channels[i] * 2
output_channel = channels[i + 1]
is_last = i == len(channels) - 2
resnet = ResnetBlock1D(
resnet = CausalResnetBlock1D(
dim=input_channel,
dim_out=output_channel,
time_emb_dim=time_embed_dim,
) if self.causal else ResnetBlock1D(
dim=input_channel,
dim_out=output_channel,
time_emb_dim=time_embed_dim,
@@ -119,10 +193,10 @@ class ConditionalDecoder(nn.Module):
upsample = (
Upsample1D(output_channel, use_conv_transpose=True)
if not is_last
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
)
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
self.final_block = Block1D(channels[-1], channels[-1])
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
self.initialize_weights()
@@ -175,7 +249,9 @@ class ConditionalDecoder(nn.Module):
mask_down = masks[-1]
x = resnet(x, mask_down, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
# attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
attn_mask = mask_to_bias(attn_mask==1, x.dtype)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
@@ -192,7 +268,9 @@ class ConditionalDecoder(nn.Module):
for resnet, transformer_blocks in self.mid_blocks:
x = resnet(x, mask_mid, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
# attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
attn_mask = mask_to_bias(attn_mask==1, x.dtype)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
@@ -207,7 +285,9 @@ class ConditionalDecoder(nn.Module):
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
x = resnet(x, mask_up, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
# attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
attn_mask = mask_to_bias(attn_mask==1, x.dtype)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
@@ -218,4 +298,4 @@ class ConditionalDecoder(nn.Module):
x = upsample(x * mask_up)
x = self.final_block(x, mask_up)
output = self.final_proj(x * mask_up)
return output * mask
return output * mask

View File

@@ -146,3 +146,86 @@ class MaskedDiffWithXvec(torch.nn.Module):
feat = feat[:, :, mel_len1:]
assert feat.shape[2] == mel_len2
return feat, flow_cache
class CausalMaskedDiffWithXvec(torch.nn.Module):
def __init__(self,
input_size: int = 512,
output_size: int = 80,
spk_embed_dim: int = 192,
output_type: str = "mel",
vocab_size: int = 4096,
input_frame_rate: int = 50,
only_mask_loss: bool = True,
token_mel_ratio: int = 2,
pre_lookahead_len: int = 3,
encoder: torch.nn.Module = None,
decoder: torch.nn.Module = None,
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.decoder_conf = decoder_conf
self.mel_feat_conf = mel_feat_conf
self.vocab_size = vocab_size
self.output_type = output_type
self.input_frame_rate = input_frame_rate
logging.info(f"input frame rate={self.input_frame_rate}")
self.input_embedding = nn.Embedding(vocab_size, input_size)
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
self.encoder = encoder
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
self.decoder = decoder
self.only_mask_loss = only_mask_loss
self.token_mel_ratio = token_mel_ratio
self.pre_lookahead_len = pre_lookahead_len
@torch.inference_mode()
def inference(self,
token,
token_len,
prompt_token,
prompt_token_len,
prompt_feat,
prompt_feat_len,
embedding,
finalize):
assert token.shape[0] == 1
# xvec projection
embedding = F.normalize(embedding, dim=1)
embedding = self.spk_embed_affine_layer(embedding)
# concat text and prompt_text
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
token = self.input_embedding(torch.clamp(token, min=0)) * mask
# text encode
h, h_lengths = self.encoder(token, token_len)
if finalize is False:
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
h = self.encoder_proj(h)
# get conditions
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
conds[:, :mel_len1] = prompt_feat
conds = conds.transpose(1, 2)
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
feat, _ = self.decoder(
mu=h.transpose(1, 2).contiguous(),
mask=mask.unsqueeze(1),
spks=embedding,
cond=conds,
n_timesteps=10
)
feat = feat[:, :, mel_len1:]
assert feat.shape[2] == mel_len2
return feat, None

