mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
Compare commits
232 Commits
hengwu.zty
...
dev/wucong
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0a44bca692 | ||
|
|
d94908f9d7 | ||
|
|
11dbd88947 | ||
|
|
9a4aebb0ea | ||
|
|
54e9384fb1 | ||
|
|
f280558bcb | ||
|
|
f6a18ee07a | ||
|
|
4df0683a37 | ||
|
|
c37c00ff94 | ||
|
|
fd45708e4b | ||
|
|
296ed4f526 | ||
|
|
95e99e0417 | ||
|
|
ba6d8c07ba | ||
|
|
da3f129977 | ||
|
|
2889c25863 | ||
|
|
aa65200713 | ||
|
|
86e26f54c7 | ||
|
|
f1c214377c | ||
|
|
369ea80bd4 | ||
|
|
69518b2bde | ||
|
|
276cfa02b6 | ||
|
|
190840b8dc | ||
|
|
c6c3f27ecc | ||
|
|
49761d2474 | ||
|
|
07e477519b | ||
|
|
41c5e8cd6d | ||
|
|
66ceaff472 | ||
|
|
07a314767f | ||
|
|
0b75c3a03f | ||
|
|
b4dea3d64a | ||
|
|
43f9e9ab20 | ||
|
|
025f6f0f7f | ||
|
|
69051d11ec | ||
|
|
59fa786769 | ||
|
|
f38f594303 | ||
|
|
eb4d5d053f | ||
|
|
d450c32296 | ||
|
|
e84d72a4d9 | ||
|
|
06e86619c2 | ||
|
|
e257c16796 | ||
|
|
87475ccf41 | ||
|
|
8a1bce6c81 | ||
|
|
b1e966309d | ||
|
|
b95f18909e | ||
|
|
1cfc5dd077 | ||
|
|
d2e43fe6f4 | ||
|
|
426c4001ca | ||
|
|
92f1c659b9 | ||
|
|
ac75ae5184 | ||
|
|
1e52c6071e | ||
|
|
2a0dd5447a | ||
|
|
b6a1116d15 | ||
|
|
5d12ced727 | ||
|
|
2ea414922a | ||
|
|
f0b5fbb658 | ||
|
|
0b17753abe | ||
|
|
9e156428e2 | ||
|
|
99ab0f4fcb | ||
|
|
77d8cf13a3 | ||
|
|
6b21f8e82c | ||
|
|
2745d47e92 | ||
|
|
737d10191b | ||
|
|
d3b1a8e352 | ||
|
|
88f6a8e2fa | ||
|
|
b9ddcba5fd | ||
|
|
1f30317247 | ||
|
|
bfcbc73df8 | ||
|
|
4d49b68207 | ||
|
|
5aa3a46d96 | ||
|
|
b60c37b31a | ||
|
|
3d0458af31 | ||
|
|
0f6ff298dd | ||
|
|
877cf1c873 | ||
|
|
dec008e1b7 | ||
|
|
178f4bbaf9 | ||
|
|
5627adefb1 | ||
|
|
d95aaea3c5 | ||
|
|
bd4be3fc05 | ||
|
|
7a969b10bb | ||
|
|
87cec23fd0 | ||
|
|
5b4ddd26fa | ||
|
|
0d1e562f1d | ||
|
|
b00d8a073c | ||
|
|
8a88446858 | ||
|
|
26c774098d | ||
|
|
81edc83648 | ||
|
|
60b0416229 | ||
|
|
32e6684025 | ||
|
|
8ec41faf91 | ||
|
|
6c93fe86c5 | ||
|
|
8266566144 | ||
|
|
091e5c4ed8 | ||
|
|
1298d90e48 | ||
|
|
bcc58cb4cb | ||
|
|
1d8d94de82 | ||
|
|
0993ec5f08 | ||
|
|
c4688b68eb | ||
|
|
d43a0171d4 | ||
|
|
c4c8050532 | ||
|
|
3581caec76 | ||
|
|
94d6ce1006 | ||
|
|
ac70560364 | ||
|
|
6b5931dc70 | ||
|
|
7c561b6a7f | ||
|
|
30851ede4b | ||
|
|
fc3ff075ec | ||
|
|
e982eecc27 | ||
|
|
66fbcf6ac2 | ||
|
|
07d23ab08b | ||
|
|
0bcd2318c7 | ||
|
|
c9b047fbda | ||
|
|
66ae73e409 | ||
|
|
1e853ed080 | ||
|
|
6b9cebea14 | ||
|
|
9b8f28aa32 | ||
|
|
2511a49a72 | ||
|
|
014fed4405 | ||
|
|
f56c2583e8 | ||
|
|
84015697c2 | ||
|
|
c693039d14 | ||
|
|
2345ce6be2 | ||
|
|
0bf706c26f | ||
|
|
3e381002d7 | ||
|
|
cde3cec6fa | ||
|
|
07352a50b3 | ||
|
|
dc3f6432ba | ||
|
|
d6dbdfbf31 | ||
|
|
c3dfd23399 | ||
|
|
7701325969 | ||
|
|
5ed5bb15c8 | ||
|
|
6d22d0b76f | ||
|
|
487701c98c | ||
|
|
3914b54c82 | ||
|
|
a2ece33477 | ||
|
|
3411e1f599 | ||
|
|
dfcd6d0a64 | ||
|
|
16d66dc6a6 | ||
|
|
d8f00f4793 | ||
|
|
0930b4a106 | ||
|
|
d554db7e32 | ||
|
|
027e1ccb82 | ||
|
|
d1f7c1c9d7 | ||
|
|
5bd5dfecab | ||
|
|
18b9a8c844 | ||
|
|
0f19b97c5a | ||
|
|
a4db3db8ed | ||
|
|
ace734def8 | ||
|
|
5157baf166 | ||
|
|
6b7286eb62 | ||
|
|
21ddaeccf2 | ||
|
|
7e6d60c24c | ||
|
|
de76577a9f | ||
|
|
29507bc77a | ||
|
|
555efd0301 | ||
|
|
ea7d709fbb | ||
|
|
73784974ce | ||
|
|
789ee9e5e7 | ||
|
|
cb200b21c5 | ||
|
|
8130abb5ea | ||
|
|
c9acce1482 | ||
|
|
d49259855b | ||
|
|
67f298d94a | ||
|
|
4a1ec98304 | ||
|
|
0b76dfa1eb | ||
|
|
74a449ad1f | ||
|
|
9c0aa1918b | ||
|
|
2c1877a5d4 | ||
|
|
abc6f70ace | ||
|
|
ffa28e3bbd | ||
|
|
8555ab4ded | ||
|
|
69202008ce | ||
|
|
ba3d9693da | ||
|
|
06934c38c7 | ||
|
|
d52358f6c5 | ||
|
|
72b89a52fb | ||
|
|
49015f63e6 | ||
|
|
ed87445540 | ||
|
|
f6d44af146 | ||
|
|
7a2014bee3 | ||
|
|
95051e5761 | ||
|
|
f65eca6723 | ||
|
|
cd26f11859 | ||
|
|
28f1353324 | ||
|
|
f6b5c42823 | ||
|
|
ff8e63567a | ||
|
|
2665b06e95 | ||
|
|
2898d5a851 | ||
|
|
e19e80fcd8 | ||
|
|
f517d3627a | ||
|
|
9e0b99e48e | ||
|
|
df653f1e98 | ||
|
|
c6b16c06e8 | ||
|
|
c901a12789 | ||
|
|
122df8c420 | ||
|
|
1d05ae5fd3 | ||
|
|
73271d46f9 | ||
|
|
7b3e285bca | ||
|
|
bcda6d807c | ||
|
|
4d6a55243c | ||
|
|
33a585374a | ||
|
|
90433f5373 | ||
|
|
eeebc45313 | ||
|
|
9100813b79 | ||
|
|
7f5e391041 | ||
|
|
e141634da1 | ||
|
|
11eacb810e | ||
|
|
7555afb90a | ||
|
|
2ce724045b | ||
|
|
7795445ed9 | ||
|
|
d8197de4cc | ||
|
|
752103a307 | ||
|
|
a801416805 | ||
|
|
fadb22086f | ||
|
|
d2dea3d928 | ||
|
|
ee988420f3 | ||
|
|
18599be8d5 | ||
|
|
29408360fb | ||
|
|
6e7f5b922a | ||
|
|
53a3c1b17f | ||
|
|
20e0715dac | ||
|
|
662012999a | ||
|
|
1ab3186799 | ||
|
|
5f21aef786 | ||
|
|
1d881df8b2 | ||
|
|
f1e374a9bb | ||
|
|
8b097f7625 | ||
|
|
dcc943db43 | ||
|
|
9ab298dd49 | ||
|
|
bb690d9d1e | ||
|
|
f4e70e222c | ||
|
|
02f941d348 | ||
|
|
a13411c561 |
56
.github/workflows/lint.yml
vendored
Normal file
56
.github/workflows/lint.yml
vendored
Normal file
@@ -0,0 +1,56 @@
|
|||||||
|
name: Lint
|
||||||
|
|
||||||
|
on:
|
||||||
|
pull_request:
|
||||||
|
push:
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
quick-checks:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Fetch CosyVoice
|
||||||
|
uses: actions/checkout@v1
|
||||||
|
- name: Checkout PR tip
|
||||||
|
run: |
|
||||||
|
set -eux
|
||||||
|
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
|
||||||
|
# We are on a PR, so actions/checkout leaves us on a merge commit.
|
||||||
|
# Check out the actual tip of the branch.
|
||||||
|
git checkout ${{ github.event.pull_request.head.sha }}
|
||||||
|
fi
|
||||||
|
echo ::set-output name=commit_sha::$(git rev-parse HEAD)
|
||||||
|
id: get_pr_tip
|
||||||
|
- name: Ensure no tabs
|
||||||
|
run: |
|
||||||
|
(! git grep -I -l $'\t' -- . ':(exclude)*.txt' ':(exclude)*.svg' ':(exclude)**Makefile' ':(exclude)**/contrib/**' ':(exclude)third_party' ':(exclude).gitattributes' ':(exclude).gitmodules' || (echo "The above files have tabs; please convert them to spaces"; false))
|
||||||
|
- name: Ensure no trailing whitespace
|
||||||
|
run: |
|
||||||
|
(! git grep -I -n $' $' -- . ':(exclude)*.txt' ':(exclude)third_party' ':(exclude).gitattributes' ':(exclude).gitmodules' || (echo "The above files have trailing whitespace; please remove them"; false))
|
||||||
|
|
||||||
|
flake8-py3:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Setup Python
|
||||||
|
uses: actions/setup-python@v1
|
||||||
|
with:
|
||||||
|
python-version: 3.9
|
||||||
|
architecture: x64
|
||||||
|
- name: Fetch CosyVoice
|
||||||
|
uses: actions/checkout@v1
|
||||||
|
- name: Checkout PR tip
|
||||||
|
run: |
|
||||||
|
set -eux
|
||||||
|
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
|
||||||
|
# We are on a PR, so actions/checkout leaves us on a merge commit.
|
||||||
|
# Check out the actual tip of the branch.
|
||||||
|
git checkout ${{ github.event.pull_request.head.sha }}
|
||||||
|
fi
|
||||||
|
echo ::set-output name=commit_sha::$(git rev-parse HEAD)
|
||||||
|
id: get_pr_tip
|
||||||
|
- name: Run flake8
|
||||||
|
run: |
|
||||||
|
set -eux
|
||||||
|
pip install flake8==3.8.2 flake8-bugbear flake8-comprehensions flake8-executable flake8-pyi==20.5.0 mccabe pycodestyle==2.6.0 pyflakes==2.2.0
|
||||||
|
flake8 --version
|
||||||
|
flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py
|
||||||
|
if [ $? != 0 ]; then exit 1; fi
|
||||||
22
.github/workflows/stale-issues.yml
vendored
Normal file
22
.github/workflows/stale-issues.yml
vendored
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
name: Close inactive issues
|
||||||
|
on:
|
||||||
|
schedule:
|
||||||
|
- cron: "30 1 * * *"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
close-issues:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
issues: write
|
||||||
|
pull-requests: write
|
||||||
|
steps:
|
||||||
|
- uses: actions/stale@v5
|
||||||
|
with:
|
||||||
|
days-before-issue-stale: 30
|
||||||
|
days-before-issue-close: 14
|
||||||
|
stale-issue-label: "stale"
|
||||||
|
stale-issue-message: "This issue is stale because it has been open for 30 days with no activity."
|
||||||
|
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
|
||||||
|
days-before-pr-stale: -1
|
||||||
|
days-before-pr-close: -1
|
||||||
|
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -43,7 +43,10 @@ compile_commands.json
|
|||||||
|
|
||||||
# train/inference files
|
# train/inference files
|
||||||
*.wav
|
*.wav
|
||||||
|
*.m4a
|
||||||
|
*.aac
|
||||||
*.pt
|
*.pt
|
||||||
pretrained_models/*
|
pretrained_models/*
|
||||||
*_pb2_grpc.py
|
*_pb2_grpc.py
|
||||||
*_pb2.py
|
*_pb2.py
|
||||||
|
*.tar
|
||||||
170
README.md
170
README.md
@@ -1,38 +1,51 @@
|
|||||||
# CosyVoice
|
[](https://github.com/Akshay090/svg-banners)
|
||||||
## 👉🏻 [CosyVoice Demos](https://fun-audio-llm.github.io/) 👈🏻
|
|
||||||
[[CosyVoice Paper](https://fun-audio-llm.github.io/pdf/CosyVoice_v1.pdf)][[CosyVoice Studio](https://www.modelscope.cn/studios/iic/CosyVoice-300M)][[CosyVoice Code](https://github.com/FunAudioLLM/CosyVoice)]
|
|
||||||
|
|
||||||
For `SenseVoice`, visit [SenseVoice repo](https://github.com/FunAudioLLM/SenseVoice) and [SenseVoice space](https://www.modelscope.cn/studios/iic/SenseVoice).
|
## 👉🏻 CosyVoice 👈🏻
|
||||||
|
**CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/abs/2412.10117); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/spaces/FunAudioLLM/CosyVoice2-0.5B)
|
||||||
|
|
||||||
|
**CosyVoice 1.0**: [Demos](https://fun-audio-llm.github.io); [Paper](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice-300M)
|
||||||
|
|
||||||
|
## Highlight🔥
|
||||||
|
|
||||||
|
**CosyVoice 2.0** has been released! Compared to version 1.0, the new version offers more accurate, more stable, faster, and better speech generation capabilities.
|
||||||
|
### Multilingual
|
||||||
|
- **Supported Language**: Chinese, English, Japanese, Korean, Chinese dialects (Cantonese, Sichuanese, Shanghainese, Tianjinese, Wuhanese, etc.)
|
||||||
|
- **Crosslingual & Mixlingual**:Support zero-shot voice cloning for cross-lingual and code-switching scenarios.
|
||||||
|
### Ultra-Low Latency
|
||||||
|
- **Bidirectional Streaming Support**: CosyVoice 2.0 integrates offline and streaming modeling technologies.
|
||||||
|
- **Rapid First Packet Synthesis**: Achieves latency as low as 150ms while maintaining high-quality audio output.
|
||||||
|
### High Accuracy
|
||||||
|
- **Improved Pronunciation**: Reduces pronunciation errors by 30% to 50% compared to CosyVoice 1.0.
|
||||||
|
- **Benchmark Achievements**: Attains the lowest character error rate on the hard test set of the Seed-TTS evaluation set.
|
||||||
|
### Strong Stability
|
||||||
|
- **Consistency in Timbre**: Ensures reliable voice consistency for zero-shot and cross-language speech synthesis.
|
||||||
|
- **Cross-language Synthesis**: Marked improvements compared to version 1.0.
|
||||||
|
### Natural Experience
|
||||||
|
- **Enhanced Prosody and Sound Quality**: Improved alignment of synthesized audio, raising MOS evaluation scores from 5.4 to 5.53.
|
||||||
|
- **Emotional and Dialectal Flexibility**: Now supports more granular emotional controls and accent adjustments.
