mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
Merge pull request #810 from FunAudioLLM/dev/lyuxiang.lx
add some instruction and assert
This commit is contained in:
@@ -121,13 +121,10 @@ We strongly recommend using `CosyVoice2-0.5B` for better performance.
|
||||
For zero_shot/cross_lingual inference, please use `CosyVoice-300M` model.
|
||||
For sft inference, please use `CosyVoice-300M-SFT` model.
|
||||
For instruct inference, please use `CosyVoice-300M-Instruct` model.
|
||||
First, add `third_party/Matcha-TTS` to your `PYTHONPATH`.
|
||||
|
||||
``` sh
|
||||
export PYTHONPATH=third_party/Matcha-TTS
|
||||
```
|
||||
|
||||
``` python
|
||||
import sys
|
||||
sys.path.append('third_party/Matcha-TTS')
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
import torchaudio
|
||||
@@ -161,7 +158,7 @@ print(cosyvoice.list_available_spks())
|
||||
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
|
||||
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-25Hz') # or change to pretrained_models/CosyVoice-300M for 50Hz inference
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M') # or change to pretrained_models/CosyVoice-300M-25Hz for 25Hz inference
|
||||
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
|
||||
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||
|
||||
@@ -20,23 +20,24 @@ import torch
|
||||
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
from cosyvoice.utils.class_utils import get_model_type
|
||||
|
||||
|
||||
class CosyVoice:
|
||||
|
||||
def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True):
|
||||
instruct = True if '-Instruct' in model_dir else False
|
||||
self.instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
if not os.path.exists(model_dir):
|
||||
model_dir = snapshot_download(model_dir)
|
||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
assert get_model_type(configs) == CosyVoiceModel, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||
configs['feat_extractor'],
|
||||
'{}/campplus.onnx'.format(model_dir),
|
||||
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
||||
'{}/spk2info.pt'.format(model_dir),
|
||||
instruct,
|
||||
configs['allowed_special'])
|
||||
self.sample_rate = configs['sample_rate']
|
||||
if torch.cuda.is_available() is False and (fp16 is True or load_jit is True):
|
||||
@@ -85,8 +86,6 @@ class CosyVoice:
|
||||
start_time = time.time()
|
||||
|
||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||
if self.frontend.instruct is True and isinstance(self.model, CosyVoiceModel):
|
||||
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
@@ -98,8 +97,8 @@ class CosyVoice:
|
||||
start_time = time.time()
|
||||
|
||||
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
||||
assert isinstance(self.model, CosyVoiceModel)
|
||||
if self.frontend.instruct is False:
|
||||
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
|
||||
if self.instruct is False:
|
||||
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
||||
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
@@ -112,18 +111,6 @@ class CosyVoice:
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||
assert isinstance(self.model, CosyVoice2Model)
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
||||
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
@@ -137,18 +124,18 @@ class CosyVoice:
|
||||
class CosyVoice2(CosyVoice):
|
||||
|
||||
def __init__(self, model_dir, load_jit=False, load_onnx=False, load_trt=False):
|
||||
instruct = True if '-Instruct' in model_dir else False
|
||||
self.instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
if not os.path.exists(model_dir):
|
||||
model_dir = snapshot_download(model_dir)
|
||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
||||
assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||
configs['feat_extractor'],
|
||||
'{}/campplus.onnx'.format(model_dir),
|
||||
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
|
||||
'{}/spk2info.pt'.format(model_dir),
|
||||
instruct,
|
||||
configs['allowed_special'])
|
||||
self.sample_rate = configs['sample_rate']
|
||||
if torch.cuda.is_available() is False and load_jit is True:
|
||||
@@ -168,3 +155,18 @@ class CosyVoice2(CosyVoice):
|
||||
if load_trt:
|
||||
self.model.load_trt('{}/flow.decoder.estimator.fp16.Volta.plan'.format(model_dir))
|
||||
del configs
|
||||
|
||||
def inference_instruct(self, *args, **kwargs):
|
||||
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
||||
|
||||
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
@@ -42,7 +42,6 @@ class CosyVoiceFrontEnd:
|
||||
campplus_model: str,
|
||||
speech_tokenizer_model: str,
|
||||
spk2info: str = '',
|
||||
instruct: bool = False,
|
||||
allowed_special: str = 'all'):
|
||||
self.tokenizer = get_tokenizer()
|
||||
self.feat_extractor = feat_extractor
|
||||
@@ -58,9 +57,7 @@ class CosyVoiceFrontEnd:
|
||||
self.spk2info = torch.load(spk2info, map_location=self.device)
|
||||
else:
|
||||
self.spk2info = {}
|
||||
self.instruct = instruct
|
||||
self.allowed_special = allowed_special
|
||||
self.inflect_parser = inflect.engine()
|
||||
self.use_ttsfrd = use_ttsfrd
|
||||
if self.use_ttsfrd:
|
||||
self.frd = ttsfrd.TtsFrontendEngine()
|
||||
@@ -71,6 +68,7 @@ class CosyVoiceFrontEnd:
|
||||
else:
|
||||
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
|
||||
self.en_tn_model = EnNormalizer()
|
||||
self.inflect_parser = inflect.engine()
|
||||
|
||||
def _extract_text_token(self, text):
|
||||
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
||||
@@ -111,15 +109,11 @@ class CosyVoiceFrontEnd:
|
||||
if text_frontend is False:
|
||||
return [text] if split is True else text
|
||||
text = text.strip()
