support online onnx to trt conversion

This commit is contained in:
huzetao.hzt
2025-01-07 17:20:06 +08:00
parent 5d12ced727
commit b6a1116d15
4 changed files with 146 additions and 26 deletions

View File

@@ -149,7 +149,7 @@ class CosyVoice2(CosyVoice):
if load_jit:
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
if load_trt:
self.model.load_trt('{}/flow.decoder.estimator.{}.v100.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
self.model.load_trt('{}/flow.decoder.estimator'.format(model_dir), self.fp16)
del configs
def inference_instruct(self, *args, **kwargs):

View File

@@ -19,6 +19,7 @@ from torch.nn import functional as F
from contextlib import nullcontext
import uuid
from cosyvoice.utils.common import fade_in_out
from cosyvoice.trt.estimator_trt import EstimatorTRT
class CosyVoiceModel:
@@ -81,14 +82,9 @@ class CosyVoiceModel:
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
self.flow.encoder = flow_encoder
def load_trt(self, flow_decoder_estimator_model):
def load_trt(self, flow_decoder_estimator_model, fp16):
del self.flow.decoder.estimator
import tensorrt as trt
with open(flow_decoder_estimator_model, 'rb') as f:
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
if self.flow.decoder.estimator_engine is None:
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
self.flow.decoder.estimator = EstimatorTRT(flow_decoder_estimator_model, self.device, fp16)
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
with self.llm_context:

View File

@@ -120,24 +120,7 @@ class ConditionalCFM(BASECFM):
return sol[-1].float()
def forward_estimator(self, x, mask, mu, t, spks, cond):
if isinstance(self.estimator, torch.nn.Module):
return self.estimator.forward(x, mask, mu, t, spks, cond)
else:
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
self.estimator.set_input_shape('t', (2,))
self.estimator.set_input_shape('spks', (2, 80))
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
# run trt engine
self.estimator.execute_v2([x.contiguous().data_ptr(),
mask.contiguous().data_ptr(),
mu.contiguous().data_ptr(),
t.contiguous().data_ptr(),
spks.contiguous().data_ptr(),
cond.contiguous().data_ptr(),
x.data_ptr()])
return x
return self.estimator.forward(x, mask, mu, t, spks, cond)
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
"""Computes diffusion loss

View File

@@ -0,0 +1,141 @@
import os
import torch
import tensorrt as trt
import logging
import threading
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
class EstimatorTRT:
def __init__(self, path_prefix: str, device: torch.device, fp16: bool = True):
self.lock = threading.Lock()
self.device = device
with torch.cuda.device(device):
self.input_names = ["x", "mask", "mu", "t", "spks", "cond"]
self.output_name = "estimator_out"
onnx_path = path_prefix + ".fp32.onnx"
precision = ".fp16" if fp16 else ".fp32"
trt_path = path_prefix + precision +".plan"
self.fp16 = fp16
self.logger = trt.Logger(trt.Logger.INFO)
self.trt_runtime = trt.Runtime(self.logger)
save_trt = not os.environ.get("NOT_SAVE_TRT", "0") == "1"
if os.path.exists(trt_path):
self.engine = self._load_trt(trt_path)
else:
self.engine = self._convert_onnx_to_trt(onnx_path, trt_path, save_trt)
self.context = self.engine.create_execution_context()
def _convert_onnx_to_trt(
self, onnx_path: str, trt_path: str, save_trt: bool = True
):
logging.info("Converting onnx to trt...")
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
builder = trt.Builder(self.logger)
network = builder.create_network(network_flags)
parser = trt.OnnxParser(network, self.logger)
config = builder.create_builder_config()
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB
if (self.fp16):
config.set_flag(trt.BuilderFlag.FP16)
profile = builder.create_optimization_profile()
# load onnx model
with open(onnx_path, "rb") as f:
if not parser.parse(f.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
exit(1)
# set input shapes
for i in range(len(self.input_names)):
profile.set_shape(
self.input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i]
)
tensor_dtype = trt.DataType.HALF if self.fp16 else trt.DataType.FLOAT
# set input and output data type
for i in range(network.num_inputs):
input_tensor = network.get_input(i)
input_tensor.dtype = tensor_dtype
for i in range(network.num_outputs):
output_tensor = network.get_output(i)
output_tensor.dtype = tensor_dtype
config.add_optimization_profile(profile)
engine_bytes = builder.build_serialized_network(network, config)
# save trt engine
if save_trt:
with open(trt_path, "wb") as f:
f.write(engine_bytes)
print("trt engine saved to {}".format(trt_path))
engine = self.trt_runtime.deserialize_cuda_engine(engine_bytes)
return engine
def _load_trt(self, trt_path: str):
logging.info("Found trt engine, loading...")
with open(trt_path, "rb") as f:
engine_bytes = f.read()
engine = self.trt_runtime.deserialize_cuda_engine(engine_bytes)
return engine
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
mu: torch.Tensor,
t: torch.Tensor,
spks: torch.Tensor,
cond: torch.Tensor,
):
with self.lock:
with torch.cuda.device(self.device):
self.context.set_input_shape("x", (2, 80, x.size(2)))
self.context.set_input_shape("mask", (2, 1, x.size(2)))
self.context.set_input_shape("mu", (2, 80, x.size(2)))
self.context.set_input_shape("t", (2,))
self.context.set_input_shape("spks", (2, 80))
self.context.set_input_shape("cond", (2, 80, x.size(2)))
# run trt engine
self.context.execute_v2(
[
x.contiguous().data_ptr(),
mask.contiguous().data_ptr(),
mu.contiguous().data_ptr(),
t.contiguous().data_ptr(),
spks.contiguous().data_ptr(),
cond.contiguous().data_ptr(),
x.data_ptr(),
]
)
return x
def __call__(
self,
x: torch.Tensor,
mask: torch.Tensor,
mu: torch.Tensor,
t: torch.Tensor,
spks: torch.Tensor,
cond: torch.Tensor,
):
return self.forward(x, mask, mu, t, spks, cond)