View File

@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import onnxruntime
import torch
import torch.nn.functional as F
from matcha.models.components.flow_matching import BASECFM
@@ -88,30 +89,48 @@ class ConditionalCFM(BASECFM):
# Or in future might add like a return_all_steps flag
sol = []
if self.inference_cfg_rate > 0:
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
else:
x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond
for step in range(1, len(t_span)):
dphi_dt = self.forward_estimator(x, mask, mu, t, spks, cond)
# Classifier-Free Guidance inference introduced in VoiceBox
if self.inference_cfg_rate > 0:
cfg_dphi_dt = self.forward_estimator(
x, mask,
torch.zeros_like(mu), t,
torch.zeros_like(spks) if spks is not None else None,
torch.zeros_like(cond)
)
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
self.inference_cfg_rate * cfg_dphi_dt)
x_in[:] = x
mask_in[:] = mask
mu_in[0] = mu
t_in[:] = t.unsqueeze(0)
spks_in[0] = spks
cond_in[0] = cond
else:
x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond
dphi_dt = self.forward_estimator(
x_in, mask_in,
mu_in, t_in,
spks_in,
cond_in
)
if self.inference_cfg_rate > 0:
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
return sol[-1]
return sol[-1].float()
def forward_estimator(self, x, mask, mu, t, spks, cond):
if isinstance(self.estimator, torch.nn.Module):
return self.estimator.forward(x, mask, mu, t, spks, cond)
else:
elif isinstance(self.estimator, onnxruntime.InferenceSession):
ort_inputs = {
'x': x.cpu().numpy(),
'mask': mask.cpu().numpy(),
@@ -122,6 +141,22 @@ class ConditionalCFM(BASECFM):
}
output = self.estimator.run(None, ort_inputs)[0]
return torch.tensor(output, dtype=x.dtype, device=x.device)
else:
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
self.estimator.set_input_shape('t', (2,))
self.estimator.set_input_shape('spks', (2, 80))
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
# run trt engine
self.estimator.execute_v2([x.contiguous().data_ptr(),
mask.contiguous().data_ptr(),
mu.contiguous().data_ptr(),
t.contiguous().data_ptr(),
spks.contiguous().data_ptr(),
cond.contiguous().data_ptr(),
x.data_ptr()])
return x
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
"""Computes diffusion loss
@@ -163,3 +198,38 @@ class ConditionalCFM(BASECFM):
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
return loss, y
class CausalConditionalCFM(ConditionalCFM):
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
self.rand_noise = torch.randn([1, 80, 50 * 300])
@torch.inference_mode()
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
"""Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
"""
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device) * temperature
if self.fp16 is True:
z = z.half()
# fix prompt and overlap part mu and z
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
if self.t_scheduler == 'cosine':
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None

View File

@@ -15,6 +15,7 @@ from typing import Dict, Optional, Callable, List, Generator
import torch
from torch import nn
import torch.nn.functional as F
from transformers import Qwen2ForCausalLM
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
from cosyvoice.utils.common import IGNORE_ID
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
@@ -213,3 +214,127 @@ class TransformerLM(torch.nn.Module):
out_tokens.append(top_ids)
offset += lm_input.size(1)
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
class Qwen2Encoder(torch.nn.Module):
def __init__(self, pretrain_path):
super().__init__()
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
def forward_one_step(self, xs, masks, cache=None):
input_masks = masks[:, -1, :]
outs = self.model(
inputs_embeds=xs,
attention_mask=input_masks,
output_hidden_states=True,
return_dict=True,
use_cache=True,
past_key_values=cache,
)
xs = outs.hidden_states[-1]
new_cache = outs.past_key_values
return xs, new_cache
class Qwen2LM(torch.nn.Module):
def __init__(
self,
llm_input_size: int,
llm_output_size: int,
speech_token_size: int,
llm: torch.nn.Module,
sampling: Callable,
length_normalized_loss: bool = True,
lsm_weight: float = 0.0,
):
super().__init__()
self.llm_input_size = llm_input_size
self.llm_output_size = llm_output_size
self.speech_token_size = speech_token_size
# 2. build speech token language model related modules
self.sos_eos = 0
self.task_id = 1
self.fill_token = 2
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
self.llm = llm
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
self.criterion_ce = LabelSmoothingLoss(
size=speech_token_size + 3,
padding_idx=IGNORE_ID,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
# 3. [Optional] build speech token related modules
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
# 4. sampling method
self.sampling = sampling
def sampling_ids(
self,
weighted_scores: torch.Tensor,
decoded_tokens: List,
sampling: int,
ignore_eos: bool = True,
):
while True:
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
if (not ignore_eos) or (self.speech_token_size not in top_ids):
break
return top_ids
@torch.inference_mode()
def inference(
self,
text: torch.Tensor,
text_len: torch.Tensor,
prompt_text: torch.Tensor,
prompt_text_len: torch.Tensor,
prompt_speech_token: torch.Tensor,
prompt_speech_token_len: torch.Tensor,
embedding: torch.Tensor,
sampling: int = 25,
max_token_text_ratio: float = 20,
min_token_text_ratio: float = 2,
) -> Generator[torch.Tensor, None, None]:
device = text.device
text = torch.concat([prompt_text, text], dim=1)
text_len += prompt_text_len
text = self.llm.model.model.embed_tokens(text)
# 2. encode embedding
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
# 3. concat llm_input
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
if prompt_speech_token_len != 0:
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
else:
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
# 4. cal min/max_length
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
# 5. step by step decode
out_tokens = []
cache = None
for i in range(max_len):
y_pred, cache = self.llm.forward_one_step(lm_input,
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
cache=cache)
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
if top_ids == self.speech_token_size:
break
if top_ids > self.speech_token_size:
continue
# in stream mode, yield token one by one
yield top_ids
out_tokens.append(top_ids)
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)