|
||||||
|
|
||||||
## Roadmap
|
## Roadmap
|
||||||
|
|
||||||
|
- [x] 2024/12
|
||||||
|
|
||||||
|
- [x] 25hz cosyvoice 2.0 released
|
||||||
|
|
||||||
|
- [x] 2024/09
|
||||||
|
|
||||||
|
- [x] 25hz cosyvoice base model
|
||||||
|
- [x] 25hz cosyvoice voice conversion model
|
||||||
|
|
||||||
|
- [x] 2024/08
|
||||||
|
|
||||||
|
- [x] Repetition Aware Sampling(RAS) inference for llm stability
|
||||||
|
- [x] Streaming inference mode support, including kv cache and sdpa for rtf optimization
|
||||||
|
|
||||||
- [x] 2024/07
|
- [x] 2024/07
|
||||||
|
|
||||||
- [x] Flow matching training support
|
- [x] Flow matching training support
|
||||||
- [x] WeTextProcessing support when ttsfrd is not avaliable
|
- [x] WeTextProcessing support when ttsfrd is not available
|
||||||
- [x] Fastapi server and client
|
- [x] Fastapi server and client
|
||||||
|
|
||||||
- [ ] 2024/08
|
|
||||||
|
|
||||||
- [ ] Repetition Aware Sampling(RAS) inference for llm stability
|
|
||||||
- [ ] Streaming inference mode support, including kv cache and sdpa for rtf optimization
|
|
||||||
|
|
||||||
- [ ] 2024/09
|
|
||||||
|
|
||||||
- [ ] 50hz llm model which supports 10 language
|
|
||||||
|
|
||||||
- [ ] 2024/10
|
|
||||||
|
|
||||||
- [ ] 50hz llama based llm model which supports lora finetune
|
|
||||||
|
|
||||||
- [ ] TBD
|
|
||||||
|
|
||||||
- [ ] Support more instruction mode
|
|
||||||
- [ ] Voice conversion
|
|
||||||
- [ ] Music generation
|
|
||||||
- [ ] Training script sample based on Mandarin
|
|
||||||
- [ ] CosyVoice-500M trained with more multi-lingual data
|
|
||||||
- [ ] More...
|
|
||||||
|
|
||||||
## Install
|
## Install
|
||||||
|
|
||||||
@@ -50,7 +63,7 @@ git submodule update --init --recursive
|
|||||||
- Create Conda env:
|
- Create Conda env:
|
||||||
|
|
||||||
``` sh
|
``` sh
|
||||||
conda create -n cosyvoice python=3.8
|
conda create -n cosyvoice -y python=3.10
|
||||||
conda activate cosyvoice
|
conda activate cosyvoice
|
||||||
# pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
|
# pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
|
||||||
conda install -y -c conda-forge pynini==2.1.5
|
conda install -y -c conda-forge pynini==2.1.5
|
||||||
@@ -65,14 +78,14 @@ sudo yum install sox sox-devel
|
|||||||
|
|
||||||
**Model download**
|
**Model download**
|
||||||
|
|
||||||
We strongly recommend that you download our pretrained `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
We strongly recommend that you download our pretrained `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
||||||
|
|
||||||
If you are expert in this field, and you are only interested in training your own CosyVoice model from scratch, you can skip this step.
|
|
||||||
|
|
||||||
``` python
|
``` python
|
||||||
# SDK模型下载
|
# SDK模型下载
|
||||||
from modelscope import snapshot_download
|
from modelscope import snapshot_download
|
||||||
|
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
|
||||||
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
||||||
|
snapshot_download('iic/CosyVoice-300M-25Hz', local_dir='pretrained_models/CosyVoice-300M-25Hz')
|
||||||
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
||||||
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
||||||
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
||||||
@@ -81,64 +94,100 @@ snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice
|
|||||||
``` sh
|
``` sh
|
||||||
# git模型下载,请确保已安装git lfs
|
# git模型下载,请确保已安装git lfs
|
||||||
mkdir -p pretrained_models
|
mkdir -p pretrained_models
|
||||||
|
git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
|
||||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
|
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
|
||||||
|
git clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hz
|
||||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
|
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
|
||||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
|
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
|
||||||
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
|
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
|
||||||
```
|
```
|
||||||
|
|
||||||
Optionaly, you can unzip `ttsfrd` resouce and install `ttsfrd` package for better text normalization performance.
|
Optionally, you can unzip `ttsfrd` resouce and install `ttsfrd` package for better text normalization performance.
|
||||||
|
|
||||||
Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use WeTextProcessing by default.
|
Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use WeTextProcessing by default.
|
||||||
|
|
||||||
``` sh
|
``` sh
|
||||||
cd pretrained_models/CosyVoice-ttsfrd/
|
cd pretrained_models/CosyVoice-ttsfrd/
|
||||||
unzip resource.zip -d .
|
unzip resource.zip -d .
|
||||||
pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl
|
pip install ttsfrd_dependency-0.1-py3-none-any.whl
|
||||||
|
pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
|
||||||
```
|
```
|
||||||
|
|
||||||
**Basic Usage**
|
**Basic Usage**
|
||||||
|
|
||||||
For zero_shot/cross_lingual inference, please use `CosyVoice-300M` model.
|
We strongly recommend using `CosyVoice2-0.5B` for better performance.
|
||||||
For sft inference, please use `CosyVoice-300M-SFT` model.
|
Follow code below for detailed usage of each model.
|
||||||
For instruct inference, please use `CosyVoice-300M-Instruct` model.
|
|
||||||
First, add `third_party/Matcha-TTS` to your `PYTHONPATH`.
|
|
||||||
|
|
||||||
``` sh
|
|
||||||
export PYTHONPATH=third_party/Matcha-TTS
|
|
||||||
```
|
|
||||||
|
|
||||||
``` python
|
``` python
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
import sys
|
||||||
|
sys.path.append('third_party/Matcha-TTS')
|
||||||
|
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||||
from cosyvoice.utils.file_utils import load_wav
|
from cosyvoice.utils.file_utils import load_wav
|
||||||
import torchaudio
|
import torchaudio
|
||||||
|
```
|
||||||
|
|
||||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT')
|
**CosyVoice2 Usage**
|
||||||
|
```python
|
||||||
|
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
|
||||||
|
|
||||||
|
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
||||||
|
# zero_shot usage
|
||||||
|
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||||
|
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||||
|
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
|
||||||
|
for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
|
||||||
|
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# instruct usage
|
||||||
|
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
|
||||||
|
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
|
# bistream usage, you can use generator as input, this is useful when using text llm model as input
|
||||||
|
# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
|
||||||
|
def text_generator():
|
||||||
|
yield '收到好友从远方寄来的生日礼物,'
|
||||||
|
yield '那份意外的惊喜与深深的祝福'
|
||||||
|
yield '让我心中充满了甜蜜的快乐,'
|
||||||
|
yield '笑容如花儿般绽放。'
|
||||||
|
for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||||
|
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
```
|
||||||
|
|
||||||
|
**CosyVoice Usage**
|
||||||
|
```python
|
||||||
|
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
|
||||||
# sft usage
|
# sft usage
|
||||||
print(cosyvoice.list_avaliable_spks())
|
print(cosyvoice.list_available_spks())
|
||||||
output = cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女')
|
# change stream=True for chunk stream inference
|
||||||
torchaudio.save('sft.wav', output['tts_speech'], 22050)
|
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
|
||||||
|
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
|
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M') # or change to pretrained_models/CosyVoice-300M-25Hz for 25Hz inference
|
||||||
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
|
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
|
||||||
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
|
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||||
output = cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k)
|
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||||
torchaudio.save('zero_shot.wav', output['tts_speech'], 22050)
|
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
# cross_lingual usage
|
# cross_lingual usage
|
||||||
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
|
prompt_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
|
||||||
output = cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k)
|
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
|
||||||
torchaudio.save('cross_lingual.wav', output['tts_speech'], 22050)
|
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
# vc usage
|
||||||
|
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||||
|
source_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
|
||||||
|
for i, j in enumerate(cosyvoice.inference_vc(source_speech_16k, prompt_speech_16k, stream=False)):
|
||||||
|
torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
|
|
||||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
|
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
|
||||||
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
|
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
|
||||||
output = cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
|
for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
|
||||||
torchaudio.save('instruct.wav', output['tts_speech'], 22050)
|
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||||
```
|
```
|
||||||
|
|
||||||
**Start web demo**
|
**Start web demo**
|
||||||
|
|
||||||
You can use our web demo page to get familiar with CosyVoice quickly.
|
You can use our web demo page to get familiar with CosyVoice quickly.
|
||||||
We support sft/zero_shot/cross_lingual/instruct inference in web demo.
|
|
||||||
|
|
||||||
Please see the demo website for details.
|
Please see the demo website for details.
|
||||||
|
|
||||||
@@ -150,12 +199,11 @@ python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice-300M
|
|||||||
**Advanced Usage**
|
**Advanced Usage**
|
||||||
|
|
||||||
For advanced user, we have provided train and inference scripts in `examples/libritts/cosyvoice/run.sh`.
|
For advanced user, we have provided train and inference scripts in `examples/libritts/cosyvoice/run.sh`.
|
||||||
You can get familiar with CosyVoice following this recipie.
|
|
||||||
|
|
||||||
**Build for deployment**
|
**Build for deployment**
|
||||||
|
|
||||||
Optionally, if you want to use grpc for service deployment,
|
Optionally, if you want service deployment,
|
||||||
you can run following steps. Otherwise, you can just ignore this step.
|
you can run following steps.
|
||||||
|
|
||||||
``` sh
|
``` sh
|
||||||
cd runtime/python
|
cd runtime/python
|
||||||
@@ -163,10 +211,10 @@ docker build -t cosyvoice:v1.0 .
|
|||||||
# change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference
|
# change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference
|
||||||
# for grpc usage
|
# for grpc usage
|
||||||
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"
|
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"
|
||||||
python3 grpc/client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
cd grpc && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
||||||
# for fastapi usage
|
# for fastapi usage
|
||||||
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && MODEL_DIR=iic/CosyVoice-300M fastapi dev --port 50000 server.py && sleep infinity"
|
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && python3 server.py --port 50000 --model_dir iic/CosyVoice-300M && sleep infinity"
|
||||||
python3 fastapi/client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
cd fastapi && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
||||||
```
|
```
|
||||||
|
|
||||||
## Discussion & Communication
|
## Discussion & Communication
|
||||||
|
|||||||
92
cosyvoice/bin/average_model.py
Normal file
92
cosyvoice/bin/average_model.py
Normal file
@@ -0,0 +1,92 @@
|
|||||||
|
# Copyright (c) 2020 Mobvoi Inc (Di Wu)
|
||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
import glob
|
||||||
|
|
||||||
|
import yaml
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser(description='average model')
|
||||||
|
parser.add_argument('--dst_model', required=True, help='averaged model')
|
||||||
|
parser.add_argument('--src_path',
|
||||||
|
required=True,
|
||||||
|
help='src model path for average')
|
||||||
|
parser.add_argument('--val_best',
|
||||||
|
action="store_true",
|
||||||
|
help='averaged model')
|
||||||
|
parser.add_argument('--num',
|
||||||
|
default=5,
|
||||||
|
type=int,
|
||||||
|
help='nums for averaged model')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
print(args)
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
val_scores = []
|
||||||
|
if args.val_best:
|
||||||
|
yamls = glob.glob('{}/*.yaml'.format(args.src_path))
|
||||||
|
yamls = [
|
||||||
|
f for f in yamls
|
||||||
|
if not (os.path.basename(f).startswith('train')
|
||||||
|
or os.path.basename(f).startswith('init'))
|
||||||
|
]
|
||||||
|
for y in yamls:
|
||||||
|
with open(y, 'r') as f:
|
||||||
|
dic_yaml = yaml.load(f, Loader=yaml.BaseLoader)
|
||||||
|
loss = float(dic_yaml['loss_dict']['loss'])
|
||||||
|
epoch = int(dic_yaml['epoch'])
|
||||||
|
step = int(dic_yaml['step'])
|
||||||
|
tag = dic_yaml['tag']
|
||||||
|
val_scores += [[epoch, step, loss, tag]]
|
||||||
|
sorted_val_scores = sorted(val_scores,
|
||||||
|
key=lambda x: x[2],
|
||||||
|
reverse=False)
|
||||||
|
print("best val (epoch, step, loss, tag) = " +
|
||||||
|
str(sorted_val_scores[:args.num]))
|
||||||
|
path_list = [
|
||||||
|
args.src_path + '/epoch_{}_whole.pt'.format(score[0])
|
||||||
|
for score in sorted_val_scores[:args.num]
|
||||||
|
]
|
||||||
|
print(path_list)
|
||||||
|
avg = {}
|
||||||
|
num = args.num
|
||||||
|
assert num == len(path_list)
|
||||||
|
for path in path_list:
|
||||||
|
print('Processing {}'.format(path))
|
||||||
|
states = torch.load(path, map_location=torch.device('cpu'))
|
||||||
|
for k in states.keys():
|
||||||
|
if k not in avg.keys():
|
||||||
|
avg[k] = states[k].clone()
|
||||||
|
else:
|
||||||
|
avg[k] += states[k]
|
||||||
|
# average
|
||||||
|
for k in avg.keys():
|
||||||
|
if avg[k] is not None:
|
||||||
|
# pytorch 1.6 use true_divide instead of /=
|
||||||
|
avg[k] = torch.true_divide(avg[k], num)
|
||||||
|
print('Saving to {}'.format(args.dst_model))
|
||||||
|
torch.save(avg, args.dst_model)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
91
cosyvoice/bin/export_jit.py
Normal file
91
cosyvoice/bin/export_jit.py
Normal file
@@ -0,0 +1,91 @@
|
|||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import torch
|
||||||
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||||
|
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
|
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser(description='export your model for deployment')
|
||||||
|
parser.add_argument('--model_dir',
|
||||||
|
type=str,
|
||||||
|
default='pretrained_models/CosyVoice-300M',
|
||||||
|
help='local path')
|
||||||
|
args = parser.parse_args()
|
||||||
|
print(args)
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def get_optimized_script(model, preserved_attrs=[]):
|
||||||
|
script = torch.jit.script(model)
|
||||||
|
if preserved_attrs != []:
|
||||||
|
script = torch.jit.freeze(script, preserved_attrs=preserved_attrs)
|
||||||
|
else:
|
||||||
|
script = torch.jit.freeze(script)
|
||||||
|
script = torch.jit.optimize_for_inference(script)
|
||||||
|
return script
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
logging.basicConfig(level=logging.DEBUG,
|
||||||
|
format='%(asctime)s %(levelname)s %(message)s')
|
||||||
|
|
||||||
|
torch._C._jit_set_fusion_strategy([('STATIC', 1)])
|
||||||
|
torch._C._jit_set_profiling_mode(False)
|
||||||
|
torch._C._jit_set_profiling_executor(False)
|
||||||
|
|
||||||
|
try:
|
||||||
|
model = CosyVoice(args.model_dir)
|
||||||
|
except Exception:
|
||||||
|
try:
|
||||||
|
model = CosyVoice2(args.model_dir)
|
||||||
|
except Exception:
|
||||||
|
raise TypeError('no valid model_type!')
|
||||||
|
|
||||||
|
if not isinstance(model, CosyVoice2):
|
||||||
|
# 1. export llm text_encoder
|
||||||
|
llm_text_encoder = model.model.llm.text_encoder
|
||||||
|
script = get_optimized_script(llm_text_encoder)
|
||||||
|
script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
|
||||||
|
script = get_optimized_script(llm_text_encoder.half())
|
||||||
|
script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
|
||||||
|
|
||||||
|
# 2. export llm llm
|
||||||
|
llm_llm = model.model.llm.llm
|
||||||
|
script = get_optimized_script(llm_llm, ['forward_chunk'])
|
||||||
|
script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
|
||||||
|
script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
|
||||||
|
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
||||||
|
|
||||||
|
# 3. export flow encoder
|
||||||
|
flow_encoder = model.model.flow.encoder
|
||||||
|
script = get_optimized_script(flow_encoder)
|
||||||
|
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||||
|
script = get_optimized_script(flow_encoder.half())
|
||||||
|
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
116
cosyvoice/bin/export_onnx.py
Normal file
116
cosyvoice/bin/export_onnx.py
Normal file
@@ -0,0 +1,116 @@
|
|||||||
|
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com)
|
||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import onnxruntime
|
||||||
|
import random
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||||
|
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
|
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||||
|
|
||||||
|
|
||||||
|
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
||||||
|
x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
||||||
|
mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
|
||||||
|
mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
||||||
|
t = torch.rand((batch_size), dtype=torch.float32, device=device)
|
||||||
|
spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
|
||||||
|
cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
||||||
|
return x, mask, mu, t, spks, cond
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser(description='export your model for deployment')
|
||||||
|
parser.add_argument('--model_dir',
|
||||||
|
type=str,
|
||||||
|
default='pretrained_models/CosyVoice-300M',
|
||||||
|
help='local path')
|
||||||
|
args = parser.parse_args()
|
||||||
|
print(args)
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
logging.basicConfig(level=logging.DEBUG,
|
||||||
|
format='%(asctime)s %(levelname)s %(message)s')
|
||||||
|
|
||||||
|
try:
|
||||||
|
model = CosyVoice(args.model_dir)
|
||||||
|
except Exception:
|
||||||
|
try:
|
||||||
|
model = CosyVoice2(args.model_dir)
|
||||||
|
except Exception:
|
||||||
|
raise TypeError('no valid model_type!')
