mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
update model inference
This commit is contained in:
@@ -46,9 +46,9 @@ class CosyVoice:
|
||||
return spks
|
||||
|
||||
def inference_sft(self, tts_text, spk_id, stream=False):
|
||||
start_time = time.time()
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_sft(i, spk_id)
|
||||
start_time = time.time()
|
||||
for model_output in self.model.inference(**model_input, stream=stream):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
@@ -56,10 +56,10 @@ class CosyVoice:
|
||||
start_time = time.time()
|
||||
|
||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False):
|
||||
start_time = time.time()
|
||||
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
||||
start_time = time.time()
|
||||
for model_output in self.model.inference(**model_input, stream=stream):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
@@ -69,9 +69,9 @@ class CosyVoice:
|
||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False):
|
||||
if self.frontend.instruct is True:
|
||||
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
||||
start_time = time.time()
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
||||
start_time = time.time()
|
||||
for model_output in self.model.inference(**model_input, stream=stream):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
@@ -81,10 +81,10 @@ class CosyVoice:
|
||||
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False):
|
||||
if self.frontend.instruct is False:
|
||||
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
||||
start_time = time.time()
|
||||
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
||||
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
||||
start_time = time.time()
|
||||
for model_output in self.model.inference(**model_input, stream=stream):
|
||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
|
||||
@@ -13,6 +13,9 @@
|
||||
# limitations under the License.
|
||||
import torch
|
||||
import numpy as np
|
||||
import threading
|
||||
import time
|
||||
from contextlib import nullcontext
|
||||
|
||||
|
||||
class CosyVoiceModel:
|
||||
@@ -25,10 +28,13 @@ class CosyVoiceModel:
|
||||
self.llm = llm
|
||||
self.flow = flow
|
||||
self.hift = hift
|
||||
self.stream_win_len = 60
|
||||
self.stream_hop_len = 50
|
||||
self.overlap = 4395 # 10 token equals 4395 sample point
|
||||
self.stream_win_len = 60 * 4
|
||||
self.stream_hop_len = 50 * 4
|
||||
self.overlap = 4395 * 4 # 10 token equals 4395 sample point
|
||||
self.window = np.hamming(2 * self.overlap)
|
||||
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||
self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||
self.lock = threading.Lock()
|
||||
|
||||
def load(self, llm_model, flow_model, hift_model):
|
||||
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
||||
@@ -38,13 +44,8 @@ class CosyVoiceModel:
|
||||
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
||||
self.hift.to(self.device).eval()
|
||||
|
||||
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
||||
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
||||
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32), stream=False):
|
||||
if stream is True:
|
||||
tts_speech_token, cache_speech = [], None
|
||||
def llm_job(self, text, text_len, prompt_text, prompt_text_len, llm_prompt_speech_token, llm_prompt_speech_token_len, llm_embedding):
|
||||
with self.llm_context:
|
||||
for i in self.llm.inference(text=text.to(self.device),
|
||||
text_len=text_len.to(self.device),
|
||||
prompt_text=prompt_text.to(self.device),
|
||||
@@ -56,10 +57,56 @@ class CosyVoiceModel:
|
||||
sampling=25,
|
||||
max_token_text_ratio=30,
|
||||
min_token_text_ratio=3,
|
||||
stream=stream):
|
||||
tts_speech_token.append(i)
|
||||
if len(tts_speech_token) == self.stream_win_len:
|
||||
this_tts_speech_token = torch.concat(tts_speech_token, dim=1)
|
||||
stream=True):
|
||||
self.tts_speech_token.append(i)
|
||||
self.llm_end = True
|
||||
|
||||
def token2wav(self, token, prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, embedding):
|
||||
with self.flow_hift_context:
|
||||
tts_mel = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.size(1)], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=prompt_token_len.to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=prompt_feat_len.to(self.device),
|
||||
embedding=embedding.to(self.device))
|
||||
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
||||
return tts_speech
|
||||
|
||||
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
||||
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
||||