View File

@@ -2,6 +2,8 @@ import base64
import os
from functools import lru_cache
from typing import Optional
import torch
from transformers import AutoTokenizer
from whisper.tokenizer import Tokenizer
import tiktoken
@@ -234,3 +236,42 @@ def get_tokenizer(
return Tokenizer(
encoding=encoding, num_languages=num_languages, language=language, task=task
)
class QwenTokenizer():
def __init__(self, token_path, skip_special_tokens=True):
super().__init__()
# NOTE: non-chat model, all these special tokens keep randomly initialized.
special_tokens = {
'eos_token': '<|endoftext|>',
'pad_token': '<|endoftext|>',
'additional_special_tokens': [
'<|im_start|>', '<|im_end|>', '<|endofprompt|>',
'[breath]', '<strong>', '</strong>', '[noise]',
'[laughter]', '[cough]', '[clucking]', '[accent]',
'[quick_breath]',
"<laughter>", "</laughter>",
"[hissing]", "[sigh]", "[vocalized-noise]",
"[lipsmack]", "[mn]"
]
}
self.tokenizer = AutoTokenizer.from_pretrained(token_path)
self.tokenizer.add_special_tokens(special_tokens)
self.skip_special_tokens = skip_special_tokens
def encode(self, text, **kwargs):
tokens = self.tokenizer([text], return_tensors="pt")
tokens = tokens["input_ids"][0].cpu().tolist()
return tokens
def decode(self, tokens):
tokens = torch.tensor(tokens, dtype=torch.int64)
text = self.tokenizer.batch_decode([tokens], skip_special_tokens=self.skip_special_tokens)[0]
return text
@lru_cache(maxsize=None)
def get_qwen_tokenizer(
token_path: str,
skip_special_tokens: bool
) -> QwenTokenizer:
return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)

View File

@@ -49,8 +49,8 @@ class TransformerEncoderLayer(nn.Module):
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.norm1 = nn.LayerNorm(size, eps=1e-5)
self.norm2 = nn.LayerNorm(size, eps=1e-5)
self.norm1 = nn.LayerNorm(size, eps=1e-12)
self.norm2 = nn.LayerNorm(size, eps=1e-12)
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
@@ -142,17 +142,17 @@ class ConformerEncoderLayer(nn.Module):
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module
self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module
self.norm_conv = nn.LayerNorm(size, eps=1e-12) # for the CNN module
self.norm_final = nn.LayerNorm(
size, eps=1e-5) # for the final output of the block
size, eps=1e-12) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before