|
||||||
|
|
||||||
|
# 1. export flow decoder estimator
|
||||||
|
estimator = model.model.flow.decoder.estimator
|
||||||
|
|
||||||
|
device = model.model.device
|
||||||
|
batch_size, seq_len = 2, 256
|
||||||
|
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||||
|
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||||
|
torch.onnx.export(
|
||||||
|
estimator,
|
||||||
|
(x, mask, mu, t, spks, cond),
|
||||||
|
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||||
|
export_params=True,
|
||||||
|
opset_version=18,
|
||||||
|
do_constant_folding=True,
|
||||||
|
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||||
|
output_names=['estimator_out'],
|
||||||
|
dynamic_axes={
|
||||||
|
'x': {2: 'seq_len'},
|
||||||
|
'mask': {2: 'seq_len'},
|
||||||
|
'mu': {2: 'seq_len'},
|
||||||
|
'cond': {2: 'seq_len'},
|
||||||
|
'estimator_out': {2: 'seq_len'},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# 2. test computation consistency
|
||||||
|
option = onnxruntime.SessionOptions()
|
||||||
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||||
|
option.intra_op_num_threads = 1
|
||||||
|
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||||
|
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||||
|
sess_options=option, providers=providers)
|
||||||
|
|
||||||
|
for _ in tqdm(range(10)):
|
||||||
|
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||||
|
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
||||||
|
ort_inputs = {
|
||||||
|
'x': x.cpu().numpy(),
|
||||||
|
'mask': mask.cpu().numpy(),
|
||||||
|
'mu': mu.cpu().numpy(),
|
||||||
|
't': t.cpu().numpy(),
|
||||||
|
'spks': spks.cpu().numpy(),
|
||||||
|
'cond': cond.cpu().numpy()
|
||||||
|
}
|
||||||
|
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
||||||
|
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
10
cosyvoice/bin/export_trt.sh
Normal file
10
cosyvoice/bin/export_trt.sh
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
||||||
|
# download tensorrt from https://developer.nvidia.com/tensorrt/download/10x, check your system and cuda for compatibability
|
||||||
|
# for example for linux + cuda12.4, you can download https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
|
||||||
|
TRT_DIR=<YOUR_TRT_DIR>
|
||||||
|
MODEL_DIR=<COSYVOICE2_MODEL_DIR>
|
||||||
|
|
||||||
|
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TRT_DIR/lib:/usr/local/cuda/lib64
|
||||||
|
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp32.mygpu.plan --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw --outputIOFormats=fp32:chw
|
||||||
|
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp16.mygpu.plan --fp16 --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw --outputIOFormats=fp16:chw
|
||||||
@@ -18,16 +18,15 @@ import argparse
|
|||||||
import logging
|
import logging
|
||||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from hyperpyyaml import load_hyperpyyaml
|
from hyperpyyaml import load_hyperpyyaml
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from cosyvoice.cli.model import CosyVoiceModel
|
from cosyvoice.cli.model import CosyVoiceModel
|
||||||
|
|
||||||
from cosyvoice.dataset.dataset import Dataset
|
from cosyvoice.dataset.dataset import Dataset
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
def get_args():
|
||||||
parser = argparse.ArgumentParser(description='inference with your model')
|
parser = argparse.ArgumentParser(description='inference with your model')
|
||||||
parser.add_argument('--config', required=True, help='config file')
|
parser.add_argument('--config', required=True, help='config file')
|
||||||
@@ -66,7 +65,8 @@ def main():
|
|||||||
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
||||||
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
||||||
|
|
||||||
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False, tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
||||||
|
tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
||||||
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
||||||
|
|
||||||
del configs
|
del configs
|
||||||
@@ -74,13 +74,11 @@ def main():
|
|||||||
fn = os.path.join(args.result_dir, 'wav.scp')
|
fn = os.path.join(args.result_dir, 'wav.scp')
|
||||||
f = open(fn, 'w')
|
f = open(fn, 'w')
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for batch_idx, batch in tqdm(enumerate(test_data_loader)):
|
for _, batch in tqdm(enumerate(test_data_loader)):
|
||||||
utts = batch["utts"]
|
utts = batch["utts"]
|
||||||
assert len(utts) == 1, "inference mode only support batchsize 1"
|
assert len(utts) == 1, "inference mode only support batchsize 1"
|
||||||
text = batch["text"]
|
|
||||||
text_token = batch["text_token"].to(device)
|
text_token = batch["text_token"].to(device)
|
||||||
text_token_len = batch["text_token_len"].to(device)
|
text_token_len = batch["text_token_len"].to(device)
|
||||||
tts_text = batch["tts_text"]
|
|
||||||
tts_index = batch["tts_index"]
|
tts_index = batch["tts_index"]
|
||||||
tts_text_token = batch["tts_text_token"].to(device)
|
tts_text_token = batch["tts_text_token"].to(device)
|
||||||
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
||||||
@@ -100,10 +98,13 @@ def main():
|
|||||||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
||||||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
||||||
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
||||||
model_output = model.inference(**model_input)
|
tts_speeches = []
|
||||||
|
for model_output in model.tts(**model_input):
|
||||||
|
tts_speeches.append(model_output['tts_speech'])
|
||||||
|
tts_speeches = torch.concat(tts_speeches, dim=1)
|
||||||
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
||||||
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
||||||
torchaudio.save(tts_fn, model_output['tts_speech'], sample_rate=22050)
|
torchaudio.save(tts_fn, tts_speeches, sample_rate=22050)
|
||||||
f.write('{} {}\n'.format(tts_key, tts_fn))
|
f.write('{} {}\n'.format(tts_key, tts_fn))
|
||||||
f.flush()
|
f.flush()
|
||||||
f.close()
|
f.close()
|
||||||
|
|||||||
@@ -18,6 +18,7 @@ import datetime
|
|||||||
import logging
|
import logging
|
||||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
import os
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
import deepspeed
|
import deepspeed
|
||||||
@@ -67,13 +68,17 @@ def get_args():
|
|||||||
action='store_true',
|
action='store_true',
|
||||||
default=False,
|
default=False,
|
||||||
help='Use pinned memory buffers used for reading')
|
help='Use pinned memory buffers used for reading')
|
||||||
|
parser.add_argument('--use_amp',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='Use automatic mixed precision training')
|
||||||
parser.add_argument('--deepspeed.save_states',
|
parser.add_argument('--deepspeed.save_states',
|
||||||
dest='save_states',
|
dest='save_states',
|
||||||
default='model_only',
|
default='model_only',
|
||||||
choices=['model_only', 'model+optimizer'],
|
choices=['model_only', 'model+optimizer'],
|
||||||
help='save model/optimizer states')
|
help='save model/optimizer states')
|
||||||
parser.add_argument('--timeout',
|
parser.add_argument('--timeout',
|
||||||
default=30,
|
default=60,
|
||||||
type=int,
|
type=int,
|
||||||
help='timeout (in seconds) of cosyvoice_join.')
|
help='timeout (in seconds) of cosyvoice_join.')
|
||||||
parser = deepspeed.add_config_arguments(parser)
|
parser = deepspeed.add_config_arguments(parser)
|
||||||
@@ -86,10 +91,16 @@ def main():
|
|||||||
args = get_args()
|
args = get_args()
|
||||||
logging.basicConfig(level=logging.DEBUG,
|
logging.basicConfig(level=logging.DEBUG,
|
||||||
format='%(asctime)s %(levelname)s %(message)s')
|
format='%(asctime)s %(levelname)s %(message)s')
|
||||||
|
# gan train has some special initialization logic
|
||||||
|
gan = True if args.model == 'hifigan' else False
|
||||||
|
|
||||||
override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model}
|
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
||||||
|
if gan is True:
|
||||||
|
override_dict.pop('hift')
|
||||||
with open(args.config, 'r') as f:
|
with open(args.config, 'r') as f:
|
||||||
configs = load_hyperpyyaml(f, overrides=override_dict)
|
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||||
|
if gan is True:
|
||||||
|
configs['train_conf'] = configs['train_conf_gan']
|
||||||
configs['train_conf'].update(vars(args))
|
configs['train_conf'].update(vars(args))
|
||||||
|
|
||||||
# Init env for ddp
|
# Init env for ddp
|
||||||
@@ -97,7 +108,7 @@ def main():
|
|||||||
|
|
||||||
# Get dataset & dataloader
|
# Get dataset & dataloader
|
||||||
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
||||||
init_dataset_and_dataloader(args, configs)
|
init_dataset_and_dataloader(args, configs, gan)
|
||||||
|
|
||||||
# Do some sanity checks and save config to arsg.model_dir
|
# Do some sanity checks and save config to arsg.model_dir
|
||||||
configs = check_modify_and_save_config(args, configs)
|
configs = check_modify_and_save_config(args, configs)
|
||||||
@@ -107,30 +118,53 @@ def main():
|
|||||||
|
|
||||||
# load checkpoint
|
# load checkpoint
|
||||||
model = configs[args.model]
|
model = configs[args.model]
|
||||||
|
start_step, start_epoch = 0, -1
|
||||||
if args.checkpoint is not None:
|
if args.checkpoint is not None:
|
||||||
model.load_state_dict(torch.load(args.checkpoint, map_location='cpu'))
|
if os.path.exists(args.checkpoint):
|
||||||
|
state_dict = torch.load(args.checkpoint, map_location='cpu')
|
||||||
|
model.load_state_dict(state_dict, strict=False)
|
||||||
|
if 'step' in state_dict:
|
||||||
|
start_step = state_dict['step']
|
||||||
|
if 'epoch' in state_dict:
|
||||||
|
start_epoch = state_dict['epoch']
|
||||||
|
else:
|
||||||
|
logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
|
||||||
|
|
||||||
# Dispatch model from cpu to gpu
|
# Dispatch model from cpu to gpu
|
||||||
model = wrap_cuda_model(args, model)
|
model = wrap_cuda_model(args, model)
|
||||||
|
|
||||||
# Get optimizer & scheduler
|
# Get optimizer & scheduler
|
||||||
model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model)
|
model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
|
||||||
|
scheduler.set_step(start_step)
|
||||||
|
if scheduler_d is not None:
|
||||||
|
scheduler_d.set_step(start_step)
|
||||||
|
|
||||||
# Save init checkpoints
|
# Save init checkpoints
|
||||||
info_dict = deepcopy(configs['train_conf'])
|
info_dict = deepcopy(configs['train_conf'])
|
||||||
|
info_dict['step'] = start_step
|
||||||
|
info_dict['epoch'] = start_epoch
|
||||||
save_model(model, 'init', info_dict)
|
save_model(model, 'init', info_dict)
|
||||||
|
|
||||||
# Get executor
|
# Get executor
|
||||||
executor = Executor()
|
executor = Executor(gan=gan)
|
||||||
|
executor.step = start_step
|
||||||
|
|
||||||
|
# Init scaler, used for pytorch amp mixed precision training
|
||||||
|
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
|
||||||
|
print('start step {} start epoch {}'.format(start_step, start_epoch))
|
||||||
# Start training loop
|
# Start training loop
|
||||||
for epoch in range(info_dict['max_epoch']):
|
for epoch in range(start_epoch + 1, info_dict['max_epoch']):
|
||||||
executor.epoch = epoch
|
executor.epoch = epoch
|
||||||
train_dataset.set_epoch(epoch)
|
train_dataset.set_epoch(epoch)
|
||||||
dist.barrier()
|
dist.barrier()
|
||||||
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
||||||
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join)
|
if gan is True:
|
||||||
|
executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
||||||
|
writer, info_dict, scaler, group_join)
|
||||||
|
else:
|
||||||
|
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join)
|
||||||
dist.destroy_process_group(group_join)
|
dist.destroy_process_group(group_join)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
main()
|
||||||
|
|||||||
@@ -12,72 +12,173 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import os
|
import os
|
||||||
import torch
|
import time
|
||||||
|
from typing import Generator
|
||||||
|
from tqdm import tqdm
|
||||||
from hyperpyyaml import load_hyperpyyaml
|
from hyperpyyaml import load_hyperpyyaml
|
||||||
from modelscope import snapshot_download
|
from modelscope import snapshot_download
|
||||||
|
import torch
|
||||||
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
||||||
from cosyvoice.cli.model import CosyVoiceModel
|
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
||||||
|
from cosyvoice.utils.file_utils import logging
|
||||||
|
from cosyvoice.utils.class_utils import get_model_type
|
||||||
|
|
||||||
|
|
||||||
class CosyVoice:
|
class CosyVoice:
|
||||||
|
|
||||||
def __init__(self, model_dir):
|
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
|
||||||
instruct = True if '-Instruct' in model_dir else False
|
self.instruct = True if '-Instruct' in model_dir else False
|
||||||
self.model_dir = model_dir
|
self.model_dir = model_dir
|
||||||
|
self.fp16 = fp16
|
||||||
if not os.path.exists(model_dir):
|
if not os.path.exists(model_dir):
|
||||||
model_dir = snapshot_download(model_dir)
|
model_dir = snapshot_download(model_dir)
|
||||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
||||||
configs = load_hyperpyyaml(f)
|
configs = load_hyperpyyaml(f)
|
||||||
|
assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
||||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||||
configs['feat_extractor'],
|
configs['feat_extractor'],
|
||||||
'{}/campplus.onnx'.format(model_dir),
|
'{}/campplus.onnx'.format(model_dir),
|
||||||
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
||||||
'{}/spk2info.pt'.format(model_dir),
|
'{}/spk2info.pt'.format(model_dir),
|
||||||
instruct,
|
|
||||||
configs['allowed_special'])
|
configs['allowed_special'])
|
||||||
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
self.sample_rate = configs['sample_rate']
|
||||||
|
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
||||||
|
load_jit, load_trt, fp16 = False, False, False
|
||||||
|
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
||||||
|
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
|
||||||
self.model.load('{}/llm.pt'.format(model_dir),
|
self.model.load('{}/llm.pt'.format(model_dir),
|
||||||
'{}/flow.pt'.format(model_dir),
|
'{}/flow.pt'.format(model_dir),
|
||||||
'{}/hift.pt'.format(model_dir))
|
'{}/hift.pt'.format(model_dir))
|
||||||
|
self.vllm_codec_engine = None
|
||||||
|
if load_jit:
|
||||||
|
self.model.load_jit('{}/llm.text_encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||||
|
'{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||||
|
'{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||||
|
if load_trt:
|
||||||
|
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||||
|
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
||||||
|
self.fp16)
|
||||||
del configs
|
del configs
|
||||||
|
|
||||||
def list_avaliable_spks(self):
|
def list_available_spks(self):
|
||||||
spks = list(self.frontend.spk2info.keys())
|
spks = list(self.frontend.spk2info.keys())
|
||||||
return spks
|
return spks
|
||||||
|
|
||||||
def inference_sft(self, tts_text, spk_id):
|
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||||
tts_speeches = []
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
|
||||||
model_input = self.frontend.frontend_sft(i, spk_id)
|
model_input = self.frontend.frontend_sft(i, spk_id)
|
||||||
model_output = self.model.inference(**model_input)
|
start_time = time.time()
|
||||||
tts_speeches.append(model_output['tts_speech'])
|
logging.info('synthesis text {}'.format(i))
|
||||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||||
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
|
yield model_output
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||||
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
||||||
tts_speeches = []
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
||||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
||||||
model_output = self.model.inference(**model_input)
|
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
||||||
tts_speeches.append(model_output['tts_speech'])
|
start_time = time.time()
|
||||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
logging.info('synthesis text {}'.format(i))
|
||||||
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||||
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
|
yield model_output
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k):
|
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||||
if self.frontend.instruct is True:
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
||||||
tts_speeches = []
|
start_time = time.time()
|
||||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
logging.info('synthesis text {}'.format(i))
|
||||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
model_output = self.model.inference(**model_input)
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||||
tts_speeches.append(model_output['tts_speech'])
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
yield model_output
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_instruct(self, tts_text, spk_id, instruct_text):
|
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
||||||
if self.frontend.instruct is False:
|
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
|
||||||
|
if self.instruct is False:
|
||||||
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
||||||
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
||||||
tts_speeches = []
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
for i in self.frontend.text_normalize(tts_text, split=True):
|
|
||||||
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
||||||
model_output = self.model.inference(**model_input)
|
start_time = time.time()
|
||||||
tts_speeches.append(model_output['tts_speech'])
|
logging.info('synthesis text {}'.format(i))
|
||||||
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||||
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
|
yield model_output