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32), stream=False):
|
||||
if stream is True:
|
||||
self.tts_speech_token, self.llm_end, cache_speech = [], False, None
|
||||
p = threading.Thread(target=self.llm_job, args=(text.to(self.device), text_len.to(self.device), prompt_text.to(self.device), prompt_text_len.to(self.device),
|
||||
llm_prompt_speech_token.to(self.device), llm_prompt_speech_token_len.to(self.device), llm_embedding.to(self.device)))
|
||||
p.start()
|
||||
while True:
|
||||
time.sleep(0.1)
|
||||
if len(self.tts_speech_token) >= self.stream_win_len:
|
||||
this_tts_speech_token = torch.concat(self.tts_speech_token[:self.stream_win_len], dim=1)
|
||||
with self.flow_hift_context:
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token.to(self.device),
|
||||
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
||||
prompt_feat=prompt_speech_feat.to(self.device),
|
||||
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
||||
embedding=flow_embedding.to(self.device))
|
||||
# fade in/out if necessary
|
||||
if cache_speech is not None:
|
||||
this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
|
||||
yield {'tts_speech': this_tts_speech[:, :-self.overlap]}
|
||||
cache_speech = this_tts_speech[:, -self.overlap:]
|
||||
with self.lock:
|
||||
self.tts_speech_token = self.tts_speech_token[self.stream_hop_len:]
|
||||
if self.llm_end is True:
|
||||
break
|
||||
# deal with remain tokens
|
||||
if cache_speech is None or len(self.tts_speech_token) > self.stream_win_len - self.stream_hop_len:
|
||||
this_tts_speech_token = torch.concat(self.tts_speech_token, dim=1)
|
||||
with self.flow_hift_context:
|
||||
this_tts_mel = self.flow.inference(token=this_tts_speech_token,
|
||||
token_len=torch.tensor([this_tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
||||
prompt_token=flow_prompt_speech_token.to(self.device),
|
||||
@@ -68,29 +115,14 @@ class CosyVoiceModel:
|
||||
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
||||
embedding=flow_embedding.to(self.device))
|
||||
this_tts_speech = self.hift.inference(mel=this_tts_mel).cpu()
|
||||
# fade in/out if necessary
|
||||
if cache_speech is not None:
|
||||
this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
|
||||
yield {'tts_speech': this_tts_speech[:, :-self.overlap]}
|
||||
cache_speech = this_tts_speech[:, -self.overlap:]
|
||||
tts_speech_token = tts_speech_token[-(self.stream_win_len - self.stream_hop_len):]
|
||||
# deal with remain tokens
|
||||
if cache_speech is None or len(tts_speech_token) > self.stream_win_len - self.stream_hop_len:
|
||||
this_tts_speech_token = torch.concat(tts_speech_token, dim=1)
|
||||
this_tts_mel = self.flow.inference(token=this_tts_speech_token,
|
||||
token_len=torch.tensor([this_tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
||||
prompt_token=flow_prompt_speech_token.to(self.device),
|
||||
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
||||
prompt_feat=prompt_speech_feat.to(self.device),
|
||||
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
||||
embedding=flow_embedding.to(self.device))
|
||||
this_tts_speech = self.hift.inference(mel=this_tts_mel).cpu()
|
||||
if cache_speech is not None:
|
||||
this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
|
||||
yield {'tts_speech': this_tts_speech}
|
||||
else:
|
||||
assert len(tts_speech_token) == self.stream_win_len - self.stream_hop_len, 'tts_speech_token not equal to {}'.format(self.stream_win_len - self.stream_hop_len)
|
||||
assert len(self.tts_speech_token) == self.stream_win_len - self.stream_hop_len, 'tts_speech_token not equal to {}'.format(self.stream_win_len - self.stream_hop_len)
|
||||
yield {'tts_speech': cache_speech}
|
||||
p.join()
|
||||
torch.cuda.synchronize()
|
||||
else:
|
||||
tts_speech_token = []
|
||||
for i in self.llm.inference(text=text.to(self.device),
|
||||
|
||||
@@ -43,7 +43,7 @@ class InterpolateRegulator(nn.Module):
|
||||
def forward(self, x, ylens=None):
|
||||
# x in (B, T, D)
|
||||
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
||||
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
||||
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear')
|
||||
out = self.model(x).transpose(1, 2).contiguous()
|
||||
olens = ylens
|
||||
return out * mask, olens
|
||||
|
||||
@@ -174,7 +174,7 @@ class TransformerLM(torch.nn.Module):
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
embedding = embedding.unsqueeze(dim=1)
|
||||
else:
|
||||
embedding = torch.zeros(1, 0, self.llm_input_size).to(device)
|
||||
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||
|
||||
# 3. concat llm_input
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