View File

@@ -0,0 +1,321 @@
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
# 2024 Alibaba Inc (Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Encoder definition."""
from typing import Tuple
import torch
from torch import nn
from torch.nn import functional as F
from cosyvoice.transformer.convolution import ConvolutionModule
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
from cosyvoice.utils.class_utils import (
COSYVOICE_EMB_CLASSES,
COSYVOICE_SUBSAMPLE_CLASSES,
COSYVOICE_ATTENTION_CLASSES,
COSYVOICE_ACTIVATION_CLASSES,
)
from cosyvoice.utils.mask import make_pad_mask
from cosyvoice.utils.mask import add_optional_chunk_mask
class Upsample1D(nn.Module):
"""A 1D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
use_conv_transpose (`bool`, default `False`):
option to use a convolution transpose.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
"""
def __init__(self, channels: int, out_channels: int, stride: int = 2):
super().__init__()
self.channels = channels
self.out_channels = out_channels
self.stride = stride
# In this mode, first repeat interpolate, than conv with stride=1
self.conv = nn.Conv1d(
self.channels, self.out_channels, stride * 2 + 1, stride = 1,
padding=0,
)
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor):
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
outputs = self.conv(outputs)
return outputs, input_lengths * self.stride
class PreLookaheadLayer(nn.Module):
def __init__(self, channels: int, pre_lookahead_len: int = 1):
super().__init__()
self.channels = channels
self.pre_lookahead_len = pre_lookahead_len
self.conv1 = nn.Conv1d(
channels, channels,
kernel_size=pre_lookahead_len + 1,
stride=1, padding=0,
)
self.conv2 = nn.Conv1d(
channels, channels,
kernel_size=3, stride=1, padding=0,
)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
"""
inputs: (batch_size, seq_len, channels)
"""
outputs = inputs.transpose(1, 2).contiguous()
# look ahead
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
outputs = F.leaky_relu(self.conv1(outputs))
# outputs
outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0)
outputs = self.conv2(outputs)
outputs = outputs.transpose(1, 2).contiguous()
# residual connection
outputs = outputs + inputs
return outputs
class UpsampleConformerEncoder(torch.nn.Module):
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "rel_pos",
normalize_before: bool = True,
static_chunk_size: int = 0,
use_dynamic_chunk: bool = False,
global_cmvn: torch.nn.Module = None,
use_dynamic_left_chunk: bool = False,
positionwise_conv_kernel_size: int = 1,
macaron_style: bool = True,
selfattention_layer_type: str = "rel_selfattn",
activation_type: str = "swish",
use_cnn_module: bool = True,
cnn_module_kernel: int = 15,
causal: bool = False,
cnn_module_norm: str = "batch_norm",
key_bias: bool = True,
gradient_checkpointing: bool = False,
):
"""
Args:
input_size (int): input dim
output_size (int): dimension of attention
attention_heads (int): the number of heads of multi head attention
linear_units (int): the hidden units number of position-wise feed
forward
num_blocks (int): the number of decoder blocks
dropout_rate (float): dropout rate
attention_dropout_rate (float): dropout rate in attention
positional_dropout_rate (float): dropout rate after adding
positional encoding
input_layer (str): input layer type.
optional [linear, conv2d, conv2d6, conv2d8]
pos_enc_layer_type (str): Encoder positional encoding layer type.
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
normalize_before (bool):
True: use layer_norm before each sub-block of a layer.
False: use layer_norm after each sub-block of a layer.
static_chunk_size (int): chunk size for static chunk training and
decoding
use_dynamic_chunk (bool): whether use dynamic chunk size for
training or not, You can only use fixed chunk(chunk_size > 0)
or dyanmic chunk size(use_dynamic_chunk = True)
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
dynamic chunk training
key_bias: whether use bias in attention.linear_k, False for whisper models.
gradient_checkpointing: rerunning a forward-pass segment for each
checkpointed segment during backward.
"""
super().__init__()
self._output_size = output_size
self.global_cmvn = global_cmvn
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
input_size,
output_size,
dropout_rate,
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
positional_dropout_rate),
)
self.normalize_before = normalize_before
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
self.static_chunk_size = static_chunk_size
self.use_dynamic_chunk = use_dynamic_chunk
self.use_dynamic_left_chunk = use_dynamic_left_chunk
self.gradient_checkpointing = gradient_checkpointing
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
# self-attention module definition
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
key_bias,
)
# feed-forward module definition
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
activation,
)
# convolution module definition
convolution_layer_args = (output_size, cnn_module_kernel, activation,
cnn_module_norm, causal)
self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
self.encoders = torch.nn.ModuleList([
ConformerEncoderLayer(
output_size,
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
*encoder_selfattn_layer_args),
PositionwiseFeedForward(*positionwise_layer_args),
PositionwiseFeedForward(
*positionwise_layer_args) if macaron_style else None,
ConvolutionModule(
*convolution_layer_args) if use_cnn_module else None,
dropout_rate,
normalize_before,
) for _ in range(num_blocks)
])
self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2)
self.up_embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
input_size,
output_size,
dropout_rate,
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
positional_dropout_rate),
)
self.up_encoders = torch.nn.ModuleList([
ConformerEncoderLayer(
output_size,
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
*encoder_selfattn_layer_args),
PositionwiseFeedForward(*positionwise_layer_args),
PositionwiseFeedForward(
*positionwise_layer_args) if macaron_style else None,
ConvolutionModule(
*convolution_layer_args) if use_cnn_module else None,
dropout_rate,
normalize_before,
) for _ in range(4)
])
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs: torch.Tensor,
xs_lens: torch.Tensor,
decoding_chunk_size: int = 0,
num_decoding_left_chunks: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Embed positions in tensor.
Args:
xs: padded input tensor (B, T, D)
xs_lens: input length (B)
decoding_chunk_size: decoding chunk size for dynamic chunk
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
num_decoding_left_chunks: number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
Returns:
encoder output tensor xs, and subsampled masks
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
masks: torch.Tensor batch padding mask after subsample
(B, 1, T' ~= T/subsample_rate)
NOTE(xcsong):
We pass the `__call__` method of the modules instead of `forward` to the
checkpointing API because `__call__` attaches all the hooks of the module.
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
"""
T = xs.size(1)
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
if self.global_cmvn is not None:
xs = self.global_cmvn(xs)
xs, pos_emb, masks = self.embed(xs, masks)
mask_pad = masks # (B, 1, T/subsample_rate)
chunk_masks = add_optional_chunk_mask(xs, masks,
self.use_dynamic_chunk,
self.use_dynamic_left_chunk,
decoding_chunk_size,
self.static_chunk_size,
num_decoding_left_chunks)
# lookahead + conformer encoder
xs = self.pre_lookahead_layer(xs)
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
# upsample + conformer encoder
xs = xs.transpose(1, 2).contiguous()
xs, xs_lens = self.up_layer(xs, xs_lens)
xs = xs.transpose(1, 2).contiguous()
T = xs.size(1)
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
xs, pos_emb, masks = self.up_embed(xs, masks)
mask_pad = masks # (B, 1, T/subsample_rate)
chunk_masks = add_optional_chunk_mask(xs, masks,
self.use_dynamic_chunk,
self.use_dynamic_left_chunk,
decoding_chunk_size,
self.static_chunk_size * self.up_layer.stride,
num_decoding_left_chunks)
xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
if self.normalize_before:
xs = self.after_norm(xs)
# Here we assume the mask is not changed in encoder layers, so just
# return the masks before encoder layers, and the masks will be used
# for cross attention with decoder later
return xs, masks
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor) -> torch.Tensor:
for layer in self.encoders:
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
return xs
def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor) -> torch.Tensor:
for layer in self.up_encoders:
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
return xs

