Merge pull request #330 from hexisyztem/flow_tensorrt

Flow tensorrt
This commit is contained in:
Xiang Lyu
2024-08-30 14:20:25 +08:00
committed by GitHub
6 changed files with 176 additions and 10 deletions

View File

@@ -1,8 +1,126 @@
# TODO 跟export_jit一样的逻辑完成flow部分的estimator的onnx导出。
# tensorrt的安装方式再这里写一下步骤提示如下如果没有安装那么不要执行这个脚本提示用户先安装不给选择
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import sys
logging.getLogger('matplotlib').setLevel(logging.WARNING)
try:
import tensorrt
except ImportError:
print('step1, 下载\n step2. 解压安装whl')
# 安装命令里tensosrt的根目录用环境变量导入比如os.environ['tensorrt_root_dir']/bin/exetrace然后python里subprocess里执行导出命令
# 后面我会在run.sh里写好执行命令 tensorrt_root_dir=xxxx python cosyvoice/bin/export_trt.py --model_dir xxx
error_msg_zh = [
"step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
"step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
"step.3 将 tensorrt 的 lib 路径添加进环境变量中export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TensorRT-Path}/lib/"
]
print("\n".join(error_msg_zh))
sys.exit(1)
import torch
from cosyvoice.cli.cosyvoice import CosyVoice
def get_args():
parser = argparse.ArgumentParser(description='Export your model for deployment')
parser.add_argument('--model_dir',
type=str,
default='pretrained_models/CosyVoice-300M-SFT',
help='Local path to the model directory')
parser.add_argument('--export_half',
action='store_true',
help='Export with half precision (FP16)')
args = parser.parse_args()
print(args)
return args
def main():
args = get_args()
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
estimator = cosyvoice.model.flow.decoder.estimator
dtype = torch.float32 if not args.export_half else torch.float16
device = torch.device("cuda")
batch_size = 1
seq_len = 256
hidden_size = cosyvoice.model.flow.output_size
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device)
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
t = torch.rand((batch_size, ), dtype=dtype, device=device)
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx'
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
dummy_input = (x, mask, mu, t, spks, cond)
estimator = estimator.to(dtype)
torch.onnx.export(
estimator,
dummy_input,
onnx_file_path,
export_params=True,
opset_version=18,
do_constant_folding=True,
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
output_names=['estimator_out'],
dynamic_axes={
'x': {2: 'seq_len'},
'mask': {2: 'seq_len'},
'mu': {2: 'seq_len'},
'cond': {2: 'seq_len'},
'estimator_out': {2: 'seq_len'},
}
)
tensorrt_path = os.environ.get('tensorrt_root_dir')
if not tensorrt_path:
raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
if not os.path.isdir(tensorrt_path):
raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
trt_lib_path = os.path.join(tensorrt_path, "lib")
if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
trt_file_path = os.path.join(args.model_dir, trt_file_name)
trtexec_bin = os.path.join(tensorrt_path, 'bin/trtexec')
trtexec_cmd = f"{trtexec_bin} --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose " + \
("--fp16" if args.export_half else "")
print("execute ", trtexec_cmd)
os.system(trtexec_cmd)
# print("x.shape", x.shape)
# print("mask.shape", mask.shape)
# print("mu.shape", mu.shape)
# print("t.shape", t.shape)
# print("spks.shape", spks.shape)
# print("cond.shape", cond.shape)
if __name__ == "__main__":
main()

View File

@@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging
class CosyVoice:
def __init__(self, model_dir, load_jit=True):
def __init__(self, model_dir, load_jit=True, load_trt=True, use_fp16=False):
instruct = True if '-Instruct' in model_dir else False
self.model_dir = model_dir
if not os.path.exists(model_dir):
@@ -39,9 +39,13 @@ class CosyVoice:
self.model.load('{}/llm.pt'.format(model_dir),
'{}/flow.pt'.format(model_dir),
'{}/hift.pt'.format(model_dir))
if load_jit:
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
'{}/llm.llm.fp16.zip'.format(model_dir))
if load_trt:
self.model.load_trt(model_dir, use_fp16)
del configs
def list_avaliable_spks(self):

View File

@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import numpy as np
import threading
@@ -19,7 +20,6 @@ from contextlib import nullcontext
import uuid
from cosyvoice.utils.common import fade_in_out
class CosyVoiceModel:
def __init__(self,
@@ -66,6 +66,22 @@ class CosyVoiceModel:
llm_llm = torch.jit.load(llm_llm_model)
self.llm.llm = llm_llm
def load_trt(self, model_dir, use_fp16):
import tensorrt as trt
trt_file_name = 'estimator_fp16.plan' if use_fp16 else 'estimator_fp32.plan'
trt_file_path = os.path.join(model_dir, trt_file_name)
if not os.path.isfile(trt_file_path):
raise f"{trt_file_path} does not exist. Please use bin/export_trt.py to generate .plan file"
trt.init_libnvinfer_plugins(None, "")
logger = trt.Logger(trt.Logger.WARNING)
runtime = trt.Runtime(logger)
with open(trt_file_path, 'rb') as f:
serialized_engine = f.read()
engine = runtime.deserialize_cuda_engine(serialized_engine)
self.flow.decoder.estimator_context = engine.create_execution_context()
self.flow.decoder.estimator = None
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
with self.llm_context:
for i in self.llm.inference(text=text.to(self.device),

View File

@@ -159,7 +159,7 @@ class ConditionalDecoder(nn.Module):
_type_: _description_
"""
t = self.time_embeddings(t)
t = self.time_embeddings(t).to(t.dtype)
t = self.time_mlp(t)
x = pack([x, mu], "b * t")[0]

View File

@@ -113,7 +113,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
# concat text and prompt_text
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
mask = (~make_pad_mask(token_len)).to(embedding.dtype).unsqueeze(-1).to(embedding)
token = self.input_embedding(torch.clamp(token, min=0)) * mask
# text encode

View File

@@ -50,7 +50,7 @@ class ConditionalCFM(BASECFM):
shape: (batch_size, n_feats, mel_timesteps)
"""
z = torch.randn_like(mu) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
if self.t_scheduler == 'cosine':
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
@@ -71,6 +71,7 @@ class ConditionalCFM(BASECFM):
cond: Not used but kept for future purposes
"""
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
t = t.unsqueeze(dim=0)
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
@@ -96,6 +97,33 @@ class ConditionalCFM(BASECFM):
return sol[-1]
def forward_estimator(self, x, mask, mu, t, spks, cond):
if self.estimator is not None:
return self.estimator.forward(x, mask, mu, t, spks, cond)
else:
assert self.training is False, 'tensorrt cannot be used in training'
bs = x.shape[0]
hs = x.shape[1]
seq_len = x.shape[2]
# assert bs == 1 and hs == 80
ret = torch.empty_like(x)
self.estimator_context.set_input_shape("x", x.shape)
self.estimator_context.set_input_shape("mask", mask.shape)
self.estimator_context.set_input_shape("mu", mu.shape)
self.estimator_context.set_input_shape("t", t.shape)
self.estimator_context.set_input_shape("spks", spks.shape)
self.estimator_context.set_input_shape("cond", cond.shape)
bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()]
names = ['x', 'mask', 'mu', 't', 'spks', 'cond', 'estimator_out']
for i in range(len(bindings)):
self.estimator_context.set_tensor_address(names[i], bindings[i])
handle = torch.cuda.current_stream().cuda_stream
self.estimator_context.execute_async_v3(stream_handle=handle)
return ret
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
"""Computes diffusion loss