mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
add flow decoder tensorrt infer
This commit is contained in:
@@ -1,8 +1,103 @@
|
||||
# TODO 跟export_jit一样的逻辑,完成flow部分的estimator的onnx导出。
|
||||
# tensorrt的安装方式,再这里写一下步骤提示如下,如果没有安装,那么不要执行这个脚本,提示用户先安装,不给选择
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
|
||||
try:
|
||||
import tensorrt
|
||||
except ImportError:
|
||||
print('step1, 下载\n step2. 解压,安装whl,')
|
||||
# 安装命令里tensosrt的根目录用环境变量导入,比如os.environ['tensorrt_root_dir']/bin/exetrace,然后python里subprocess里执行导出命令
|
||||
# 后面我会在run.sh里写好执行命令 tensorrt_root_dir=xxxx python cosyvoice/bin/export_trt.py --model_dir xxx
|
||||
error_msg_zh = [
|
||||
"step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
|
||||
"step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
|
||||
"step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=${TensorRT-Path}/lib/"
|
||||
]
|
||||
print("\n".join(error_msg_zh))
|
||||
sys.exit(1)
|
||||
|
||||
import torch
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='Export your model for deployment')
|
||||
parser.add_argument('--model_dir',
|
||||
type=str,
|
||||
default='pretrained_models/CosyVoice-300M',
|
||||
help='Local path to the model directory')
|
||||
|
||||
parser.add_argument('--export_half',
|
||||
action='store_true',
|
||||
help='Export with half precision (FP16)')
|
||||
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
return args
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
|
||||
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
|
||||
|
||||
flow = cosyvoice.model.flow
|
||||
estimator = cosyvoice.model.flow.decoder.estimator
|
||||
|
||||
dtype = torch.float32 if not args.export_half else torch.float16
|
||||
device = torch.device("cuda")
|
||||
batch_size = 1
|
||||
seq_len = 1024
|
||||
hidden_size = flow.output_size
|
||||
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||||
mask = torch.zeros((batch_size, 1, seq_len), dtype=dtype, device=device)
|
||||
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||||
t = torch.tensor([0.], dtype=dtype, device=device)
|
||||
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
|
||||
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||||
|
||||
onnx_file_name = 'estimator_fp16.onnx' if args.export_half else 'estimator_fp32.onnx'
|
||||
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
|
||||
dummy_input = (x, mask, mu, t, spks, cond)
|
||||
|
||||
estimator = estimator.to(dtype)
|
||||
|
||||
torch.onnx.export(
|
||||
estimator,
|
||||
dummy_input,
|
||||
onnx_file_path,
|
||||
export_params=True,
|
||||
opset_version=18,
|
||||
do_constant_folding=True,
|
||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||
output_names=['output'],
|
||||
dynamic_axes={
|
||||
'x': {2: 'seq_len'},
|
||||
'mask': {2: 'seq_len'},
|
||||
'mu': {2: 'seq_len'},
|
||||
'cond': {2: 'seq_len'},
|
||||
'output': {2: 'seq_len'},
|
||||
}
|
||||
)
|
||||
|
||||
tensorrt_path = os.environ.get('tensorrt_root_dir')
|
||||
if not tensorrt_path:
|
||||
raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
|
||||
|
||||
if not os.path.isdir(tensorrt_path):
|
||||
raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
|
||||
|
||||
trt_lib_path = os.path.join(tensorrt_path, "lib")
|
||||
if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
|
||||
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
||||
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
||||
|
||||
trt_file_name = 'estimator_fp16.plan' if args.export_half else 'estimator_fp32.plan'
|
||||
trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
||||
|
||||
trtexec_cmd = f"{tensorrt_path}/bin/trtexec --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
||||
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
|
||||
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose"
|
||||
|
||||
os.system(trtexec_cmd)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging
|
||||
|
||||
class CosyVoice:
|
||||
|
||||
def __init__(self, model_dir, load_jit=True, load_trt=True):
|
||||
def __init__(self, model_dir, load_jit=True, load_trt=True, use_fp16=False):
|
||||
instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
if not os.path.exists(model_dir):
|
||||
@@ -43,8 +43,7 @@ class CosyVoice:
|
||||
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
||||
'{}/llm.llm.fp16.zip'.format(model_dir))
|
||||
if load_trt:
|
||||
# TODO
|
||||
self.model.load_trt()
|
||||
self.model.load_trt(model_dir, use_fp16)
|
||||
del configs
|
||||
|
||||
def list_avaliable_spks(self):
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import torch
|
||||
import numpy as np
|
||||
import threading
|
||||
@@ -19,6 +20,10 @@ from contextlib import nullcontext
|
||||
import uuid
|
||||
from cosyvoice.utils.common import fade_in_out
|
||||
|
||||
try:
|
||||
import tensorrt as trt
|
||||
except ImportError:
|
||||
...