|
||||
# When generating text that contains only punctuation marks or whitespace characters
|
||||
# - Returning empty texts ensures consistent processing logic.
|
||||
if is_only_punctuation(text):
|
||||
return []
|
||||
if contains_chinese(text):
|
||||
if self.use_ttsfrd:
|
||||
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
||||
text = ''.join(texts)
|
||||
else:
|
||||
if self.use_ttsfrd:
|
||||
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
||||
text = ''.join(texts)
|
||||
else:
|
||||
if contains_chinese(text):
|
||||
text = self.zh_tn_model.normalize(text)
|
||||
text = text.replace("\n", "")
|
||||
text = replace_blank(text)
|
||||
@@ -130,18 +124,13 @@ class CosyVoiceFrontEnd:
|
||||
text = re.sub(r'[,,、]+$', '。', text)
|
||||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
||||
token_min_n=60, merge_len=20, comma_split=False))
|
||||
else:
|
||||
if self.use_ttsfrd:
|
||||
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
||||
text = ''.join(texts)
|
||||
else:
|
||||
text = self.en_tn_model.normalize(text)
|
||||
text = spell_out_number(text, self.inflect_parser)
|
||||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
||||
token_min_n=60, merge_len=20, comma_split=False))
|
||||
if split is False:
|
||||
return text
|
||||
return texts
|
||||
texts = [i for i in texts if not is_only_punctuation(i)]
|
||||
return texts if split is True else text
|
||||
|
||||
def frontend_sft(self, tts_text, spk_id):
|
||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||
@@ -188,22 +177,9 @@ class CosyVoiceFrontEnd:
|
||||
return model_input
|
||||
|
||||
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
|
||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||
prompt_text_token, prompt_text_token_len = self._extract_text_token(instruct_text + '<|endofprompt|>')
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
||||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||
if resample_rate == 24000:
|
||||
# cosyvoice2, force speech_feat % speech_token = 2
|
||||
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
||||
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
||||
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
||||
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
||||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
||||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
||||
'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate)
|
||||
del model_input['llm_prompt_speech_token']
|
||||
del model_input['llm_prompt_speech_token_len']
|
||||
return model_input
|
||||
|
||||
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
|
||||
|
||||
@@ -316,6 +316,8 @@ class CosyVoice2Model:
|
||||
import tensorrt as trt
|
||||
with open(flow_decoder_estimator_model, 'rb') as f:
|
||||
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||
if self.flow.decoder.estimator_engine is None:
|
||||
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
|
||||
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
||||
self.flow.decoder.fp16 = True
|
||||
|
||||
|
||||
@@ -32,6 +32,10 @@ from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
||||
RelPositionMultiHeadedAttention)
|
||||
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
||||
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
||||
from cosyvoice.llm.llm import TransformerLM, Qwen2LM
|
||||
from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec
|
||||
from cosyvoice.hifigan.generator import HiFTGenerator
|
||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
||||
|
||||
|
||||
COSYVOICE_ACTIVATION_CLASSES = {
|
||||
@@ -68,3 +72,11 @@ COSYVOICE_ATTENTION_CLASSES = {
|
||||
"selfattn": MultiHeadedAttention,
|
||||
"rel_selfattn": RelPositionMultiHeadedAttention,
|
||||
}
|
||||
|
||||
|
||||
def get_model_type(configs):
|
||||
if isinstance(configs['llm'], TransformerLM) and isinstance(configs['flow'], MaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
||||
return CosyVoiceModel
|
||||
if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
||||
return CosyVoice2Model
|
||||
raise TypeError('No valid model type found!')
|
||||
|
||||
4
webui.py
4
webui.py
@@ -69,7 +69,7 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
|
||||
prompt_wav = None
|
||||
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
|
||||
if mode_checkbox_group in ['自然语言控制']:
|
||||
if cosyvoice.frontend.instruct is False:
|
||||
if cosyvoice.instruct is False:
|
||||
gr.Warning('您正在使用自然语言控制模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M-Instruct模型'.format(args.model_dir))
|
||||
yield (cosyvoice.sample_rate, default_data)
|
||||
if instruct_text == '':
|
||||
@@ -79,7 +79,7 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
|
||||
gr.Info('您正在使用自然语言控制模式, prompt音频/prompt文本会被忽略')
|
||||
# if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
|
||||
if mode_checkbox_group in ['跨语种复刻']:
|
||||
if cosyvoice.frontend.instruct is True:
|
||||
if cosyvoice.instruct is True:
|
||||
gr.Warning('您正在使用跨语种复刻模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M模型'.format(args.model_dir))
|
||||
yield (cosyvoice.sample_rate, default_data)
|
||||
if instruct_text != '':
|
||||
|
||||
Reference in New Issue
Block a user