@@ -182,7 +182,7 @@ class TransformerLM(torch.nn.Module):
|
||||
if prompt_speech_token_len != 0:
|
||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||
else:
|
||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device)
|
||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||
|
||||
# 4. cal min/max_length
|
||||
|
||||
39
webui.py
39
webui.py
@@ -24,14 +24,8 @@ import torchaudio
|
||||
import random
|
||||
import librosa
|
||||
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
from cosyvoice.utils.file_utils import load_wav, speed_change
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
from cosyvoice.utils.file_utils import load_wav, speed_change, logging
|
||||
|
||||
def generate_seed():
|
||||
seed = random.randint(1, 100000000)
|
||||
@@ -63,10 +57,11 @@ instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成
|
||||
'3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮',
|
||||
'跨语种复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 点击生成音频按钮',
|
||||
'自然语言控制': '1. 选择预训练音色\n2. 输入instruct文本\n3. 点击生成音频按钮'}
|
||||
stream_mode_list = [('否', False), ('是', True)]
|
||||
def change_instruction(mode_checkbox_group):
|
||||
return instruct_dict[mode_checkbox_group]
|
||||
|
||||
def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, speed_factor):
|
||||
def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, stream, speed_factor):
|
||||
if prompt_wav_upload is not None:
|
||||
prompt_wav = prompt_wav_upload
|
||||
elif prompt_wav_record is not None:
|
||||
@@ -117,32 +112,25 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
|
||||
if mode_checkbox_group == '预训练音色':
|
||||
logging.info('get sft inference request')
|
||||
set_all_random_seed(seed)
|
||||
output = cosyvoice.inference_sft(tts_text, sft_dropdown)
|
||||
for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream):
|
||||
yield (target_sr, i['tts_speech'].numpy().flatten())
|
||||
elif mode_checkbox_group == '3s极速复刻':
|
||||
logging.info('get zero_shot inference request')
|
||||
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
||||
set_all_random_seed(seed)
|
||||
output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
|
||||
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream):
|
||||
yield (target_sr, i['tts_speech'].numpy().flatten())
|
||||
elif mode_checkbox_group == '跨语种复刻':
|
||||
logging.info('get cross_lingual inference request')
|
||||
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
||||
set_all_random_seed(seed)
|
||||
output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k)
|
||||
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream):
|
||||
yield (target_sr, i['tts_speech'].numpy().flatten())
|
||||
else:
|
||||
logging.info('get instruct inference request')
|
||||
set_all_random_seed(seed)
|
||||
output = cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text)
|
||||
|
||||
if speed_factor != 1.0:
|
||||
try:
|
||||
audio_data, sample_rate = speed_change(output["tts_speech"], target_sr, str(speed_factor))
|
||||
audio_data = audio_data.numpy().flatten()
|
||||
except Exception as e:
|
||||
print(f"Failed to change speed of audio: \n{e}")
|
||||
else:
|
||||
audio_data = output['tts_speech'].numpy().flatten()
|
||||
|
||||
return (target_sr, audio_data)
|
||||
for i in cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text, stream=stream):
|
||||
yield (target_sr, i['tts_speech'].numpy().flatten())
|
||||
|
||||
def main():
|
||||
with gr.Blocks() as demo:
|
||||
@@ -155,6 +143,7 @@ def main():
|
||||
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0])
|
||||
instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5)
|
||||
sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=0.25)
|
||||
stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1])
|
||||
with gr.Column(scale=0.25):
|
||||
seed_button = gr.Button(value="\U0001F3B2")
|
||||
seed = gr.Number(value=0, label="随机推理种子")
|
||||
@@ -167,11 +156,11 @@ def main():
|
||||
|
||||
generate_button = gr.Button("生成音频")
|
||||
|
||||
audio_output = gr.Audio(label="合成音频")
|
||||
audio_output = gr.Audio(label="合成音频", autoplay=True, streaming=True)
|
||||
|
||||
seed_button.click(generate_seed, inputs=[], outputs=seed)
|
||||
generate_button.click(generate_audio,
|
||||
inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, speed_factor],
|
||||
inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, stream, speed_factor],
|
||||
outputs=[audio_output])
|
||||
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
|
||||
demo.queue(max_size=4, default_concurrency_limit=2)
|
||||
|
||||
Reference in New Issue
Block a user