mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
add online trt export
This commit is contained in:
@@ -128,8 +128,6 @@ import torchaudio
|
||||
|
||||
**CosyVoice2 Usage**
|
||||
```python
|
||||
# NOTE if you want to use tensorRT to accerlate the flow matching inference, please set load_trt=True.
|
||||
# if you don't want to save tensorRT model on disk, please set environment variable `NOT_SAVE_TRT=1`.
|
||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
|
||||
|
||||
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
||||
|
||||
@@ -53,7 +53,9 @@ class CosyVoice:
|
||||
'{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
'{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||
if load_trt:
|
||||
self.model.load_trt('{}/flow.decoder.estimator.{}.v100.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
||||
self.fp16)
|
||||
del configs
|
||||
|
||||
def list_available_spks(self):
|
||||
@@ -149,7 +151,9 @@ class CosyVoice2(CosyVoice):
|
||||
if load_jit:
|
||||
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||
if load_trt:
|
||||
self.model.load_trt('{}/flow.decoder.estimator'.format(model_dir), self.fp16)
|
||||
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
||||
self.fp16)
|
||||
del configs
|
||||
|
||||
def inference_instruct(self, *args, **kwargs):
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import torch
|
||||
import numpy as np
|
||||
import threading
|
||||
@@ -19,7 +20,7 @@ from torch.nn import functional as F
|
||||
from contextlib import nullcontext
|
||||
import uuid
|
||||
from cosyvoice.utils.common import fade_in_out
|
||||
from cosyvoice.trt.estimator_trt import EstimatorTRT
|
||||
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
||||
|
||||
|
||||
class CosyVoiceModel:
|
||||
@@ -36,6 +37,9 @@ class CosyVoiceModel:
|
||||
self.fp16 = fp16
|
||||
self.llm.fp16 = fp16
|
||||
self.flow.fp16 = fp16
|
||||
if self.fp16 is True:
|
||||
self.llm.half()
|
||||
self.flow.half()
|
||||
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
||||
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
||||
self.token_overlap_len = 20
|
||||
@@ -70,9 +74,6 @@ class CosyVoiceModel:
|
||||
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
||||
self.hift.load_state_dict(hift_state_dict, strict=True)
|
||||
self.hift.to(self.device).eval()
|
||||
if self.fp16 is True:
|
||||
self.llm.half()
|
||||
self.flow.half()
|
||||
|
||||
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
||||
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
||||
@@ -82,9 +83,17 @@ class CosyVoiceModel:
|
||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||
self.flow.encoder = flow_encoder
|
||||
|
||||
def load_trt(self, flow_decoder_estimator_model, fp16):
|
||||
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
|
||||
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
||||
if not os.path.exists(flow_decoder_estimator_model):
|
||||
convert_onnx_to_trt(flow_decoder_estimator_model, flow_decoder_onnx_model, fp16)
|
||||
del self.flow.decoder.estimator
|
||||
self.flow.decoder.estimator = EstimatorTRT(flow_decoder_estimator_model, self.device, fp16)
|
||||
import tensorrt as trt
|
||||
with open(flow_decoder_estimator_model, 'rb') as f:
|
||||
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||
if self.flow.decoder.estimator_engine is None:
|
||||
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
|
||||
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
||||
|
||||
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
||||
with self.llm_context:
|
||||
@@ -269,6 +278,9 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
self.fp16 = fp16
|
||||
self.llm.fp16 = fp16
|
||||
self.flow.fp16 = fp16
|
||||
if self.fp16 is True:
|
||||
self.llm.half()
|
||||
self.flow.half()
|
||||
self.token_hop_len = 2 * self.flow.input_frame_rate
|
||||
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
|
||||
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
|
||||
|
||||
@@ -21,7 +21,6 @@ import torchaudio
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
import torch.nn.functional as F
|
||||
|
||||
torchaudio.set_audio_backend('soundfile')
|
||||
|
||||
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
||||
|
||||
|
||||
@@ -134,12 +134,12 @@ class ConditionalCFM(BASECFM):
