This commit is contained in:
zhoubofan.zbf
2024-08-30 00:47:40 +08:00
parent 5f21aef786
commit 53a3c1b17f
4 changed files with 58 additions and 11 deletions

View File

@@ -38,23 +38,21 @@ def main():
args = get_args()
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
flow = cosyvoice.model.flow
estimator = cosyvoice.model.flow.decoder.estimator
dtype = torch.float32 if not args.export_half else torch.float16
device = torch.device("cuda")
batch_size = 1
seq_len = 1024
hidden_size = flow.output_size
seq_len = 256
hidden_size = cosyvoice.model.flow.output_size
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
mask = torch.zeros((batch_size, 1, seq_len), dtype=dtype, device=device)
mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device)
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
t = torch.tensor([0.], dtype=dtype, device=device)
t = torch.rand((batch_size, ), dtype=dtype, device=device)
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
onnx_file_name = 'estimator_fp16.onnx' if args.export_half else 'estimator_fp32.onnx'
onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx'
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
dummy_input = (x, mask, mu, t, spks, cond)
@@ -90,14 +88,24 @@ def main():
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
trt_file_name = 'estimator_fp16.plan' if args.export_half else 'estimator_fp32.plan'
trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
trt_file_path = os.path.join(args.model_dir, trt_file_name)
trtexec_cmd = f"{tensorrt_path}/bin/trtexec --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose"
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose " + \
("--fp16" if args.export_half else "")
# /ossfs/workspace/TensorRT-10.2.0.19/bin/trtexec --onnx=estimator_fp32.onnx --saveEngine=estimator_fp32.plan --minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 --maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose
print("execute ", trtexec_cmd)
os.system(trtexec_cmd)
print("x.shape", x.shape)
print("mask.shape", mask.shape)
print("mu.shape", mu.shape)
print("t.shape", t.shape)
print("spks.shape", spks.shape)
print("cond.shape", cond.shape)
if __name__ == "__main__":
main()

View File

@@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging
class CosyVoice:
def __init__(self, model_dir, load_jit=True, load_trt=True, use_fp16=False):
def __init__(self, model_dir, load_jit=True, load_trt=False, use_fp16=False):
instruct = True if '-Instruct' in model_dir else False
self.model_dir = model_dir
if not os.path.exists(model_dir):
@@ -39,11 +39,14 @@ class CosyVoice:
self.model.load('{}/llm.pt'.format(model_dir),
'{}/flow.pt'.format(model_dir),
'{}/hift.pt'.format(model_dir))
load_jit = False
if load_jit:
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
'{}/llm.llm.fp16.zip'.format(model_dir))
if load_trt:
self.model.load_trt(model_dir, use_fp16)
del configs
def list_avaliable_spks(self):

View File

@@ -107,7 +107,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
# concat text and prompt_text
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
mask = (~make_pad_mask(token_len)).to(embedding.dtype).unsqueeze(-1).to(embedding)
token = self.input_embedding(torch.clamp(token, min=0)) * mask
# text encode

View File

@@ -32,6 +32,7 @@ class ConditionalCFM(BASECFM):
self.estimator_context = None
self.estimator_engine = None
self.is_saved = None
@torch.inference_mode()
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
@@ -123,6 +124,41 @@ class ConditionalCFM(BASECFM):
self.estimator_context.execute_async_v3(stream_handle=handle)
return ret
else:
if self.is_saved == None:
self.is_saved = True
output = self.estimator.forward(x, mask, mu, t, spks, cond)
torch.save(x, "x.pt")
torch.save(mask, "mask.pt")
torch.save(mu, "mu.pt")
torch.save(t, "t.pt")
torch.save(spks, "spks.pt")
torch.save(cond, "cond.pt")
torch.save(output, "output.pt")
dummy_input = (x, mask, mu, t, spks, cond)
torch.onnx.export(
self.estimator,
dummy_input,
"estimator_fp32.onnx",
export_params=True,
opset_version=17,
do_constant_folding=True,
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
output_names=['output'],
dynamic_axes={
'x': {2: 'seq_len'},
'mask': {2: 'seq_len'},
'mu': {2: 'seq_len'},
'cond': {2: 'seq_len'},
'output': {2: 'seq_len'},
}
)
# print("x, x.shape", x, x.shape)
# print("mask, mask.shape", mask, mask.shape)
# print("mu, mu.shape", mu, mu.shape)
# print("t, t.shape", t, t.shape)
# print("spks, spks.shape", spks, spks.shape)
# print("cond, cond.shape", cond, cond.shape)
return self.estimator.forward(x, mask, mu, t, spks, cond)
def compute_loss(self, x1, mask, mu, spks=None, cond=None):