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
||||||
|
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
||||||
|
start_time = time.time()
|
||||||
|
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
||||||
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||||
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
|
yield model_output
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
|
||||||
|
class CosyVoice2(CosyVoice):
|
||||||
|
|
||||||
|
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, use_vllm=False):
|
||||||
|
self.instruct = True if '-Instruct' in model_dir else False
|
||||||
|
self.model_dir = model_dir
|
||||||
|
self.fp16 = fp16
|
||||||
|
if not os.path.exists(model_dir):
|
||||||
|
model_dir = snapshot_download(model_dir)
|
||||||
|
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
||||||
|
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
||||||
|
assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
||||||
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||||
|
configs['feat_extractor'],
|
||||||
|
'{}/campplus.onnx'.format(model_dir),
|
||||||
|
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
|
||||||
|
'{}/spk2info.pt'.format(model_dir),
|
||||||
|
configs['allowed_special'])
|
||||||
|
self.sample_rate = configs['sample_rate']
|
||||||
|
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
||||||
|
load_jit, load_trt, fp16 = False, False, False
|
||||||
|
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
||||||
|
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
||||||
|
self.model.load('{}/llm.pt'.format(model_dir),
|
||||||
|
'{}/flow.pt'.format(model_dir),
|
||||||
|
'{}/hift.pt'.format(model_dir))
|
||||||
|
self.vllm_codec_engine = None
|
||||||
|
if use_vllm:
|
||||||
|
from vllm import EngineArgs, LLMEngine
|
||||||
|
self.model.export_codec_vllm(''.join([model_dir, '/codec_vllm_model']))
|
||||||
|
engine_args = EngineArgs(model=''.join([model_dir, '/codec_vllm_model']),
|
||||||
|
skip_tokenizer_init=True,
|
||||||
|
gpu_memory_utilization=0.2)
|
||||||
|
self.vllm_codec_engine = LLMEngine.from_engine_args(engine_args)
|
||||||
|
self.model.vllm_codec_engine = self.vllm_codec_engine
|
||||||
|
|
||||||
|
if load_jit:
|
||||||
|
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||||
|
if load_trt:
|
||||||
|
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||||
|
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
||||||
|
self.fp16)
|
||||||
|
del configs
|
||||||
|
|
||||||
|
def inference_instruct(self, *args, **kwargs):
|
||||||
|
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
||||||
|
|
||||||
|
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||||
|
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
||||||
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||||
|
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
||||||
|
start_time = time.time()
|
||||||
|
logging.info('synthesis text {}'.format(i))
|
||||||
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||||
|
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||||
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
|
yield model_output
|
||||||
|
start_time = time.time()
|
||||||
|
|||||||
@@ -12,6 +12,8 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
from functools import partial
|
from functools import partial
|
||||||
|
from typing import Generator
|
||||||
|
import json
|
||||||
import onnxruntime
|
import onnxruntime
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -30,7 +32,8 @@ except ImportError:
|
|||||||
from tn.chinese.normalizer import Normalizer as ZhNormalizer
|
from tn.chinese.normalizer import Normalizer as ZhNormalizer
|
||||||
from tn.english.normalizer import Normalizer as EnNormalizer
|
from tn.english.normalizer import Normalizer as EnNormalizer
|
||||||
use_ttsfrd = False
|
use_ttsfrd = False
|
||||||
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph
|
from cosyvoice.utils.file_utils import logging
|
||||||
|
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
|
||||||
|
|
||||||
|
|
||||||
class CosyVoiceFrontEnd:
|
class CosyVoiceFrontEnd:
|
||||||
@@ -41,7 +44,6 @@ class CosyVoiceFrontEnd:
|
|||||||
campplus_model: str,
|
campplus_model: str,
|
||||||
speech_tokenizer_model: str,
|
speech_tokenizer_model: str,
|
||||||
spk2info: str = '',
|
spk2info: str = '',
|
||||||
instruct: bool = False,
|
|
||||||
allowed_special: str = 'all'):
|
allowed_special: str = 'all'):
|
||||||
self.tokenizer = get_tokenizer()
|
self.tokenizer = get_tokenizer()
|
||||||
self.feat_extractor = feat_extractor
|
self.feat_extractor = feat_extractor
|
||||||
@@ -50,34 +52,51 @@ class CosyVoiceFrontEnd:
|
|||||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||||
option.intra_op_num_threads = 1
|
option.intra_op_num_threads = 1
|
||||||
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
||||||
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider"if torch.cuda.is_available() else "CPUExecutionProvider"])
|
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
|
||||||
|
providers=["CUDAExecutionProvider" if torch.cuda.is_available() else
|
||||||
|
"CPUExecutionProvider"])
|
||||||
if os.path.exists(spk2info):
|
if os.path.exists(spk2info):
|
||||||
self.spk2info = torch.load(spk2info, map_location=self.device)
|
self.spk2info = torch.load(spk2info, map_location=self.device)
|
||||||
self.instruct = instruct
|
else:
|
||||||
|
self.spk2info = {}
|
||||||
self.allowed_special = allowed_special
|
self.allowed_special = allowed_special
|
||||||
self.inflect_parser = inflect.engine()
|
|
||||||
self.use_ttsfrd = use_ttsfrd
|
self.use_ttsfrd = use_ttsfrd
|
||||||
if self.use_ttsfrd:
|
if self.use_ttsfrd:
|
||||||
self.frd = ttsfrd.TtsFrontendEngine()
|
self.frd = ttsfrd.TtsFrontendEngine()
|
||||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, 'failed to initialize ttsfrd resource'
|
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
|
||||||
self.frd.set_lang_type('pinyin')
|
'failed to initialize ttsfrd resource'
|
||||||
self.frd.enable_pinyin_mix(True)
|
self.frd.set_lang_type('pinyinvg')
|
||||||
self.frd.set_breakmodel_index(1)
|
|
||||||
else:
|
else:
|
||||||
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False)
|
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
|
||||||
self.en_tn_model = EnNormalizer()
|
self.en_tn_model = EnNormalizer()
|
||||||
|
self.inflect_parser = inflect.engine()
|
||||||
|
|
||||||
def _extract_text_token(self, text):
|
def _extract_text_token(self, text):
|
||||||
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
if isinstance(text, Generator):
|
||||||
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
logging.info('get tts_text generator, will return _extract_text_token_generator!')
|
||||||
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
# NOTE add a dummy text_token_len for compatibility
|
||||||
return text_token, text_token_len
|
return self._extract_text_token_generator(text), torch.tensor([0], dtype=torch.int32).to(self.device)
|
||||||
|
else:
|
||||||
|
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
||||||
|
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
||||||
|
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
||||||
|
return text_token, text_token_len
|
||||||
|
|
||||||
|
def _extract_text_token_generator(self, text_generator):
|
||||||
|
for text in text_generator:
|
||||||
|
text_token, _ = self._extract_text_token(text)
|
||||||
|
for i in range(text_token.shape[1]):
|
||||||
|
yield text_token[:, i: i + 1]
|
||||||
|
|
||||||
def _extract_speech_token(self, speech):
|
def _extract_speech_token(self, speech):
|
||||||
|
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
|
||||||
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
||||||
speech_token = self.speech_tokenizer_session.run(None, {self.speech_tokenizer_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
speech_token = self.speech_tokenizer_session.run(None,
|
||||||
self.speech_tokenizer_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
{self.speech_tokenizer_session.get_inputs()[0].name:
|
||||||
|
feat.detach().cpu().numpy(),
|
||||||
|
self.speech_tokenizer_session.get_inputs()[1].name:
|
||||||
|
np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
||||||
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
||||||
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
||||||
return speech_token, speech_token_len
|
return speech_token, speech_token_len
|
||||||
@@ -88,7 +107,8 @@ class CosyVoiceFrontEnd:
|
|||||||
dither=0,
|
dither=0,
|
||||||
sample_frequency=16000)
|
sample_frequency=16000)
|
||||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||||
embedding = self.campplus_session.run(None, {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
embedding = self.campplus_session.run(None,
|
||||||
|
{self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||||||
embedding = torch.tensor([embedding]).to(self.device)
|
embedding = torch.tensor([embedding]).to(self.device)
|
||||||
return embedding
|
return embedding
|
||||||
|
|
||||||
@@ -98,35 +118,35 @@ class CosyVoiceFrontEnd:
|
|||||||
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
||||||
return speech_feat, speech_feat_len
|
return speech_feat, speech_feat_len
|
||||||
|
|
||||||
def text_normalize(self, text, split=True):
|
def text_normalize(self, text, split=True, text_frontend=True):
|
||||||
|
if isinstance(text, Generator):
|
||||||
|
logging.info('get tts_text generator, will skip text_normalize!')
|
||||||
|
return [text]
|
||||||
|
if text_frontend is False:
|
||||||
|
return [text] if split is True else text
|
||||||
text = text.strip()
|
text = text.strip()
|
||||||
if contains_chinese(text):
|
if self.use_ttsfrd:
|
||||||
if self.use_ttsfrd:
|
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
||||||
text = self.frd.get_frd_extra_info(text, 'input')
|
text = ''.join(texts)
|
||||||
else:
|
|
||||||
text = self.zh_tn_model.normalize(text)
|
|
||||||
text = text.replace("\n", "")
|
|
||||||
text = replace_blank(text)
|
|
||||||
text = replace_corner_mark(text)
|
|
||||||
text = text.replace(".", "、")
|
|
||||||
text = text.replace(" - ", ",")
|
|
||||||
text = remove_bracket(text)
|
|
||||||
text = re.sub(r'[,,]+$', '。', text)
|
|
||||||
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
|
||||||
token_min_n=60, merge_len=20,
|
|
||||||
comma_split=False)]
|
|
||||||
else:
|
else:
|
||||||
if self.use_ttsfrd:
|
if contains_chinese(text):
|
||||||
text = self.frd.get_frd_extra_info(text, 'input')
|
text = self.zh_tn_model.normalize(text)
|
||||||
|
text = text.replace("\n", "")
|
||||||
|
text = replace_blank(text)
|
||||||
|
text = replace_corner_mark(text)
|
||||||
|
text = text.replace(".", "。")
|
||||||
|
text = text.replace(" - ", ",")
|
||||||
|
text = remove_bracket(text)
|
||||||
|
text = re.sub(r'[,,、]+$', '。', text)
|
||||||
|
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
||||||
|
token_min_n=60, merge_len=20, comma_split=False))
|
||||||
else:
|
else:
|
||||||
text = self.en_tn_model.normalize(text)
|
text = self.en_tn_model.normalize(text)
|
||||||
text = spell_out_number(text, self.inflect_parser)
|
text = spell_out_number(text, self.inflect_parser)
|
||||||
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
||||||
token_min_n=60, merge_len=20,
|
token_min_n=60, merge_len=20, comma_split=False))
|
||||||
comma_split=False)]
|
texts = [i for i in texts if not is_only_punctuation(i)]
|
||||||
if split is False:
|
return texts if split is True else text
|
||||||
return text
|
|
||||||
return texts
|
|
||||||
|
|
||||||
def frontend_sft(self, tts_text, spk_id):
|
def frontend_sft(self, tts_text, spk_id):
|
||||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||||
@@ -134,12 +154,17 @@ class CosyVoiceFrontEnd:
|
|||||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||||
return model_input
|
return model_input
|
||||||
|
|
||||||
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate):
|
||||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||||
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
||||||
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
|
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||||
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
|
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
||||||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||||
|
if resample_rate == 24000:
|
||||||
|
# cosyvoice2, force speech_feat % speech_token = 2
|
||||||
|
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
||||||
|
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
||||||
|
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
||||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
||||||
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
||||||
@@ -149,8 +174,8 @@ class CosyVoiceFrontEnd:
|
|||||||
'llm_embedding': embedding, 'flow_embedding': embedding}
|
'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||||
return model_input
|
return model_input
|
||||||
|
|
||||||
def frontend_cross_lingual(self, tts_text, prompt_speech_16k):
|
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate):
|
||||||
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k)
|
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate)
|
||||||
# in cross lingual mode, we remove prompt in llm
|
# in cross lingual mode, we remove prompt in llm
|
||||||
del model_input['prompt_text']
|
del model_input['prompt_text']
|
||||||
del model_input['prompt_text_len']
|
del model_input['prompt_text_len']
|
||||||
@@ -166,3 +191,21 @@ class CosyVoiceFrontEnd:
|
|||||||
model_input['prompt_text'] = instruct_text_token
|
model_input['prompt_text'] = instruct_text_token
|
||||||
model_input['prompt_text_len'] = instruct_text_token_len
|
model_input['prompt_text_len'] = instruct_text_token_len
|
||||||
return model_input
|
return model_input
|
||||||
|
|
||||||
|
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
|
||||||
|
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate)
|
||||||
|
del model_input['llm_prompt_speech_token']
|
||||||
|
del model_input['llm_prompt_speech_token_len']
|
||||||
|
return model_input
|
||||||
|
|
||||||
|
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
|
||||||
|
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||||
|
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||||
|
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
||||||
|
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||||
|
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
|
||||||
|
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
|
||||||
|
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
|
||||||
|
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
|
||||||
|
'flow_embedding': embedding}
|
||||||
|
return model_input
|
||||||
|
|||||||
@@ -11,50 +11,454 @@
|
|||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
import os
|
||||||
|
from typing import Generator
|
||||||
import torch
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
import threading
|
||||||
|
import time
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
from contextlib import nullcontext
|
||||||
|
import uuid
|
||||||
|
from cosyvoice.utils.common import fade_in_out
|
||||||
|
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
||||||
|
|
||||||
|
|
||||||
class CosyVoiceModel:
|
class CosyVoiceModel:
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
llm: torch.nn.Module,
|
llm: torch.nn.Module,
|
||||||
flow: torch.nn.Module,
|
flow: torch.nn.Module,
|
||||||
hift: torch.nn.Module):
|
hift: torch.nn.Module,
|
||||||
|
fp16: bool):
|
||||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
self.llm = llm
|
self.llm = llm
|
||||||
self.flow = flow
|
self.flow = flow
|
||||||
self.hift = hift
|
self.hift = hift
|
||||||
|
self.fp16 = fp16
|
||||||
|
self.llm.fp16 = fp16
|
||||||
|
self.flow.fp16 = fp16
|
||||||
|
if self.fp16 is True:
|
||||||
|
self.llm.half()
|
||||||
|
self.flow.half()
|
||||||
|
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
||||||
|
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
||||||
|
self.token_overlap_len = 20
|
||||||
|
# here we fix set flow.decoder.estimator.static_chunk_size = 0 for compatibability
|
||||||
|
self.flow.decoder.estimator.static_chunk_size = 0
|
||||||
|
# mel fade in out
|
||||||
|
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
||||||
|
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
||||||
|
# hift cache
|
||||||
|
self.mel_cache_len = 20
|
||||||
|
self.source_cache_len = int(self.mel_cache_len * 256)
|
||||||
|
# speech fade in out
|
||||||
|
self.speech_window = np.hamming(2 * self.source_cache_len)
|
||||||
|
# rtf and decoding related
|
||||||
|
self.stream_scale_factor = 1
|
||||||
|
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
||||||
|
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||||
|
self.lock = threading.Lock()
|
||||||
|
# dict used to store session related variable
|
||||||
|
self.tts_speech_token_dict = {}
|
||||||
|
self.llm_end_dict = {}
|
||||||
|
self.mel_overlap_dict = {}
|
||||||
|
self.flow_cache_dict = {}
|
||||||
|
self.hift_cache_dict = {}
|
||||||
|
self.vllm_codec_engine = None
|
||||||
|
|
||||||
def load(self, llm_model, flow_model, hift_model):
|
def load(self, llm_model, flow_model, hift_model):
|
||||||
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
||||||
self.llm.to(self.device).eval()
|
self.llm.to(self.device).eval()
|
||||||
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
|
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
|
||||||
self.flow.to(self.device).eval()
|
self.flow.to(self.device).eval()
|
||||||
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
# in case hift_model is a hifigan model
|
||||||
|
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
||||||
|
self.hift.load_state_dict(hift_state_dict, strict=True)
|
||||||
self.hift.to(self.device).eval()
|
self.hift.to(self.device).eval()
|
||||||
|
|
||||||