View File

@@ -153,3 +153,14 @@ def set_all_random_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
assert mask.dtype == torch.bool
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
mask = mask.to(dtype)
# attention mask bias
# NOTE(Mddct): torch.finfo jit issues
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
mask = (1.0 - mask) * torch.finfo(dtype).min
return mask

View File

@@ -1,4 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118
--extra-index-url https://download.pytorch.org/whl/cu121
--extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/ # https://github.com/microsoft/onnxruntime/issues/21684
conformer==0.3.2
deepspeed==0.14.2; sys_platform == 'linux'
diffusers==0.27.2
@@ -17,16 +18,20 @@ modelscope==1.15.0
networkx==3.1
omegaconf==2.3.0
onnx==1.16.0
onnxruntime-gpu==1.16.0; sys_platform == 'linux'
onnxruntime==1.16.0; sys_platform == 'darwin' or sys_platform == 'windows'
onnxruntime-gpu==1.18.0; sys_platform == 'linux'
onnxruntime==1.18.0; sys_platform == 'darwin' or sys_platform == 'windows'
openai-whisper==20231117
protobuf==4.25
pydantic==2.7.0
rich==13.7.1
soundfile==0.12.1
tensorboard==2.14.0
torch==2.0.1
torchaudio==2.0.2
tensorrt-cu12==10.0.1
tensorrt-cu12-bindings==10.0.1
tensorrt-cu12-libs==10.0.1
torch==2.3.1
torchaudio==2.3.1
transformers==4.40.1
uvicorn==0.30.0
wget==3.2
fastapi==0.111.0