|
||||
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||
# run trt engine
|
||||
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr()])
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr()])
|
||||
return x
|
||||
|
||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils import weight_norm
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
from typing import List, Optional, Tuple
|
||||
from einops import rearrange
|
||||
from torchaudio.transforms import Spectrogram
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils import weight_norm
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
|
||||
|
||||
class ConvRNNF0Predictor(nn.Module):
|
||||
|
||||
@@ -23,7 +23,7 @@ import torch.nn.functional as F
|
||||
from torch.nn import Conv1d
|
||||
from torch.nn import ConvTranspose1d
|
||||
from torch.nn.utils import remove_weight_norm
|
||||
from torch.nn.utils import weight_norm
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
from torch.distributions.uniform import Uniform
|
||||
|
||||
from cosyvoice.transformer.activation import Snake
|
||||
|
||||
@@ -1,141 +0,0 @@
|
||||
import os
|
||||
import torch
|
||||
import tensorrt as trt
|
||||
import logging
|
||||
import threading
|
||||
|
||||
|
||||
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
|
||||
|
||||
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
|
||||
|
||||
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
|
||||
|
||||
|
||||
class EstimatorTRT:
|
||||
def __init__(self, path_prefix: str, device: torch.device, fp16: bool = True):
|
||||
self.lock = threading.Lock()
|
||||
self.device = device
|
||||
with torch.cuda.device(device):
|
||||
self.input_names = ["x", "mask", "mu", "t", "spks", "cond"]
|
||||
self.output_name = "estimator_out"
|
||||
|
||||
onnx_path = path_prefix + ".fp32.onnx"
|
||||
precision = ".fp16" if fp16 else ".fp32"
|
||||
trt_path = path_prefix + precision +".plan"
|
||||
|
||||
self.fp16 = fp16
|
||||
self.logger = trt.Logger(trt.Logger.INFO)
|
||||
self.trt_runtime = trt.Runtime(self.logger)
|
||||
|
||||
save_trt = not os.environ.get("NOT_SAVE_TRT", "0") == "1"
|
||||
|
||||
if os.path.exists(trt_path):
|
||||
self.engine = self._load_trt(trt_path)
|
||||
else:
|
||||
self.engine = self._convert_onnx_to_trt(onnx_path, trt_path, save_trt)
|
||||
|
||||
self.context = self.engine.create_execution_context()
|
||||
|
||||
def _convert_onnx_to_trt(
|
||||
self, onnx_path: str, trt_path: str, save_trt: bool = True
|
||||
):
|
||||
logging.info("Converting onnx to trt...")
|
||||
|
||||
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
||||
builder = trt.Builder(self.logger)
|
||||
network = builder.create_network(network_flags)
|
||||
parser = trt.OnnxParser(network, self.logger)
|
||||
config = builder.create_builder_config()
|
||||
|
||||
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB
|
||||
if (self.fp16):
|
||||
config.set_flag(trt.BuilderFlag.FP16)
|
||||
|
||||
profile = builder.create_optimization_profile()
|
||||
|
||||
# load onnx model
|
||||
with open(onnx_path, "rb") as f:
|
||||
if not parser.parse(f.read()):
|
||||
for error in range(parser.num_errors):
|
||||
print(parser.get_error(error))
|
||||
exit(1)
|
||||
|
||||
# set input shapes
|
||||
for i in range(len(self.input_names)):
|
||||
profile.set_shape(
|
||||
self.input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i]
|
||||
)
|
||||
|
||||
tensor_dtype = trt.DataType.HALF if self.fp16 else trt.DataType.FLOAT
|
||||
|
||||
# set input and output data type
|
||||
for i in range(network.num_inputs):
|
||||
input_tensor = network.get_input(i)
|
||||
input_tensor.dtype = tensor_dtype
|
||||
|
||||
for i in range(network.num_outputs):
|
||||
output_tensor = network.get_output(i)
|
||||
output_tensor.dtype = tensor_dtype
|
||||
|
||||
config.add_optimization_profile(profile)
|
||||
engine_bytes = builder.build_serialized_network(network, config)
|
||||
|
||||
# save trt engine
|
||||
if save_trt:
|
||||
with open(trt_path, "wb") as f:
|
||||
f.write(engine_bytes)
|
||||
print("trt engine saved to {}".format(trt_path))
|
||||
|
||||
engine = self.trt_runtime.deserialize_cuda_engine(engine_bytes)
|
||||
return engine
|
||||
|
||||
def _load_trt(self, trt_path: str):
|
||||
logging.info("Found trt engine, loading...")