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
||||||
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
||||||
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
self.llm.text_encoder = llm_text_encoder
|
||||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
|
||||||
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)):
|
self.llm.llm = llm_llm
|
||||||
tts_speech_token = self.llm.inference(text=text.to(self.device),
|
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||||
text_len=text_len.to(self.device),
|
self.flow.encoder = flow_encoder
|
||||||
prompt_text=prompt_text.to(self.device),
|
|
||||||
prompt_text_len=prompt_text_len.to(self.device),
|
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
|
||||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
||||||
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
if not os.path.exists(flow_decoder_estimator_model):
|
||||||
embedding=llm_embedding.to(self.device),
|
convert_onnx_to_trt(flow_decoder_estimator_model, flow_decoder_onnx_model, fp16)
|
||||||
beam_size=1,
|
if os.path.getsize(flow_decoder_estimator_model) == 0:
|
||||||
sampling=25,
|
raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model))
|
||||||
max_token_text_ratio=30,
|
del self.flow.decoder.estimator
|
||||||
min_token_text_ratio=3)
|
import tensorrt as trt
|
||||||
tts_mel = self.flow.inference(token=tts_speech_token,
|
with open(flow_decoder_estimator_model, 'rb') as f:
|
||||||
token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||||
prompt_token=flow_prompt_speech_token.to(self.device),
|
if self.flow.decoder.estimator_engine is None:
|
||||||
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
|
||||||
prompt_feat=prompt_speech_feat.to(self.device),
|
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
||||||
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
||||||
embedding=flow_embedding.to(self.device))
|
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
||||||
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
with self.llm_context:
|
||||||
|
if isinstance(text, Generator):
|
||||||
|
assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
|
||||||
|
if self.vllm_codec_engine is None:
|
||||||
|
for i in self.llm.inference_bistream(text=text,
|
||||||
|
prompt_text=prompt_text.to(self.device),
|
||||||
|
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||||
|
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
embedding=llm_embedding.to(self.device)):
|
||||||
|
self.tts_speech_token_dict[uuid].append(i)
|
||||||
|
else:
|
||||||
|
for i in self.llm.inference_bistream_vllm(text=text,
|
||||||
|
prompt_text=prompt_text.to(self.device),
|
||||||
|
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||||
|
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
embedding=llm_embedding.to(self.device),
|
||||||
|
vllm_codec_engine=self.vllm_codec_engine):
|
||||||
|
self.tts_speech_token_dict[uuid].append(i)
|
||||||
|
else:
|
||||||
|
for i in self.llm.inference(text=text.to(self.device),
|
||||||
|
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_text=prompt_text.to(self.device),
|
||||||
|
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||||
|
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
embedding=llm_embedding.to(self.device),
|
||||||
|
vllm_codec_engine=self.vllm_codec_engine):
|
||||||
|
self.tts_speech_token_dict[uuid].append(i)
|
||||||
|
self.llm_end_dict[uuid] = True
|
||||||
|
|
||||||
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
||||||
|
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
|
||||||
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_token=prompt_token.to(self.device),
|
||||||
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_feat=prompt_feat.to(self.device),
|
||||||
|
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
embedding=embedding.to(self.device),
|
||||||
|
flow_cache=self.flow_cache_dict[uuid])
|
||||||
|
self.flow_cache_dict[uuid] = flow_cache
|
||||||
|
|
||||||
|
# mel overlap fade in out
|
||||||
|
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
||||||
|
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
||||||
|
# append hift cache
|
||||||
|
if self.hift_cache_dict[uuid] is not None:
|
||||||
|
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
||||||
|
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
||||||
|
else:
|
||||||
|
hift_cache_source = torch.zeros(1, 1, 0)
|
||||||
|
# keep overlap mel and hift cache
|
||||||
|
if finalize is False:
|
||||||
|
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
||||||
|
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
||||||
|
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||||
|
if self.hift_cache_dict[uuid] is not None:
|
||||||
|
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||||
|
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
||||||
|
'source': tts_source[:, :, -self.source_cache_len:],
|
||||||
|
'speech': tts_speech[:, -self.source_cache_len:]}
|
||||||
|
tts_speech = tts_speech[:, :-self.source_cache_len]
|
||||||
|
else:
|
||||||
|
if speed != 1.0:
|
||||||
|
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
||||||
|
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
||||||
|
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||||
|
if self.hift_cache_dict[uuid] is not None:
|
||||||
|
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||||
|
return tts_speech
|
||||||
|
|
||||||
|
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||||
|
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
||||||
|
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||||
|
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||||
|
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
||||||
|
# this_uuid is used to track variables related to this inference thread
|
||||||
|
this_uuid = str(uuid.uuid1())
|
||||||
|
with self.lock:
|
||||||
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
||||||
|
self.hift_cache_dict[this_uuid] = None
|
||||||
|
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
||||||
|
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
||||||
|
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
||||||
|
p.start()
|
||||||
|
if stream is True:
|
||||||
|
token_hop_len = self.token_min_hop_len
|
||||||
|
while True:
|
||||||
|
time.sleep(0.1)
|
||||||
|
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
||||||
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
||||||
|
.unsqueeze(dim=0)
|
||||||
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
|
prompt_token=flow_prompt_speech_token,
|
||||||
|
prompt_feat=prompt_speech_feat,
|
||||||
|
embedding=flow_embedding,
|
||||||
|
uuid=this_uuid,
|
||||||
|
finalize=False)
|
||||||
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
|
with self.lock:
|
||||||
|
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
||||||
|
# increase token_hop_len for better speech quality
|
||||||
|
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
||||||
|
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
||||||
|
break
|
||||||
|
p.join()
|
||||||
|
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||||
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||||
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
|
prompt_token=flow_prompt_speech_token,
|
||||||
|
prompt_feat=prompt_speech_feat,
|
||||||
|
embedding=flow_embedding,
|
||||||
|
uuid=this_uuid,
|
||||||
|
finalize=True)
|
||||||
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
|
else:
|
||||||
|
# deal with all tokens
|
||||||
|
p.join()
|
||||||
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||||
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
|
prompt_token=flow_prompt_speech_token,
|
||||||
|
prompt_feat=prompt_speech_feat,
|
||||||
|
embedding=flow_embedding,
|
||||||
|
uuid=this_uuid,
|
||||||
|
finalize=True,
|
||||||
|
speed=speed)
|
||||||
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
|
with self.lock:
|
||||||
|
self.tts_speech_token_dict.pop(this_uuid)
|
||||||
|
self.llm_end_dict.pop(this_uuid)
|
||||||
|
self.mel_overlap_dict.pop(this_uuid)
|
||||||
|
self.hift_cache_dict.pop(this_uuid)
|
||||||
|
self.flow_cache_dict.pop(this_uuid)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
|
||||||
|
# this_uuid is used to track variables related to this inference thread
|
||||||
|
this_uuid = str(uuid.uuid1())
|
||||||
|
with self.lock:
|
||||||
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
|
||||||
|
self.hift_cache_dict[this_uuid] = None
|
||||||
|
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
||||||
|
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
||||||
|
if stream is True:
|
||||||
|
token_hop_len = self.token_min_hop_len
|
||||||
|
while True:
|
||||||
|
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
||||||
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
||||||
|
.unsqueeze(dim=0)
|
||||||
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
|
prompt_token=flow_prompt_speech_token,
|
||||||
|
prompt_feat=prompt_speech_feat,
|
||||||
|
embedding=flow_embedding,
|
||||||
|
uuid=this_uuid,
|
||||||
|
finalize=False)
|
||||||
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
|
with self.lock:
|
||||||
|
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
||||||
|
# increase token_hop_len for better speech quality
|
||||||
|
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
||||||
|
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
||||||
|
break
|
||||||
|
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||||
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||||
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
|
prompt_token=flow_prompt_speech_token,
|
||||||
|
prompt_feat=prompt_speech_feat,
|
||||||
|
embedding=flow_embedding,
|
||||||
|
uuid=this_uuid,
|
||||||
|
finalize=True)
|
||||||
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
|
else:
|
||||||
|
# deal with all tokens
|
||||||
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||||
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
|
prompt_token=flow_prompt_speech_token,
|
||||||
|
prompt_feat=prompt_speech_feat,
|
||||||
|
embedding=flow_embedding,
|
||||||
|
uuid=this_uuid,
|
||||||
|
finalize=True,
|
||||||
|
speed=speed)
|
||||||
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
|
with self.lock:
|
||||||
|
self.tts_speech_token_dict.pop(this_uuid)
|
||||||
|
self.llm_end_dict.pop(this_uuid)
|
||||||
|
self.mel_overlap_dict.pop(this_uuid)
|
||||||
|
self.hift_cache_dict.pop(this_uuid)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
|
||||||
|
class CosyVoice2Model(CosyVoiceModel):
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
llm: torch.nn.Module,
|
||||||
|
flow: torch.nn.Module,
|
||||||
|
hift: torch.nn.Module,
|
||||||
|
fp16: bool):
|
||||||
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
self.llm = llm
|
||||||
|
self.flow = flow
|
||||||
|
self.hift = hift
|
||||||
|
self.fp16 = fp16
|
||||||
|
self.llm.fp16 = fp16
|
||||||
|
self.flow.fp16 = fp16
|
||||||
|
if self.fp16 is True:
|
||||||
|
self.llm.half()
|
||||||
|
self.flow.half()
|
||||||
|
self.token_hop_len = 2 * self.flow.input_frame_rate
|
||||||
|
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
|
||||||
|
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
|
||||||
|
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
|
||||||
|
# hift cache
|
||||||
|
self.mel_cache_len = 8
|
||||||
|
self.source_cache_len = int(self.mel_cache_len * 480)
|
||||||
|
# speech fade in out
|
||||||
|
self.speech_window = np.hamming(2 * self.source_cache_len)
|
||||||
|
# rtf and decoding related
|
||||||
|
self.stream_scale_factor = 1
|
||||||
|
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||||
|
self.lock = threading.Lock()
|
||||||
|
# dict used to store session related variable
|
||||||
|
self.tts_speech_token_dict = {}
|
||||||
|
self.llm_end_dict = {}
|
||||||
|
self.hift_cache_dict = {}
|
||||||
|
self.vllm_codec_engine = None
|
||||||
|
|
||||||
|
def load_jit(self, flow_encoder_model):
|
||||||
|
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||||
|
self.flow.encoder = flow_encoder
|
||||||
|
|
||||||
|
def export_codec_vllm(self, model_path):
|
||||||
|
if os.path.exists(model_path):
|
||||||
|
return
|
||||||
|
pad_to = DEFAULT_VOCAB_PADDING_SIZE = 64
|
||||||
|
vocab_size = self.llm.speech_embedding.num_embeddings
|
||||||
|
feature_size = self.llm.speech_embedding.embedding_dim
|
||||||
|
pad_vocab_size = ((vocab_size + pad_to - 1) // pad_to) * pad_to
|
||||||
|
|
||||||
|
dtype = torch.bfloat16
|
||||||
|
# lm_head
|
||||||
|
new_lm_head = nn.Linear(in_features=feature_size, out_features=pad_vocab_size, bias=True)
|
||||||
|
with torch.no_grad():
|
||||||
|
new_lm_head.weight[:vocab_size] = self.llm.llm_decoder.weight
|
||||||
|
new_lm_head.bias[:vocab_size] = self.llm.llm_decoder.bias
|
||||||
|
new_lm_head.weight[vocab_size:] = 0
|
||||||
|
new_lm_head.bias[vocab_size:] = 0
|
||||||
|
self.llm.llm.model.lm_head = new_lm_head
|
||||||
|
new_codec_embed = nn.Linear(in_features=feature_size, out_features=pad_vocab_size)
|
||||||
|
# embed_tokens
|
||||||
|
embed_tokens = self.llm.llm.model.model.embed_tokens
|
||||||
|
with torch.no_grad():
|
||||||
|
new_codec_embed.weight[:vocab_size] = self.llm.speech_embedding.weight
|
||||||
|
new_codec_embed.weight[vocab_size:] = 0
|
||||||
|
self.llm.llm.model.set_input_embeddings(new_codec_embed)
|
||||||
|
self.llm.llm.model.to(self.device)
|
||||||
|
self.llm.llm.model.to(dtype)
|
||||||
|
tmp_vocab_size = self.llm.llm.model.config.vocab_size
|
||||||
|
tmp_tie_embedding = self.llm.llm.model.config.tie_word_embeddings
|
||||||
|
del self.llm.llm.model.generation_config.eos_token_id
|
||||||
|
del self.llm.llm.model.config.bos_token_id
|
||||||
|
del self.llm.llm.model.config.eos_token_id
|
||||||
|
self.llm.llm.model.config.vocab_size = pad_vocab_size
|
||||||
|
self.llm.llm.model.config.tie_word_embeddings = False
|
||||||
|
self.llm.llm.model.config.use_bias = True
|
||||||
|
self.llm.llm.model.save_pretrained(model_path)
|
||||||
|
self.llm.llm.model.config.vocab_size = tmp_vocab_size
|
||||||
|
self.llm.llm.model.config.tie_word_embeddings = tmp_tie_embedding
|
||||||
|
self.llm.llm.model.set_input_embeddings(embed_tokens)
|
||||||
|
|
||||||
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
|
||||||
|
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
||||||
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_token=prompt_token.to(self.device),
|
||||||
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
prompt_feat=prompt_feat.to(self.device),
|
||||||
|
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
|
embedding=embedding.to(self.device),
|
||||||
|
finalize=finalize)
|
||||||
|
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
||||||
|
# append hift cache
|
||||||
|
if self.hift_cache_dict[uuid] is not None:
|
||||||
|
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
||||||
|
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
||||||
|
else:
|
||||||
|
hift_cache_source = torch.zeros(1, 1, 0)
|
||||||
|
# keep overlap mel and hift cache
|
||||||
|
if finalize is False:
|
||||||
|
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||||
|
if self.hift_cache_dict[uuid] is not None:
|
||||||
|
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||||
|
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
||||||
|
'source': tts_source[:, :, -self.source_cache_len:],
|
||||||
|
'speech': tts_speech[:, -self.source_cache_len:]}
|
||||||
|
tts_speech = tts_speech[:, :-self.source_cache_len]
|
||||||
|
else:
|
||||||
|
if speed != 1.0:
|
||||||
|
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
||||||
|
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
||||||
|
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||||
|
if self.hift_cache_dict[uuid] is not None:
|
||||||
|
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||||
|
return tts_speech
|
||||||
|
|
||||||
|
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||||
|
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
||||||
|
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||||
|
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||||
|
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
||||||
|
# this_uuid is used to track variables related to this inference thread
|
||||||
|
this_uuid = str(uuid.uuid1())
|
||||||
|
with self.lock:
|
||||||
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
||||||
|
self.hift_cache_dict[this_uuid] = None
|
||||||
|
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
||||||
|
p.start()
|
||||||
|
if stream is True:
|
||||||
|
token_offset = 0
|
||||||
|
while True:
|
||||||
|
time.sleep(0.1)
|
||||||
|
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
|
||||||
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
||||||
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
|
prompt_token=flow_prompt_speech_token,
|
||||||
|
prompt_feat=prompt_speech_feat,
|
||||||
|
embedding=flow_embedding,
|
||||||
|
uuid=this_uuid,
|
||||||
|
token_offset=token_offset,
|
||||||
|
finalize=False)
|
||||||
|
token_offset += self.token_hop_len
|
||||||
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
|
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
|
||||||
|
break
|
||||||
|
p.join()
|
||||||
|
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||||
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||||
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
|
prompt_token=flow_prompt_speech_token,
|
||||||
|
prompt_feat=prompt_speech_feat,
|
||||||
|
embedding=flow_embedding,
|
||||||
|
uuid=this_uuid,
|
||||||
|
token_offset=token_offset,
|
||||||
|
finalize=True)
|
||||||
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
|
else:
|
||||||
|
# deal with all tokens
|
||||||
|
p.join()
|
||||||
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||||
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
|
prompt_token=flow_prompt_speech_token,
|
||||||