View File

@@ -22,7 +22,7 @@ import random
import librosa
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
from cosyvoice.utils.file_utils import load_wav, logging
from cosyvoice.utils.common import set_all_random_seed
@@ -51,7 +51,7 @@ def postprocess(speech, top_db=60, hop_length=220, win_length=440):
)
if speech.abs().max() > max_val:
speech = speech / speech.abs().max() * max_val
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
speech = torch.concat([speech, torch.zeros(1, int(cosyvoice.sample_rate * 0.2))], dim=1)
return speech
@@ -71,31 +71,31 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
if mode_checkbox_group in ['自然语言控制']:
if cosyvoice.frontend.instruct is False:
gr.Warning('您正在使用自然语言控制模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M-Instruct模型'.format(args.model_dir))
yield (target_sr, default_data)
yield (cosyvoice.sample_rate, default_data)
if instruct_text == '':
gr.Warning('您正在使用自然语言控制模式, 请输入instruct文本')
yield (target_sr, default_data)
yield (cosyvoice.sample_rate, default_data)
if prompt_wav is not None or prompt_text != '':
gr.Info('您正在使用自然语言控制模式, prompt音频/prompt文本会被忽略')
# if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
if mode_checkbox_group in ['跨语种复刻']:
if cosyvoice.frontend.instruct is True:
gr.Warning('您正在使用跨语种复刻模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M模型'.format(args.model_dir))
yield (target_sr, default_data)
yield (cosyvoice.sample_rate, default_data)
if instruct_text != '':
gr.Info('您正在使用跨语种复刻模式, instruct文本会被忽略')
if prompt_wav is None:
gr.Warning('您正在使用跨语种复刻模式, 请提供prompt音频')
yield (target_sr, default_data)
yield (cosyvoice.sample_rate, default_data)
gr.Info('您正在使用跨语种复刻模式, 请确保合成文本和prompt文本为不同语言')
# if in zero_shot cross_lingual, please make sure that prompt_text and prompt_wav meets requirements
if mode_checkbox_group in ['3s极速复刻', '跨语种复刻']:
if prompt_wav is None:
gr.Warning('prompt音频为空您是否忘记输入prompt音频')
yield (target_sr, default_data)
yield (cosyvoice.sample_rate, default_data)
if torchaudio.info(prompt_wav).sample_rate < prompt_sr:
gr.Warning('prompt音频采样率{}低于{}'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr))
yield (target_sr, default_data)
yield (cosyvoice.sample_rate, default_data)
# sft mode only use sft_dropdown
if mode_checkbox_group in ['预训练音色']:
if instruct_text != '' or prompt_wav is not None or prompt_text != '':
@@ -104,7 +104,7 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
if mode_checkbox_group in ['3s极速复刻']:
if prompt_text == '':
gr.Warning('prompt文本为空您是否忘记输入prompt文本')
yield (target_sr, default_data)
yield (cosyvoice.sample_rate, default_data)
if instruct_text != '':
gr.Info('您正在使用3s极速复刻模式预训练音色/instruct文本会被忽略')
@@ -112,24 +112,24 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
logging.info('get sft inference request')
set_all_random_seed(seed)
for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream, speed=speed):
yield (target_sr, i['tts_speech'].numpy().flatten())
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
elif mode_checkbox_group == '3s极速复刻':
logging.info('get zero_shot inference request')
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
set_all_random_seed(seed)
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed):
yield (target_sr, i['tts_speech'].numpy().flatten())
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
elif mode_checkbox_group == '跨语种复刻':
logging.info('get cross_lingual inference request')
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
set_all_random_seed(seed)
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed):
yield (target_sr, i['tts_speech'].numpy().flatten())
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
else:
logging.info('get instruct inference request')
set_all_random_seed(seed)
for i in cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text, stream=stream, speed=speed):
yield (target_sr, i['tts_speech'].numpy().flatten())
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
def main():
@@ -178,11 +178,11 @@ if __name__ == '__main__':
default=8000)
parser.add_argument('--model_dir',
type=str,
default='pretrained_models/CosyVoice-300M',
default='pretrained_models/CosyVoice2-0.5B',
help='local path or modelscope repo id')
args = parser.parse_args()
cosyvoice = CosyVoice(args.model_dir)
cosyvoice = CosyVoice2(args.model_dir) if 'CosyVoice2' in args.model_dir else CosyVoice(args.model_dir)
sft_spk = cosyvoice.list_avaliable_spks()
prompt_sr, target_sr = 16000, 22050
default_data = np.zeros(target_sr)
prompt_sr = 16000
default_data = np.zeros(cosyvoice.sample_rate)
main()