mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
add instruct usage
This commit is contained in:
@@ -139,6 +139,9 @@ cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=True, load_
|
||||
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
# instruct usage
|
||||
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
# cosyvoice
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=True, load_onnx=False, fp16=True)
|
||||
|
||||
@@ -98,6 +98,7 @@ class CosyVoice:
|
||||
start_time = time.time()
|
||||
|
||||
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0):
|
||||
assert isinstance(self.model, CosyVoiceModel)
|
||||
if self.frontend.instruct is False:
|
||||
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
||||
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
||||
@@ -111,6 +112,18 @@ class CosyVoice:
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0):
|
||||
assert isinstance(self.model, CosyVoice2Model)
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
||||
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
||||
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
|
||||
@@ -152,7 +152,7 @@ class CosyVoiceFrontEnd:
|
||||
if resample_rate == 24000:
|
||||
# cosyvoice2, force speech_feat % speech_token = 2
|
||||
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
||||
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2* token_len
|
||||
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
||||
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
||||
@@ -181,6 +181,25 @@ class CosyVoiceFrontEnd:
|
||||
model_input['prompt_text_len'] = instruct_text_token_len
|
||||
return model_input
|
||||
|
||||
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
|
||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||
prompt_text_token, prompt_text_token_len = self._extract_text_token(instruct_text + '<|endofprompt|>')
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
||||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||
if resample_rate == 24000:
|
||||
# cosyvoice2, force speech_feat % speech_token = 2
|
||||
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
||||
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
||||
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
||||
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
||||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
||||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
||||
'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||
return model_input
|
||||
|
||||
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
|
||||
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||
|
||||
2
webui.py
2
webui.py
@@ -144,7 +144,7 @@ def main():
|
||||
with gr.Row():
|
||||
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0])
|
||||
instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5)
|
||||
sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=0.25)
|
||||
sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0] if len(sft_spk) != 0 else '', scale=0.25)
|
||||
stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1])
|
||||
speed = gr.Number(value=1, label="速度调节(仅支持非流式推理)", minimum=0.5, maximum=2.0, step=0.1)
|
||||
with gr.Column(scale=0.25):
|
||||
|
||||
Reference in New Issue
Block a user