|
prompt_feat=prompt_speech_feat,
|
||||||
|
embedding=flow_embedding,
|
||||||
|
uuid=this_uuid,
|
||||||
|
token_offset=0,
|
||||||
|
finalize=True,
|
||||||
|
speed=speed)
|
||||||
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
|
with self.lock:
|
||||||
|
self.tts_speech_token_dict.pop(this_uuid)
|
||||||
|
self.llm_end_dict.pop(this_uuid)
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
return {'tts_speech': tts_speech}
|
|
||||||
|
|||||||
@@ -126,6 +126,7 @@ class DataList(IterableDataset):
|
|||||||
def Dataset(data_list_file,
|
def Dataset(data_list_file,
|
||||||
data_pipeline,
|
data_pipeline,
|
||||||
mode='train',
|
mode='train',
|
||||||
|
gan=False,
|
||||||
shuffle=True,
|
shuffle=True,
|
||||||
partition=True,
|
partition=True,
|
||||||
tts_file='',
|
tts_file='',
|
||||||
@@ -148,13 +149,16 @@ def Dataset(data_list_file,
|
|||||||
tts_data = json.load(f)
|
tts_data = json.load(f)
|
||||||
utt2lists = read_json_lists(prompt_utt2data)
|
utt2lists = read_json_lists(prompt_utt2data)
|
||||||
# filter unnecessary file in inference mode
|
# filter unnecessary file in inference mode
|
||||||
lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists]))
|
lists = list({utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists})
|
||||||
dataset = DataList(lists,
|
dataset = DataList(lists,
|
||||||
shuffle=shuffle,
|
shuffle=shuffle,
|
||||||
partition=partition)
|
partition=partition)
|
||||||
if mode == 'inference':
|
if mode == 'inference':
|
||||||
# map partial arg tts_data in inference mode
|
# map partial arg to parquet_opener func in inference mode
|
||||||
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
||||||
|
if gan is True:
|
||||||
|
# map partial arg to padding func in gan mode
|
||||||
|
data_pipeline[-1] = partial(data_pipeline[-1], gan=gan)
|
||||||
for func in data_pipeline:
|
for func in data_pipeline:
|
||||||
dataset = Processor(dataset, func, mode=mode)
|
dataset = Processor(dataset, func, mode=mode)
|
||||||
return dataset
|
return dataset
|
||||||
|
|||||||
@@ -20,10 +20,10 @@ import torch
|
|||||||
import torchaudio
|
import torchaudio
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
import pyworld as pw
|
||||||
|
|
||||||
torchaudio.set_audio_backend('soundfile')
|
|
||||||
|
|
||||||
AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])
|
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
||||||
|
|
||||||
|
|
||||||
def parquet_opener(data, mode='train', tts_data={}):
|
def parquet_opener(data, mode='train', tts_data={}):
|
||||||
@@ -40,20 +40,22 @@ def parquet_opener(data, mode='train', tts_data={}):
|
|||||||
assert 'src' in sample
|
assert 'src' in sample
|
||||||
url = sample['src']
|
url = sample['src']
|
||||||
try:
|
try:
|
||||||
df = pq.read_table(url).to_pandas()
|
for df in pq.ParquetFile(url).iter_batches(batch_size=64):
|
||||||
for i in range(len(df)):
|
df = df.to_pandas()
|
||||||
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
for i in range(len(df)):
|
||||||
continue
|
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
||||||
sample.update(dict(df.loc[i]))
|
continue
|
||||||
if mode == 'train':
|
sample.update(dict(df.loc[i]))
|
||||||
# NOTE do not return sample directly, must initialize a new dict
|
if mode == 'train':
|
||||||
yield {**sample}
|
# NOTE do not return sample directly, must initialize a new dict
|
||||||
else:
|
yield {**sample}
|
||||||
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
else:
|
||||||
yield {**sample, 'tts_index': index, 'tts_text': text}
|
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
||||||
|
yield {**sample, 'tts_index': index, 'tts_text': text}
|
||||||
except Exception as ex:
|
except Exception as ex:
|
||||||
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
||||||
|
|
||||||
|
|
||||||
def filter(data,
|
def filter(data,
|
||||||
max_length=10240,
|
max_length=10240,
|
||||||
min_length=10,
|
min_length=10,
|
||||||
@@ -84,6 +86,7 @@ def filter(data,
|
|||||||
"""
|
"""
|
||||||
for sample in data:
|
for sample in data:
|
||||||
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
||||||
|
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
||||||
del sample['audio_data']
|
del sample['audio_data']
|
||||||
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
||||||
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
||||||
@@ -133,6 +136,27 @@ def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
|
|||||||
yield sample
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def truncate(data, truncate_length=24576, mode='train'):
|
||||||
|
""" Truncate data.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
truncate_length: truncate length
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, wav, label, sample_rate}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
waveform = sample['speech']
|
||||||
|
if waveform.shape[1] > truncate_length:
|
||||||
|
start = random.randint(0, waveform.shape[1] - truncate_length)
|
||||||
|
waveform = waveform[:, start: start + truncate_length]
|
||||||
|
else:
|
||||||
|
waveform = torch.concat([waveform, torch.zeros(1, truncate_length - waveform.shape[1])], dim=1)
|
||||||
|
sample['speech'] = waveform
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
def compute_fbank(data,
|
def compute_fbank(data,
|
||||||
feat_extractor,
|
feat_extractor,
|
||||||
mode='train'):
|
mode='train'):
|
||||||
@@ -152,7 +176,31 @@ def compute_fbank(data,
|
|||||||
waveform = sample['speech']
|
waveform = sample['speech']
|
||||||
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
||||||
sample['speech_feat'] = mat
|
sample['speech_feat'] = mat
|
||||||
del sample['speech']
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def compute_f0(data, sample_rate, hop_size, mode='train'):
|
||||||
|
""" Extract f0
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, feat, label}]
|
||||||
|
"""
|
||||||
|
frame_period = hop_size * 1000 / sample_rate
|
||||||
|
for sample in data:
|
||||||
|
assert 'sample_rate' in sample
|
||||||
|
assert 'speech' in sample
|
||||||
|
assert 'utt' in sample
|
||||||
|
assert 'text_token' in sample
|
||||||
|
waveform = sample['speech']
|
||||||
|
_f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
|
||||||
|
if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
||||||
|
_f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
||||||
|
f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
|
||||||
|
f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
|
||||||
|
sample['pitch_feat'] = f0
|
||||||
yield sample
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
@@ -308,7 +356,7 @@ def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, m
|
|||||||
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
||||||
|
|
||||||
|
|
||||||
def padding(data, use_spk_embedding, mode='train'):
|
def padding(data, use_spk_embedding, mode='train', gan=False):
|
||||||
""" Padding the data into training data
|
""" Padding the data into training data
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -324,6 +372,9 @@ def padding(data, use_spk_embedding, mode='train'):
|
|||||||
order = torch.argsort(speech_feat_len, descending=True)
|
order = torch.argsort(speech_feat_len, descending=True)
|
||||||
|
|
||||||
utts = [sample[i]['utt'] for i in order]
|
utts = [sample[i]['utt'] for i in order]
|
||||||
|
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
|
||||||
|
speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
|
||||||
|
speech = pad_sequence(speech, batch_first=True, padding_value=0)
|
||||||
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
||||||
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
||||||
speech_token = pad_sequence(speech_token,
|
speech_token = pad_sequence(speech_token,
|
||||||
@@ -342,6 +393,8 @@ def padding(data, use_spk_embedding, mode='train'):
|
|||||||
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
||||||
batch = {
|
batch = {
|
||||||
"utts": utts,
|
"utts": utts,
|
||||||
|
"speech": speech,
|
||||||
|
"speech_len": speech_len,
|
||||||
"speech_token": speech_token,
|
"speech_token": speech_token,
|
||||||
"speech_token_len": speech_token_len,
|
"speech_token_len": speech_token_len,
|
||||||
"speech_feat": speech_feat,
|
"speech_feat": speech_feat,
|
||||||
@@ -352,6 +405,19 @@ def padding(data, use_spk_embedding, mode='train'):
|
|||||||
"utt_embedding": utt_embedding,
|
"utt_embedding": utt_embedding,
|
||||||
"spk_embedding": spk_embedding,
|
"spk_embedding": spk_embedding,
|
||||||
}
|
}
|
||||||
|
if gan is True:
|
||||||
|
# in gan train, we need pitch_feat
|
||||||
|
pitch_feat = [sample[i]['pitch_feat'] for i in order]
|
||||||
|
pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
|
||||||
|
pitch_feat = pad_sequence(pitch_feat,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=0)
|
||||||
|
batch["pitch_feat"] = pitch_feat
|
||||||
|
batch["pitch_feat_len"] = pitch_feat_len
|
||||||
|
else:
|
||||||
|
# only gan train needs speech, delete it to save memory
|
||||||
|
del batch["speech"]
|
||||||
|
del batch["speech_len"]
|
||||||
if mode == 'inference':
|
if mode == 'inference':
|
||||||
tts_text = [sample[i]['tts_text'] for i in order]
|
tts_text = [sample[i]['tts_text'] for i in order]
|
||||||
tts_index = [sample[i]['tts_index'] for i in order]
|
tts_index = [sample[i]['tts_index'] for i in order]
|
||||||
|
|||||||
105
cosyvoice/flow/decoder.py
Executable file → Normal file
105
cosyvoice/flow/decoder.py
Executable file → Normal file
@@ -13,16 +13,83 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
from einops import pack, rearrange, repeat
|
from einops import pack, rearrange, repeat
|
||||||
|
from cosyvoice.utils.common import mask_to_bias
|
||||||
|
from cosyvoice.utils.mask import add_optional_chunk_mask
|
||||||
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
||||||
from matcha.models.components.transformer import BasicTransformerBlock
|
from matcha.models.components.transformer import BasicTransformerBlock
|
||||||
|
|
||||||
|
|
||||||
|
class Transpose(torch.nn.Module):
|
||||||
|
def __init__(self, dim0: int, dim1: int):
|
||||||
|
super().__init__()
|
||||||
|
self.dim0 = dim0
|
||||||
|
self.dim1 = dim1
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor):
|
||||||
|
x = torch.transpose(x, self.dim0, self.dim1)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class CausalBlock1D(Block1D):
|
||||||
|
def __init__(self, dim: int, dim_out: int):
|
||||||
|
super(CausalBlock1D, self).__init__(dim, dim_out)
|
||||||
|
self.block = torch.nn.Sequential(
|
||||||
|
CausalConv1d(dim, dim_out, 3),
|
||||||
|
Transpose(1, 2),
|
||||||
|
nn.LayerNorm(dim_out),
|
||||||
|
Transpose(1, 2),
|
||||||
|
nn.Mish(),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, mask: torch.Tensor):
|
||||||
|
output = self.block(x * mask)
|
||||||
|
return output * mask
|
||||||
|
|
||||||
|
|
||||||
|
class CausalResnetBlock1D(ResnetBlock1D):
|
||||||
|
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
||||||
|
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
||||||
|
self.block1 = CausalBlock1D(dim, dim_out)
|
||||||
|
self.block2 = CausalBlock1D(dim_out, dim_out)
|
||||||
|
|
||||||
|
|
||||||
|
class CausalConv1d(torch.nn.Conv1d):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels: int,
|
||||||
|
out_channels: int,
|
||||||
|
kernel_size: int,
|
||||||
|
stride: int = 1,
|
||||||
|
dilation: int = 1,
|
||||||
|
groups: int = 1,
|
||||||
|
bias: bool = True,
|
||||||
|
padding_mode: str = 'zeros',
|
||||||
|
device=None,
|
||||||
|
dtype=None
|
||||||
|
) -> None:
|
||||||
|
super(CausalConv1d, self).__init__(in_channels, out_channels,
|
||||||
|
kernel_size, stride,
|
||||||
|
padding=0, dilation=dilation,
|
||||||
|
groups=groups, bias=bias,
|
||||||
|
padding_mode=padding_mode,
|
||||||
|
device=device, dtype=dtype)
|
||||||
|
assert stride == 1
|
||||||
|
self.causal_padding = (kernel_size - 1, 0)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor):
|
||||||
|
x = F.pad(x, self.causal_padding)
|
||||||
|
x = super(CausalConv1d, self).forward(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
class ConditionalDecoder(nn.Module):
|
class ConditionalDecoder(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
in_channels,
|
in_channels,
|
||||||
out_channels,
|
out_channels,
|
||||||
|
causal=False,
|
||||||
channels=(256, 256),
|
channels=(256, 256),
|
||||||
dropout=0.05,
|
dropout=0.05,
|
||||||
attention_head_dim=64,
|
attention_head_dim=64,
|
||||||
@@ -39,7 +106,7 @@ class ConditionalDecoder(nn.Module):
|
|||||||
channels = tuple(channels)
|
channels = tuple(channels)
|
||||||
self.in_channels = in_channels
|
self.in_channels = in_channels
|
||||||
self.out_channels = out_channels
|
self.out_channels = out_channels
|
||||||
|
self.causal = causal
|
||||||
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
||||||
time_embed_dim = channels[0] * 4
|
time_embed_dim = channels[0] * 4
|
||||||
self.time_mlp = TimestepEmbedding(
|
self.time_mlp = TimestepEmbedding(
|
||||||
@@ -56,7 +123,8 @@ class ConditionalDecoder(nn.Module):
|
|||||||
input_channel = output_channel
|
input_channel = output_channel
|
||||||
output_channel = channels[i]
|
output_channel = channels[i]
|
||||||
is_last = i == len(channels) - 1
|
is_last = i == len(channels) - 1
|
||||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
||||||
|
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||||
transformer_blocks = nn.ModuleList(
|
transformer_blocks = nn.ModuleList(
|
||||||
[
|
[
|
||||||
BasicTransformerBlock(
|
BasicTransformerBlock(
|
||||||
@@ -70,14 +138,16 @@ class ConditionalDecoder(nn.Module):
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
downsample = (
|
downsample = (
|
||||||
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
Downsample1D(output_channel) if not is_last else
|
||||||
|
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||||
)
|
)
|
||||||
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
||||||
|
|
||||||
for i in range(num_mid_blocks):
|
for _ in range(num_mid_blocks):
|
||||||
input_channel = channels[-1]
|
input_channel = channels[-1]
|
||||||
out_channels = channels[-1]
|
out_channels = channels[-1]
|
||||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
||||||
|
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||||
|
|
||||||
transformer_blocks = nn.ModuleList(
|
transformer_blocks = nn.ModuleList(
|
||||||
[
|
[
|
||||||
@@ -99,7 +169,11 @@ class ConditionalDecoder(nn.Module):
|
|||||||
input_channel = channels[i] * 2
|
input_channel = channels[i] * 2
|
||||||
output_channel = channels[i + 1]
|
output_channel = channels[i + 1]
|
||||||
is_last = i == len(channels) - 2
|
is_last = i == len(channels) - 2
|
||||||
resnet = ResnetBlock1D(
|
resnet = CausalResnetBlock1D(
|
||||||
|
dim=input_channel,
|
||||||
|
dim_out=output_channel,
|
||||||
|
time_emb_dim=time_embed_dim,
|
||||||
|
) if self.causal else ResnetBlock1D(
|
||||||
dim=input_channel,
|
dim=input_channel,
|
||||||
dim_out=output_channel,
|
dim_out=output_channel,
|
||||||
time_emb_dim=time_embed_dim,
|
time_emb_dim=time_embed_dim,
|
||||||
@@ -119,14 +193,13 @@ class ConditionalDecoder(nn.Module):
|
|||||||
upsample = (
|
upsample = (
|
||||||
Upsample1D(output_channel, use_conv_transpose=True)
|
Upsample1D(output_channel, use_conv_transpose=True)
|
||||||
if not is_last
|
if not is_last
|
||||||
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||||
)
|
)
|
||||||
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
||||||
self.final_block = Block1D(channels[-1], channels[-1])
|
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
|
||||||
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
||||||
self.initialize_weights()
|
self.initialize_weights()
|
||||||
|
|
||||||
|
|
||||||
def initialize_weights(self):
|
def initialize_weights(self):
|
||||||
for m in self.modules():
|
for m in self.modules():
|
||||||
if isinstance(m, nn.Conv1d):
|
if isinstance(m, nn.Conv1d):
|
||||||
@@ -159,7 +232,7 @@ class ConditionalDecoder(nn.Module):
|
|||||||
_type_: _description_
|
_type_: _description_
|
||||||
"""
|
"""
|
||||||
|
|
||||||
t = self.time_embeddings(t)
|
t = self.time_embeddings(t).to(t.dtype)
|
||||||
t = self.time_mlp(t)
|
t = self.time_mlp(t)
|
||||||
|
|
||||||
x = pack([x, mu], "b * t")[0]
|
x = pack([x, mu], "b * t")[0]
|
||||||
@@ -176,7 +249,9 @@ class ConditionalDecoder(nn.Module):
|
|||||||
mask_down = masks[-1]
|
mask_down = masks[-1]
|
||||||
x = resnet(x, mask_down, t)
|
x = resnet(x, mask_down, t)
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
# attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
||||||
|
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||||
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||||
for transformer_block in transformer_blocks:
|
for transformer_block in transformer_blocks:
|
||||||
x = transformer_block(
|
x = transformer_block(
|
||||||
hidden_states=x,
|
hidden_states=x,
|
||||||
@@ -193,7 +268,9 @@ class ConditionalDecoder(nn.Module):
|
|||||||
for resnet, transformer_blocks in self.mid_blocks:
|
for resnet, transformer_blocks in self.mid_blocks:
|
||||||
x = resnet(x, mask_mid, t)
|
x = resnet(x, mask_mid, t)
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
# attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
||||||
|
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||||
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||||
for transformer_block in transformer_blocks:
|
for transformer_block in transformer_blocks:
|
||||||
x = transformer_block(
|
x = transformer_block(
|
||||||
hidden_states=x,
|
hidden_states=x,
|
||||||
@@ -208,7 +285,9 @@ class ConditionalDecoder(nn.Module):
|
|||||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||||
x = resnet(x, mask_up, t)
|
x = resnet(x, mask_up, t)
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
# attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
||||||
|
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||||
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||||