|
||||
|
||||
class CosyVoiceModel:
|
||||
|
||||
@@ -66,10 +71,20 @@ class CosyVoiceModel:
|
||||
llm_llm = torch.jit.load(llm_llm_model)
|
||||
self.llm.llm = llm_llm
|
||||
|
||||
def load_trt(self):
|
||||
# TODO 你需要的TRT推理的准备
|
||||
self.flow.decoder.estimator = xxx
|
||||
self.flow.decoder.session = xxx
|
||||
def load_trt(self, model_dir, use_fp16):
|
||||
trt_file_name = 'estimator_fp16.plan' if use_fp16 else 'estimator_fp32.plan'
|
||||
trt_file_path = os.path.join(model_dir, trt_file_name)
|
||||
if not os.path.isfile(trt_file_path):
|
||||
raise f"{trt_file_path} does not exist. Please use bin/export_trt.py to generate .plan file"
|
||||
|
||||
trt.init_libnvinfer_plugins(None, "")
|
||||
logger = trt.Logger(trt.Logger.WARNING)
|
||||
runtime = trt.Runtime(logger)
|
||||
with open(trt_file_path, 'rb') as f:
|
||||
serialized_engine = f.read()
|
||||
engine = runtime.deserialize_cuda_engine(serialized_engine)
|
||||
self.flow.decoder.estimator_context = engine.create_execution_context()
|
||||
self.flow.decoder.estimator_engine = engine
|
||||
|
||||
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
||||
with self.llm_context:
|
||||
|
||||
@@ -159,7 +159,7 @@ class ConditionalDecoder(nn.Module):
|
||||
_type_: _description_
|
||||
"""
|
||||
|
||||
t = self.time_embeddings(t)
|
||||
t = self.time_embeddings(t).to(t.dtype)
|
||||
t = self.time_mlp(t)
|
||||
|
||||
x = pack([x, mu], "b * t")[0]
|
||||
|
||||
@@ -30,6 +30,9 @@ class ConditionalCFM(BASECFM):
|
||||
# Just change the architecture of the estimator here
|
||||
self.estimator = estimator
|
||||
|
||||
self.estimator_context = None
|
||||
self.estimator_engine = None
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
||||
"""Forward diffusion
|
||||
@@ -50,7 +53,7 @@ class ConditionalCFM(BASECFM):
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
z = torch.randn_like(mu) * temperature
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||
if self.t_scheduler == 'cosine':
|
||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
||||
@@ -71,6 +74,7 @@ class ConditionalCFM(BASECFM):
|
||||
cond: Not used but kept for future purposes
|
||||
"""
|
||||
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||
t = t.unsqueeze(dim=0)
|
||||
|
||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||
# Or in future might add like a return_all_steps flag
|
||||
@@ -96,13 +100,30 @@ class ConditionalCFM(BASECFM):
|
||||
|
||||
return sol[-1]
|
||||
|
||||
# TODO
|
||||
def forward_estimator(self):
|
||||
if isinstance(self.estimator, trt):
|
||||
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
||||
if self.estimator_context is not None:
|
||||
assert self.training is False, 'tensorrt cannot be used in training'
|
||||
return xxx
|
||||
bs = x.shape[0]
|
||||
hs = x.shape[1]
|
||||
seq_len = x.shape[2]
|
||||
# assert bs == 1 and hs == 80
|
||||
ret = torch.empty_like(x)
|
||||
self.estimator_context.set_input_shape("x", x.shape)
|
||||
self.estimator_context.set_input_shape("mask", mask.shape)
|
||||
self.estimator_context.set_input_shape("mu", mu.shape)
|
||||
self.estimator_context.set_input_shape("t", t.shape)
|
||||
self.estimator_context.set_input_shape("spks", spks.shape)
|
||||
self.estimator_context.set_input_shape("cond", cond.shape)
|
||||
bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()]
|
||||
|
||||
for i in range(len(bindings)):
|
||||
self.estimator_context.set_tensor_address(self.estimator_engine.get_tensor_name(i), bindings[i])
|
||||
|
||||
handle = torch.cuda.current_stream().cuda_stream
|
||||
self.estimator_context.execute_async_v3(stream_handle=handle)
|
||||
return ret
|
||||
else:
|
||||
return self.estimator.forward
|
||||
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
||||
|
||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
||||
"""Computes diffusion loss
|
||||
|
||||
Reference in New Issue
Block a user