|
||||
|
||||
with open(trt_path, "rb") as f:
|
||||
engine_bytes = f.read()
|
||||
engine = self.trt_runtime.deserialize_cuda_engine(engine_bytes)
|
||||
return engine
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask: torch.Tensor,
|
||||
mu: torch.Tensor,
|
||||
t: torch.Tensor,
|
||||
spks: torch.Tensor,
|
||||
cond: torch.Tensor,
|
||||
):
|
||||
with self.lock:
|
||||
with torch.cuda.device(self.device):
|
||||
self.context.set_input_shape("x", (2, 80, x.size(2)))
|
||||
self.context.set_input_shape("mask", (2, 1, x.size(2)))
|
||||
self.context.set_input_shape("mu", (2, 80, x.size(2)))
|
||||
self.context.set_input_shape("t", (2,))
|
||||
self.context.set_input_shape("spks", (2, 80))
|
||||
self.context.set_input_shape("cond", (2, 80, x.size(2)))
|
||||
# run trt engine
|
||||
self.context.execute_v2(
|
||||
[
|
||||
x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr(),
|
||||
]
|
||||
)
|
||||
return x
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask: torch.Tensor,
|
||||
mu: torch.Tensor,
|
||||
t: torch.Tensor,
|
||||
spks: torch.Tensor,
|
||||
cond: torch.Tensor,
|
||||
):
|
||||
return self.forward(x, mask, mu, t, spks, cond)
|
||||
@@ -1,5 +1,5 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu, Zetao Hu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -14,6 +14,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import tensorrt as trt
|
||||
import torchaudio
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
@@ -45,3 +46,44 @@ def load_wav(wav, target_sr):
|
||||
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
||||
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
||||
return speech
|
||||
|
||||
|
||||
def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
||||
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
|
||||
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
|
||||
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
|
||||
input_names = ["x", "mask", "mu", "t", "spks", "cond"]
|
||||
|
||||
logging.info("Converting onnx to trt...")
|
||||
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
||||
logger = trt.Logger(trt.Logger.INFO)
|
||||
builder = trt.Builder(logger)
|
||||
network = builder.create_network(network_flags)
|
||||
parser = trt.OnnxParser(network, logger)
|
||||
config = builder.create_builder_config()
|
||||
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB
|
||||
if fp16:
|
||||
config.set_flag(trt.BuilderFlag.FP16)
|
||||
profile = builder.create_optimization_profile()
|
||||
# load onnx model
|
||||
with open(onnx_model, "rb") as f:
|
||||
if not parser.parse(f.read()):
|
||||
for error in range(parser.num_errors):
|
||||
print(parser.get_error(error))
|
||||
raise ValueError('failed to parse {}'.format(onnx_model))
|
||||
# set input shapes
|
||||
for i in range(len(input_names)):
|
||||
profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i])
|
||||
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
|
||||
# set input and output data type
|
||||
for i in range(network.num_inputs):
|
||||
input_tensor = network.get_input(i)
|
||||
input_tensor.dtype = tensor_dtype
|
||||
for i in range(network.num_outputs):
|
||||
output_tensor = network.get_output(i)
|
||||
output_tensor.dtype = tensor_dtype
|
||||
config.add_optimization_profile(profile)
|
||||
engine_bytes = builder.build_serialized_network(network, config)
|
||||
# save trt engine
|
||||
with open(trt_model, "wb") as f:
|
||||
f.write(engine_bytes)
|
||||
|
||||
@@ -24,7 +24,7 @@ import numpy as np
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
|
||||
app = FastAPI()
|
||||
@@ -79,5 +79,11 @@ if __name__ == '__main__':
|
||||
default='iic/CosyVoice-300M',
|
||||
help='local path or modelscope repo id')
|
||||
args = parser.parse_args()
|
||||
cosyvoice = CosyVoice(args.model_dir)
|
||||
try:
|
||||
cosyvoice = CosyVoice(args.model_dir)
|
||||
except Exception:
|
||||
try:
|
||||
cosyvoice = CosyVoice2(args.model_dir)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
||||
|
||||
@@ -25,7 +25,7 @@ import numpy as np
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
@@ -33,7 +33,13 @@ logging.basicConfig(level=logging.DEBUG,
|
||||
|
||||
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
|
||||
def __init__(self, args):
|
||||
self.cosyvoice = CosyVoice(args.model_dir)
|
||||
try:
|
||||
self.cosyvoice = CosyVoice(args.model_dir)
|
||||
except Exception:
|
||||
try:
|
||||
self.cosyvoice = CosyVoice2(args.model_dir)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
logging.info('grpc service initialized')
|
||||
|
||||
def Inference(self, request, context):
|
||||
|
||||
9
webui.py
9
webui.py
@@ -184,7 +184,14 @@ if __name__ == '__main__':
|
||||
default='pretrained_models/CosyVoice2-0.5B',
|
||||
help='local path or modelscope repo id')
|
||||
args = parser.parse_args()
|
||||
cosyvoice = CosyVoice2(args.model_dir) if 'CosyVoice2' in args.model_dir else CosyVoice(args.model_dir)
|
||||
try:
|
||||
cosyvoice = CosyVoice(args.model_dir)
|
||||
except Exception:
|
||||
try:
|
||||
cosyvoice = CosyVoice2(args.model_dir)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
|
||||
sft_spk = cosyvoice.list_available_spks()
|
||||
prompt_sr = 16000
|
||||
default_data = np.zeros(cosyvoice.sample_rate)
|
||||
|
||||
Reference in New Issue
Block a user