for transformer_block in transformer_blocks:
|
for transformer_block in transformer_blocks:
|
||||||
x = transformer_block(
|
x = transformer_block(
|
||||||
hidden_states=x,
|
hidden_states=x,
|
||||||
|
|||||||
@@ -33,8 +33,13 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
encoder: torch.nn.Module = None,
|
encoder: torch.nn.Module = None,
|
||||||
length_regulator: torch.nn.Module = None,
|
length_regulator: torch.nn.Module = None,
|
||||||
decoder: torch.nn.Module = None,
|
decoder: torch.nn.Module = None,
|
||||||
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1, 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine', 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}), 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64, 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
||||||
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050, 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
||||||
|
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
||||||
|
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
||||||
|
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
||||||
|
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
||||||
|
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.input_size = input_size
|
self.input_size = input_size
|
||||||
self.output_size = output_size
|
self.output_size = output_size
|
||||||
@@ -104,7 +109,101 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
prompt_token_len,
|
prompt_token_len,
|
||||||
prompt_feat,
|
prompt_feat,
|
||||||
prompt_feat_len,
|
prompt_feat_len,
|
||||||
embedding):
|
embedding,
|
||||||
|
flow_cache):
|
||||||
|
if self.fp16 is True:
|
||||||
|
prompt_feat = prompt_feat.half()
|
||||||
|
embedding = embedding.half()
|
||||||
|
|
||||||
|
assert token.shape[0] == 1
|
||||||
|
# xvec projection
|
||||||
|
embedding = F.normalize(embedding, dim=1)
|
||||||
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
|
||||||
|
# concat text and prompt_text
|
||||||
|
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
||||||
|
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||||
|
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
||||||
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||||
|
|
||||||
|
# text encode
|
||||||
|
h, h_lengths = self.encoder(token, token_len)
|
||||||
|
h = self.encoder_proj(h)
|
||||||
|
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
|
||||||
|
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
|
||||||
|
|
||||||
|
# get conditions
|
||||||
|
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
||||||
|
conds[:, :mel_len1] = prompt_feat
|
||||||
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
|
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
||||||
|
feat, flow_cache = self.decoder(
|
||||||
|
mu=h.transpose(1, 2).contiguous(),
|
||||||
|
mask=mask.unsqueeze(1),
|
||||||
|
spks=embedding,
|
||||||
|
cond=conds,
|
||||||
|
n_timesteps=10,
|
||||||
|
prompt_len=mel_len1,
|
||||||
|
flow_cache=flow_cache
|
||||||
|
)
|
||||||
|
feat = feat[:, :, mel_len1:]
|
||||||
|
assert feat.shape[2] == mel_len2
|
||||||
|
return feat.float(), flow_cache
|
||||||
|
|
||||||
|
|
||||||
|
class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
input_size: int = 512,
|
||||||
|
output_size: int = 80,
|
||||||
|
spk_embed_dim: int = 192,
|
||||||
|
output_type: str = "mel",
|
||||||
|
vocab_size: int = 4096,
|
||||||
|
input_frame_rate: int = 50,
|
||||||
|
only_mask_loss: bool = True,
|
||||||
|
token_mel_ratio: int = 2,
|
||||||
|
pre_lookahead_len: int = 3,
|
||||||
|
encoder: torch.nn.Module = None,
|
||||||
|
decoder: torch.nn.Module = None,
|
||||||
|
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
||||||
|
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
||||||
|
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
||||||
|
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
||||||
|
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
||||||
|
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
||||||
|
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
||||||
|
super().__init__()
|
||||||
|
self.input_size = input_size
|
||||||
|
self.output_size = output_size
|
||||||
|
self.decoder_conf = decoder_conf
|
||||||
|
self.mel_feat_conf = mel_feat_conf
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.output_type = output_type
|
||||||
|
self.input_frame_rate = input_frame_rate
|
||||||
|
logging.info(f"input frame rate={self.input_frame_rate}")
|
||||||
|
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
||||||
|
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
||||||
|
self.encoder = encoder
|
||||||
|
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
||||||
|
self.decoder = decoder
|
||||||
|
self.only_mask_loss = only_mask_loss
|
||||||
|
self.token_mel_ratio = token_mel_ratio
|
||||||
|
self.pre_lookahead_len = pre_lookahead_len
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference(self,
|
||||||
|
token,
|
||||||
|
token_len,
|
||||||
|
prompt_token,
|
||||||
|
prompt_token_len,
|
||||||
|
prompt_feat,
|
||||||
|
prompt_feat_len,
|
||||||
|
embedding,
|
||||||
|
finalize):
|
||||||
|
if self.fp16 is True:
|
||||||
|
prompt_feat = prompt_feat.half()
|
||||||
|
embedding = embedding.half()
|
||||||
|
|
||||||
assert token.shape[0] == 1
|
assert token.shape[0] == 1
|
||||||
# xvec projection
|
# xvec projection
|
||||||
embedding = F.normalize(embedding, dim=1)
|
embedding = F.normalize(embedding, dim=1)
|
||||||
@@ -112,30 +211,29 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
|
|
||||||
# concat text and prompt_text
|
# concat text and prompt_text
|
||||||
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
|
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
||||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||||
|
|
||||||
# text encode
|
# text encode
|
||||||
h, h_lengths = self.encoder(token, token_len)
|
h, h_lengths = self.encoder(token, token_len)
|
||||||
|
if finalize is False:
|
||||||
|
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
|
||||||
|
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
||||||
h = self.encoder_proj(h)
|
h = self.encoder_proj(h)
|
||||||
feat_len = (token_len / 50 * 22050 / 256).int()
|
|
||||||
h, h_lengths = self.length_regulator(h, feat_len)
|
|
||||||
|
|
||||||
# get conditions
|
# get conditions
|
||||||
conds = torch.zeros([1, feat_len.max().item(), self.output_size], device=token.device)
|
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
||||||
if prompt_feat.shape[1] != 0:
|
conds[:, :mel_len1] = prompt_feat
|
||||||
for i, j in enumerate(prompt_feat_len):
|
|
||||||
conds[i, :j] = prompt_feat[i]
|
|
||||||
conds = conds.transpose(1, 2)
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
mask = (~make_pad_mask(feat_len)).to(h)
|
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
||||||
feat = self.decoder(
|
feat, _ = self.decoder(
|
||||||
mu=h.transpose(1, 2).contiguous(),
|
mu=h.transpose(1, 2).contiguous(),
|
||||||
mask=mask.unsqueeze(1),
|
mask=mask.unsqueeze(1),
|
||||||
spks=embedding,
|
spks=embedding,
|
||||||
cond=conds,
|
cond=conds,
|
||||||
n_timesteps=10
|
n_timesteps=10
|
||||||
)
|
)
|
||||||
if prompt_feat.shape[1] != 0:
|
feat = feat[:, :, mel_len1:]
|
||||||
feat = feat[:, :, prompt_feat.shape[1]:]
|
assert feat.shape[2] == mel_len2
|
||||||
return feat
|
return feat.float(), None
|
||||||
|
|||||||
109
cosyvoice/flow/flow_matching.py
Executable file → Normal file
109
cosyvoice/flow/flow_matching.py
Executable file → Normal file
@@ -11,10 +11,12 @@
|
|||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
import threading
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from matcha.models.components.flow_matching import BASECFM
|
from matcha.models.components.flow_matching import BASECFM
|
||||||
|
|
||||||
|
|
||||||
class ConditionalCFM(BASECFM):
|
class ConditionalCFM(BASECFM):
|
||||||
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
||||||
super().__init__(
|
super().__init__(
|
||||||
@@ -29,9 +31,10 @@ class ConditionalCFM(BASECFM):
|
|||||||
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
||||||
# Just change the architecture of the estimator here
|
# Just change the architecture of the estimator here
|
||||||
self.estimator = estimator
|
self.estimator = estimator
|
||||||
|
self.lock = threading.Lock()
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
|
||||||
"""Forward diffusion
|
"""Forward diffusion
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -49,11 +52,21 @@ class ConditionalCFM(BASECFM):
|
|||||||
sample: generated mel-spectrogram
|
sample: generated mel-spectrogram
|
||||||
shape: (batch_size, n_feats, mel_timesteps)
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
"""
|
"""
|
||||||
z = torch.randn_like(mu) * temperature
|
|
||||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
|
||||||
|
cache_size = flow_cache.shape[2]
|
||||||
|
# fix prompt and overlap part mu and z
|
||||||
|
if cache_size != 0:
|
||||||
|
z[:, :, :cache_size] = flow_cache[:, :, :, 0]
|
||||||
|
mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
|
||||||
|
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
||||||
|
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
||||||
|
flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
|
||||||
|
|
||||||
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||||
if self.t_scheduler == 'cosine':
|
if self.t_scheduler == 'cosine':
|
||||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
|
||||||
|
|
||||||
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
||||||
"""
|
"""
|
||||||
@@ -71,30 +84,63 @@ class ConditionalCFM(BASECFM):
|
|||||||
cond: Not used but kept for future purposes
|
cond: Not used but kept for future purposes
|
||||||
"""
|
"""
|
||||||
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||||
|
t = t.unsqueeze(dim=0)
|
||||||
|
|
||||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||||
# Or in future might add like a return_all_steps flag
|
# Or in future might add like a return_all_steps flag
|
||||||
sol = []
|
sol = []
|
||||||
|
|
||||||
|
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
||||||
|
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||||
|
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
|
||||||
|
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||||
|
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
|
||||||
|
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
|
||||||
|
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||||
for step in range(1, len(t_span)):
|
for step in range(1, len(t_span)):
|
||||||
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
|
||||||
# Classifier-Free Guidance inference introduced in VoiceBox
|
# Classifier-Free Guidance inference introduced in VoiceBox
|
||||||
if self.inference_cfg_rate > 0:
|
x_in[:] = x
|
||||||
cfg_dphi_dt = self.estimator(
|
mask_in[:] = mask
|
||||||
x, mask,
|
mu_in[0] = mu
|
||||||
torch.zeros_like(mu), t,
|
t_in[:] = t.unsqueeze(0)
|
||||||
torch.zeros_like(spks) if spks is not None else None,
|
spks_in[0] = spks
|
||||||
torch.zeros_like(cond)
|
cond_in[0] = cond
|
||||||
)
|
dphi_dt = self.forward_estimator(
|
||||||
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
|
x_in, mask_in,
|
||||||
self.inference_cfg_rate * cfg_dphi_dt)
|
mu_in, t_in,
|
||||||
|
spks_in,
|
||||||
|
cond_in
|
||||||
|
)
|
||||||
|
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
||||||
|
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
||||||
x = x + dt * dphi_dt
|
x = x + dt * dphi_dt
|
||||||
t = t + dt
|
t = t + dt
|
||||||
sol.append(x)
|
sol.append(x)
|
||||||
if step < len(t_span) - 1:
|
if step < len(t_span) - 1:
|
||||||
dt = t_span[step + 1] - t
|
dt = t_span[step + 1] - t
|
||||||
|
|
||||||
return sol[-1]
|
return sol[-1].float()
|
||||||
|
|
||||||
|
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
||||||
|
if isinstance(self.estimator, torch.nn.Module):
|
||||||
|
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
||||||
|
else:
|
||||||
|
with self.lock:
|
||||||
|
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
||||||
|
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
||||||
|
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
||||||
|
self.estimator.set_input_shape('t', (2,))
|
||||||
|
self.estimator.set_input_shape('spks', (2, 80))
|
||||||
|
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||||
|
# run trt engine
|
||||||
|
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
||||||
|
mask.contiguous().data_ptr(),
|
||||||
|
mu.contiguous().data_ptr(),
|
||||||
|
t.contiguous().data_ptr(),
|
||||||
|
spks.contiguous().data_ptr(),
|
||||||
|
cond.contiguous().data_ptr(),
|
||||||
|
x.data_ptr()])
|
||||||
|
return x
|
||||||
|
|
||||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
||||||
"""Computes diffusion loss
|
"""Computes diffusion loss
|
||||||
@@ -136,3 +182,36 @@ class ConditionalCFM(BASECFM):
|
|||||||
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
||||||
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
||||||
return loss, y
|
return loss, y
|
||||||
|
|
||||||
|
|
||||||
|
class CausalConditionalCFM(ConditionalCFM):
|
||||||
|
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
||||||
|
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
|
||||||
|
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
||||||
|
"""Forward diffusion
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mu (torch.Tensor): output of encoder
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
mask (torch.Tensor): output_mask
|
||||||
|
shape: (batch_size, 1, mel_timesteps)
|
||||||
|
n_timesteps (int): number of diffusion steps
|
||||||
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
||||||
|
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||||
|
shape: (batch_size, spk_emb_dim)
|
||||||
|
cond: Not used but kept for future purposes
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
sample: generated mel-spectrogram
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
"""
|
||||||
|
|
||||||
|
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
|
||||||
|
# fix prompt and overlap part mu and z
|
||||||
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||||
|
if self.t_scheduler == 'cosine':
|
||||||
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||||
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|
||||||
|
|||||||
22
cosyvoice/flow/length_regulator.py
Executable file → Normal file
22
cosyvoice/flow/length_regulator.py
Executable file → Normal file
@@ -13,6 +13,7 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
from typing import Tuple
|
from typing import Tuple
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
import torch
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
from cosyvoice.utils.mask import make_pad_mask
|
from cosyvoice.utils.mask import make_pad_mask
|
||||||
|
|
||||||
@@ -43,7 +44,26 @@ class InterpolateRegulator(nn.Module):
|
|||||||
def forward(self, x, ylens=None):
|
def forward(self, x, ylens=None):
|
||||||
# x in (B, T, D)
|
# x in (B, T, D)
|
||||||
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
||||||
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear')
|
||||||
out = self.model(x).transpose(1, 2).contiguous()
|
out = self.model(x).transpose(1, 2).contiguous()
|
||||||
olens = ylens
|
olens = ylens
|
||||||
return out * mask, olens
|
return out * mask, olens
|
||||||
|
|
||||||
|
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
|
||||||
|
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
|
||||||
|
# x in (B, T, D)
|
||||||
|
if x2.shape[1] > 40:
|
||||||
|
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
||||||
|
x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2,
|
||||||
|
mode='linear')
|
||||||
|
x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
||||||
|
x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
|
||||||
|
else:
|
||||||
|
x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')
|
||||||
|
if x1.shape[1] != 0:
|
||||||
|
x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear')
|
||||||
|
x = torch.concat([x1, x2], dim=2)
|
||||||
|
else:
|
||||||
|
x = x2
|
||||||
|
out = self.model(x).transpose(1, 2).contiguous()
|
||||||
|
return out, mel_len1 + mel_len2
|
||||||
|
|||||||
140
cosyvoice/hifigan/discriminator.py
Normal file
140
cosyvoice/hifigan/discriminator.py
Normal file
@@ -0,0 +1,140 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.nn.utils.parametrizations import weight_norm
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
from einops import rearrange
|
||||||
|
from torchaudio.transforms import Spectrogram
|
||||||
|
|
||||||
|
|
||||||
|
class MultipleDiscriminator(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self, mpd: nn.Module, mrd: nn.Module
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.mpd = mpd
|
||||||
|
self.mrd = mrd
|
||||||
|
|
||||||
|
def forward(self, y: torch.Tensor, y_hat: torch.Tensor):
|
||||||
|
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
|
||||||
|
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1))
|
||||||
|
y_d_rs += this_y_d_rs
|
||||||
|
y_d_gs += this_y_d_gs
|
||||||
|
fmap_rs += this_fmap_rs
|
||||||
|
fmap_gs += this_fmap_gs
|
||||||
|
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat)
|
||||||
|
y_d_rs += this_y_d_rs
|
||||||
|
y_d_gs += this_y_d_gs
|
||||||
|
fmap_rs += this_fmap_rs
|
||||||
|
fmap_gs += this_fmap_gs
|
||||||
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||||
|
|
||||||
|
|
||||||
|
class MultiResolutionDiscriminator(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
|
||||||
|
num_embeddings: Optional[int] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
|
||||||
|
Additionally, it allows incorporating conditional information with a learned embeddings table.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
|
||||||
|
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
||||||
|
Defaults to None.
