mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
Merge pull request #842 from Vinkle-hzt/main
support online onnx to trt conversion
This commit is contained in:
@@ -128,6 +128,8 @@ import torchaudio
|
||||
|
||||
**CosyVoice2 Usage**
|
||||
```python
|
||||
# NOTE if you want to use tensorRT to accerlate the flow matching inference, please set load_trt=True.
|
||||
# if you don't want to save tensorRT model on disk, please set environment variable `NOT_SAVE_TRT=1`.
|
||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
|
||||
|
||||
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
||||
|
||||
@@ -149,7 +149,7 @@ class CosyVoice2(CosyVoice):
|
||||
if load_jit:
|
||||
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||
if load_trt:
|
||||
self.model.load_trt('{}/flow.decoder.estimator.{}.v100.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||
self.model.load_trt('{}/flow.decoder.estimator'.format(model_dir), self.fp16)
|
||||
del configs
|
||||
|
||||
def inference_instruct(self, *args, **kwargs):
|
||||
|
||||
@@ -19,6 +19,7 @@ from torch.nn import functional as F
|
||||
from contextlib import nullcontext
|
||||
import uuid
|
||||
from cosyvoice.utils.common import fade_in_out
|
||||
from cosyvoice.trt.estimator_trt import EstimatorTRT
|
||||
|
||||
|
||||
class CosyVoiceModel:
|
||||
@@ -81,14 +82,9 @@ class CosyVoiceModel:
|
||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||
self.flow.encoder = flow_encoder
|
||||
|
||||
def load_trt(self, flow_decoder_estimator_model):
|
||||
def load_trt(self, flow_decoder_estimator_model, fp16):
|
||||
del self.flow.decoder.estimator
|
||||
import tensorrt as trt
|
||||
with open(flow_decoder_estimator_model, 'rb') as f:
|
||||
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||
if self.flow.decoder.estimator_engine is None:
|
||||
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
|
||||
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
||||
self.flow.decoder.estimator = EstimatorTRT(flow_decoder_estimator_model, self.device, fp16)
|
||||
|
||||
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
||||
with self.llm_context:
|
||||
|
||||
141
cosyvoice/trt/estimator_trt.py
Normal file
141
cosyvoice/trt/estimator_trt.py
Normal file
@@ -0,0 +1,141 @@
|
||||
import os
|
||||
import torch
|
||||
import tensorrt as trt
|
||||
import logging
|
||||
import threading
|
||||
|
||||
|
||||
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
|
||||
|
||||
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
|
||||
|
||||
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
|
||||
|
||||
|
||||
class EstimatorTRT:
|
||||
def __init__(self, path_prefix: str, device: torch.device, fp16: bool = True):
|
||||
self.lock = threading.Lock()
|
||||
self.device = device
|
||||
with torch.cuda.device(device):
|
||||
self.input_names = ["x", "mask", "mu", "t", "spks", "cond"]
|
||||
self.output_name = "estimator_out"
|
||||
|
||||
onnx_path = path_prefix + ".fp32.onnx"
|
||||
precision = ".fp16" if fp16 else ".fp32"
|
||||
trt_path = path_prefix + precision +".plan"
|
||||
|
||||
self.fp16 = fp16
|
||||
self.logger = trt.Logger(trt.Logger.INFO)
|
||||
self.trt_runtime = trt.Runtime(self.logger)
|
||||
|
||||
save_trt = not os.environ.get("NOT_SAVE_TRT", "0") == "1"
|
||||
|
||||
if os.path.exists(trt_path):
|
||||
self.engine = self._load_trt(trt_path)
|
||||
else:
|
||||
self.engine = self._convert_onnx_to_trt(onnx_path, trt_path, save_trt)
|
||||
|
||||
self.context = self.engine.create_execution_context()
|
||||
|
||||
def _convert_onnx_to_trt(
|
||||
self, onnx_path: str, trt_path: str, save_trt: bool = True
|
||||
):
|
||||
logging.info("Converting onnx to trt...")
|
||||
|
||||
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
||||
builder = trt.Builder(self.logger)
|
||||
network = builder.create_network(network_flags)
|
||||
parser = trt.OnnxParser(network, self.logger)
|
||||
config = builder.create_builder_config()
|
||||
|
||||
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB
|
||||
if (self.fp16):
|
||||
config.set_flag(trt.BuilderFlag.FP16)
|
||||
|
||||
profile = builder.create_optimization_profile()
|
||||
|
||||
# load onnx model
|
||||
with open(onnx_path, "rb") as f:
|
||||
if not parser.parse(f.read()):
|
||||
for error in range(parser.num_errors):
|
||||
print(parser.get_error(error))
|
||||
exit(1)
|
||||
|
||||
# set input shapes
|
||||
for i in range(len(self.input_names)):
|
||||
profile.set_shape(
|
||||
self.input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i]
|
||||
)
|
||||
|
||||
tensor_dtype = trt.DataType.HALF if self.fp16 else trt.DataType.FLOAT
|
||||
|
||||
# set input and output data type
|
||||
for i in range(network.num_inputs):
|
||||
input_tensor = network.get_input(i)
|
||||
input_tensor.dtype = tensor_dtype
|
||||
|
||||
for i in range(network.num_outputs):
|
||||
output_tensor = network.get_output(i)
|
||||
output_tensor.dtype = tensor_dtype
|
||||
|
||||
config.add_optimization_profile(profile)
|
||||
engine_bytes = builder.build_serialized_network(network, config)
|
||||
|
||||
# save trt engine
|
||||
if save_trt:
|
||||
with open(trt_path, "wb") as f:
|
||||
f.write(engine_bytes)
|
||||
print("trt engine saved to {}".format(trt_path))
|
||||
|
||||
engine = self.trt_runtime.deserialize_cuda_engine(engine_bytes)
|
||||
return engine
|
||||
|
||||
def _load_trt(self, trt_path: str):
|
||||
logging.info("Found trt engine, loading...")
|
||||
|
||||
with open(trt_path, "rb") as f:
|
||||
engine_bytes = f.read()
|
||||
engine = self.trt_runtime.deserialize_cuda_engine(engine_bytes)
|
||||
return engine
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask: torch.Tensor,
|
||||
mu: torch.Tensor,
|
||||
t: torch.Tensor,
|
||||
spks: torch.Tensor,
|
||||
cond: torch.Tensor,
|
||||
):
|
||||
with self.lock:
|
||||
with torch.cuda.device(self.device):
|
||||
self.context.set_input_shape("x", (2, 80, x.size(2)))
|
||||
self.context.set_input_shape("mask", (2, 1, x.size(2)))
|
||||
self.context.set_input_shape("mu", (2, 80, x.size(2)))
|
||||
self.context.set_input_shape("t", (2,))
|
||||
self.context.set_input_shape("spks", (2, 80))
|
||||
self.context.set_input_shape("cond", (2, 80, x.size(2)))
|
||||
# run trt engine
|
||||
self.context.execute_v2(
|
||||
[
|
||||
x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr(),
|
||||
]
|
||||
)
|
||||
return x
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask: torch.Tensor,
|
||||
mu: torch.Tensor,
|
||||
t: torch.Tensor,
|
||||
spks: torch.Tensor,
|
||||
cond: torch.Tensor,
|
||||
):
|
||||
return self.forward(x, mask, mu, t, spks, cond)
|
||||
Reference in New Issue
Block a user