mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
Merge pull request #360 from FunAudioLLM/dev/lyuxiang.lx
set onnx to false as last chunk rtf unstable
This commit is contained in:
1
.github/workflows/lint.yml
vendored
1
.github/workflows/lint.yml
vendored
@@ -2,6 +2,7 @@ name: Lint
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
|
||||
jobs:
|
||||
quick-checks:
|
||||
|
||||
@@ -23,7 +23,7 @@ from cosyvoice.utils.file_utils import logging
|
||||
|
||||
class CosyVoice:
|
||||
|
||||
def __init__(self, model_dir, load_jit=True, load_onnx=True):
|
||||
def __init__(self, model_dir, load_jit=True, load_onnx=False):
|
||||
instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
if not os.path.exists(model_dir):
|
||||
|
||||
@@ -43,7 +43,6 @@ class CosyVoiceModel:
|
||||
self.stream_scale_factor = 1
|
||||
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
||||
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||
self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||
self.lock = threading.Lock()
|
||||
# dict used to store session related variable
|
||||
self.tts_speech_token_dict = {}
|
||||
@@ -93,32 +92,31 @@ class CosyVoiceModel:
|
||||
self.llm_end_dict[uuid] = True
|
||||
|
||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False):
|
||||
with self.flow_hift_context:
|
||||
tts_mel = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device))
|
||||
# mel overlap fade in out
|
||||
if self.mel_overlap_dict[uuid] is not None:
|
||||
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
||||
# append hift cache
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
||||
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
||||
else:
|
||||
hift_cache_source = torch.zeros(1, 1, 0)
|
||||
# keep overlap mel and hift cache
|
||||
if finalize is False:
|
||||
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
||||
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
||||
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
||||
self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
|
||||
tts_speech = tts_speech[:, :-self.source_cache_len]
|
||||
else:
|
||||
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
||||
tts_mel = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device))
|
||||
# mel overlap fade in out
|
||||
if self.mel_overlap_dict[uuid] is not None:
|
||||
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
||||
# append hift cache
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
||||
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
||||
else:
|
||||
hift_cache_source = torch.zeros(1, 1, 0)
|
||||
# keep overlap mel and hift cache
|
||||
if finalize is False:
|
||||
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
||||
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
||||
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
||||
self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
|
||||
tts_speech = tts_speech[:, :-self.source_cache_len]
|
||||
else:
|
||||
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
||||
return tts_speech
|
||||
|
||||
def inference(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||
@@ -139,13 +137,12 @@ class CosyVoiceModel:
|
||||
time.sleep(0.1)
|
||||
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
||||
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len], dim=1)
|
||||
with self.flow_hift_context:
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=False)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=False)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
||||
@@ -156,30 +153,26 @@ class CosyVoiceModel:
|
||||
p.join()
|
||||
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
|
||||
with self.flow_hift_context:
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=True)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=True)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
else:
|
||||
# deal with all tokens
|
||||
p.join()
|
||||
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
|
||||
with self.flow_hift_context:
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=True)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=True)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict.pop(this_uuid)
|
||||
self.llm_end_dict.pop(this_uuid)
|
||||
self.mel_overlap_dict.pop(this_uuid)
|
||||
self.hift_cache_dict.pop(this_uuid)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
|
||||
Reference in New Issue
Block a user