|
||||||
|
"""
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
self.discriminators = nn.ModuleList(
|
||||||
|
[DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
||||||
|
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
||||||
|
y_d_rs = []
|
||||||
|
y_d_gs = []
|
||||||
|
fmap_rs = []
|
||||||
|
fmap_gs = []
|
||||||
|
|
||||||
|
for d in self.discriminators:
|
||||||
|
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
||||||
|
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
||||||
|
y_d_rs.append(y_d_r)
|
||||||
|
fmap_rs.append(fmap_r)
|
||||||
|
y_d_gs.append(y_d_g)
|
||||||
|
fmap_gs.append(fmap_g)
|
||||||
|
|
||||||
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||||
|
|
||||||
|
|
||||||
|
class DiscriminatorR(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
window_length: int,
|
||||||
|
num_embeddings: Optional[int] = None,
|
||||||
|
channels: int = 32,
|
||||||
|
hop_factor: float = 0.25,
|
||||||
|
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.window_length = window_length
|
||||||
|
self.hop_factor = hop_factor
|
||||||
|
self.spec_fn = Spectrogram(
|
||||||
|
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
|
||||||
|
)
|
||||||
|
n_fft = window_length // 2 + 1
|
||||||
|
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
||||||
|
self.bands = bands
|
||||||
|
convs = lambda: nn.ModuleList(
|
||||||
|
[
|
||||||
|
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
||||||
|
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
||||||
|
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
||||||
|
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
||||||
|
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
||||||
|
|
||||||
|
if num_embeddings is not None:
|
||||||
|
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
|
||||||
|
torch.nn.init.zeros_(self.emb.weight)
|
||||||
|
|
||||||
|
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
|
||||||
|
|
||||||
|
def spectrogram(self, x):
|
||||||
|
# Remove DC offset
|
||||||
|
x = x - x.mean(dim=-1, keepdims=True)
|
||||||
|
# Peak normalize the volume of input audio
|
||||||
|
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
||||||
|
x = self.spec_fn(x)
|
||||||
|
x = torch.view_as_real(x)
|
||||||
|
x = rearrange(x, "b f t c -> b c t f")
|
||||||
|
# Split into bands
|
||||||
|
x_bands = [x[..., b[0]: b[1]] for b in self.bands]
|
||||||
|
return x_bands
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
|
||||||
|
x_bands = self.spectrogram(x)
|
||||||
|
fmap = []
|
||||||
|
x = []
|
||||||
|
for band, stack in zip(x_bands, self.band_convs):
|
||||||
|
for i, layer in enumerate(stack):
|
||||||
|
band = layer(band)
|
||||||
|
band = torch.nn.functional.leaky_relu(band, 0.1)
|
||||||
|
if i > 0:
|
||||||
|
fmap.append(band)
|
||||||
|
x.append(band)
|
||||||
|
x = torch.cat(x, dim=-1)
|
||||||
|
if cond_embedding_id is not None:
|
||||||
|
emb = self.emb(cond_embedding_id)
|
||||||
|
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
||||||
|
else:
|
||||||
|
h = 0
|
||||||
|
x = self.conv_post(x)
|
||||||
|
fmap.append(x)
|
||||||
|
x += h
|
||||||
|
|
||||||
|
return x, fmap
|
||||||
2
cosyvoice/hifigan/f0_predictor.py
Executable file → Normal file
2
cosyvoice/hifigan/f0_predictor.py
Executable file → Normal file
@@ -13,7 +13,7 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch.nn.utils import weight_norm
|
from torch.nn.utils.parametrizations import weight_norm
|
||||||
|
|
||||||
|
|
||||||
class ConvRNNF0Predictor(nn.Module):
|
class ConvRNNF0Predictor(nn.Module):
|
||||||
|
|||||||
@@ -14,7 +14,7 @@
|
|||||||
|
|
||||||
"""HIFI-GAN"""
|
"""HIFI-GAN"""
|
||||||
|
|
||||||
import typing as tp
|
from typing import Dict, Optional, List
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from scipy.signal import get_window
|
from scipy.signal import get_window
|
||||||
import torch
|
import torch
|
||||||
@@ -23,7 +23,7 @@ import torch.nn.functional as F
|
|||||||
from torch.nn import Conv1d
|
from torch.nn import Conv1d
|
||||||
from torch.nn import ConvTranspose1d
|
from torch.nn import ConvTranspose1d
|
||||||
from torch.nn.utils import remove_weight_norm
|
from torch.nn.utils import remove_weight_norm
|
||||||
from torch.nn.utils import weight_norm
|
from torch.nn.utils.parametrizations import weight_norm
|
||||||
from torch.distributions.uniform import Uniform
|
from torch.distributions.uniform import Uniform
|
||||||
|
|
||||||
from cosyvoice.transformer.activation import Snake
|
from cosyvoice.transformer.activation import Snake
|
||||||
@@ -38,13 +38,15 @@ This code is modified from https://github.com/jik876/hifi-gan
|
|||||||
https://github.com/NVIDIA/BigVGAN
|
https://github.com/NVIDIA/BigVGAN
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
class ResBlock(torch.nn.Module):
|
class ResBlock(torch.nn.Module):
|
||||||
"""Residual block module in HiFiGAN/BigVGAN."""
|
"""Residual block module in HiFiGAN/BigVGAN."""
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
channels: int = 512,
|
channels: int = 512,
|
||||||
kernel_size: int = 3,
|
kernel_size: int = 3,
|
||||||
dilations: tp.List[int] = [1, 3, 5],
|
dilations: List[int] = [1, 3, 5],
|
||||||
):
|
):
|
||||||
super(ResBlock, self).__init__()
|
super(ResBlock, self).__init__()
|
||||||
self.convs1 = nn.ModuleList()
|
self.convs1 = nn.ModuleList()
|
||||||
@@ -100,6 +102,7 @@ class ResBlock(torch.nn.Module):
|
|||||||
remove_weight_norm(self.convs1[idx])
|
remove_weight_norm(self.convs1[idx])
|
||||||
remove_weight_norm(self.convs2[idx])
|
remove_weight_norm(self.convs2[idx])
|
||||||
|
|
||||||
|
|
||||||
class SineGen(torch.nn.Module):
|
class SineGen(torch.nn.Module):
|
||||||
""" Definition of sine generator
|
""" Definition of sine generator
|
||||||
SineGen(samp_rate, harmonic_num = 0,
|
SineGen(samp_rate, harmonic_num = 0,
|
||||||
@@ -231,13 +234,13 @@ class HiFTGenerator(nn.Module):
|
|||||||
nsf_alpha: float = 0.1,
|
nsf_alpha: float = 0.1,
|
||||||
nsf_sigma: float = 0.003,
|
nsf_sigma: float = 0.003,
|
||||||
nsf_voiced_threshold: float = 10,
|
nsf_voiced_threshold: float = 10,
|
||||||
upsample_rates: tp.List[int] = [8, 8],
|
upsample_rates: List[int] = [8, 8],
|
||||||
upsample_kernel_sizes: tp.List[int] = [16, 16],
|
upsample_kernel_sizes: List[int] = [16, 16],
|
||||||
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
||||||
resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
|
resblock_kernel_sizes: List[int] = [3, 7, 11],
|
||||||
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||||
source_resblock_kernel_sizes: tp.List[int] = [7, 11],
|
source_resblock_kernel_sizes: List[int] = [7, 11],
|
||||||
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
|
source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
|
||||||
lrelu_slope: float = 0.1,
|
lrelu_slope: float = 0.1,
|
||||||
audio_limit: float = 0.99,
|
audio_limit: float = 0.99,
|
||||||
f0_predictor: torch.nn.Module = None,
|
f0_predictor: torch.nn.Module = None,
|
||||||
@@ -286,8 +289,7 @@ class HiFTGenerator(nn.Module):
|
|||||||
self.source_resblocks = nn.ModuleList()
|
self.source_resblocks = nn.ModuleList()
|
||||||
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
||||||
downsample_cum_rates = np.cumprod(downsample_rates)
|
downsample_cum_rates = np.cumprod(downsample_rates)
|
||||||
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
|
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
|
||||||
source_resblock_dilation_sizes)):
|
|
||||||
if u == 1:
|
if u == 1:
|
||||||
self.source_downs.append(
|
self.source_downs.append(
|
||||||
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
||||||
@@ -304,7 +306,7 @@ class HiFTGenerator(nn.Module):
|
|||||||
self.resblocks = nn.ModuleList()
|
self.resblocks = nn.ModuleList()
|
||||||
for i in range(len(self.ups)):
|
for i in range(len(self.ups)):
|
||||||
ch = base_channels // (2**(i + 1))
|
ch = base_channels // (2**(i + 1))
|
||||||
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||||
self.resblocks.append(ResBlock(ch, k, d))
|
self.resblocks.append(ResBlock(ch, k, d))
|
||||||
|
|
||||||
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
||||||
@@ -314,11 +316,19 @@ class HiFTGenerator(nn.Module):
|
|||||||
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
||||||
self.f0_predictor = f0_predictor
|
self.f0_predictor = f0_predictor
|
||||||
|
|
||||||
def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
|
def remove_weight_norm(self):
|
||||||
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
print('Removing weight norm...')
|
||||||
|
for l in self.ups:
|
||||||
har_source, _, _ = self.m_source(f0)
|
remove_weight_norm(l)
|
||||||
return har_source.transpose(1, 2)
|
for l in self.resblocks:
|
||||||
|
l.remove_weight_norm()
|
||||||
|
remove_weight_norm(self.conv_pre)
|
||||||
|
remove_weight_norm(self.conv_post)
|
||||||
|
self.m_source.remove_weight_norm()
|
||||||
|
for l in self.source_downs:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
for l in self.source_resblocks:
|
||||||
|
l.remove_weight_norm()
|
||||||
|
|
||||||
def _stft(self, x):
|
def _stft(self, x):
|
||||||
spec = torch.stft(
|
spec = torch.stft(
|
||||||
@@ -332,13 +342,11 @@ class HiFTGenerator(nn.Module):
|
|||||||
magnitude = torch.clip(magnitude, max=1e2)
|
magnitude = torch.clip(magnitude, max=1e2)
|
||||||
real = magnitude * torch.cos(phase)
|
real = magnitude * torch.cos(phase)
|
||||||
img = magnitude * torch.sin(phase)
|
img = magnitude * torch.sin(phase)
|
||||||
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
|
||||||
|
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
||||||
return inverse_transform
|
return inverse_transform
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
||||||
f0 = self.f0_predictor(x)
|
|
||||||
s = self._f02source(f0)
|
|
||||||
|
|
||||||
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
||||||
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
||||||
|
|
||||||
@@ -372,20 +380,32 @@ class HiFTGenerator(nn.Module):
|
|||||||
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def remove_weight_norm(self):
|
def forward(
|
||||||
print('Removing weight norm...')
|
self,
|
||||||
for l in self.ups:
|
batch: dict,
|
||||||
remove_weight_norm(l)
|
device: torch.device,
|
||||||
for l in self.resblocks:
|
) -> Dict[str, Optional[torch.Tensor]]:
|
||||||
l.remove_weight_norm()
|
speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
|
||||||
remove_weight_norm(self.conv_pre)
|
# mel->f0
|
||||||
remove_weight_norm(self.conv_post)
|
f0 = self.f0_predictor(speech_feat)
|
||||||
self.source_module.remove_weight_norm()
|
# f0->source
|
||||||
for l in self.source_downs:
|
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
||||||
remove_weight_norm(l)
|
s, _, _ = self.m_source(s)
|
||||||
for l in self.source_resblocks:
|
s = s.transpose(1, 2)
|
||||||
l.remove_weight_norm()
|
# mel+source->speech
|
||||||
|
generated_speech = self.decode(x=speech_feat, s=s)
|
||||||
|
return generated_speech, f0
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def inference(self, mel: torch.Tensor) -> torch.Tensor:
|
def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
||||||
return self.forward(x=mel)
|
# mel->f0
|
||||||
|
f0 = self.f0_predictor(speech_feat)
|
||||||
|
# f0->source
|
||||||
|
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
||||||
|
s, _, _ = self.m_source(s)
|
||||||
|
s = s.transpose(1, 2)
|
||||||
|
# use cache_source to avoid glitch
|
||||||
|
if cache_source.shape[2] != 0:
|
||||||
|
s[:, :, :cache_source.shape[2]] = cache_source
|
||||||
|
generated_speech = self.decode(x=speech_feat, s=s)
|
||||||
|
return generated_speech, s
|
||||||
|
|||||||
67
cosyvoice/hifigan/hifigan.py
Normal file
67
cosyvoice/hifigan/hifigan.py
Normal file
@@ -0,0 +1,67 @@
|
|||||||
|
from typing import Dict, Optional
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from matcha.hifigan.models import feature_loss, generator_loss, discriminator_loss
|
||||||
|
from cosyvoice.utils.losses import tpr_loss, mel_loss
|
||||||
|
|
||||||
|
|
||||||
|
class HiFiGan(nn.Module):
|
||||||
|
def __init__(self, generator, discriminator, mel_spec_transform,
|
||||||
|
multi_mel_spectral_recon_loss_weight=45, feat_match_loss_weight=2.0,
|
||||||
|
tpr_loss_weight=1.0, tpr_loss_tau=0.04):
|
||||||
|
super(HiFiGan, self).__init__()
|
||||||
|
self.generator = generator
|
||||||
|
self.discriminator = discriminator
|
||||||
|
self.mel_spec_transform = mel_spec_transform
|
||||||
|
self.multi_mel_spectral_recon_loss_weight = multi_mel_spectral_recon_loss_weight
|
||||||
|
self.feat_match_loss_weight = feat_match_loss_weight
|
||||||
|
self.tpr_loss_weight = tpr_loss_weight
|
||||||
|
self.tpr_loss_tau = tpr_loss_tau
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batch: dict,
|
||||||
|
device: torch.device,
|
||||||
|
) -> Dict[str, Optional[torch.Tensor]]:
|
||||||
|
if batch['turn'] == 'generator':
|
||||||
|
return self.forward_generator(batch, device)
|
||||||
|
else:
|
||||||
|
return self.forward_discriminator(batch, device)
|
||||||
|
|
||||||
|
def forward_generator(self, batch, device):
|
||||||
|
real_speech = batch['speech'].to(device)
|
||||||
|
pitch_feat = batch['pitch_feat'].to(device)
|
||||||
|
# 1. calculate generator outputs
|
||||||
|
generated_speech, generated_f0 = self.generator(batch, device)
|
||||||
|
# 2. calculate discriminator outputs
|
||||||
|
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
||||||
|
# 3. calculate generator losses, feature loss, mel loss, tpr losses [Optional]
|
||||||
|
loss_gen, _ = generator_loss(y_d_gs)
|
||||||
|
loss_fm = feature_loss(fmap_rs, fmap_gs)
|
||||||
|
loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
|
||||||
|
if self.tpr_loss_weight != 0:
|
||||||
|
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
||||||
|
else:
|
||||||
|
loss_tpr = torch.zeros(1).to(device)
|
||||||
|
loss_f0 = F.l1_loss(generated_f0, pitch_feat)
|
||||||
|
loss = loss_gen + self.feat_match_loss_weight * loss_fm + \
|
||||||
|
self.multi_mel_spectral_recon_loss_weight * loss_mel + \
|
||||||
|
self.tpr_loss_weight * loss_tpr + loss_f0
|
||||||
|
return {'loss': loss, 'loss_gen': loss_gen, 'loss_fm': loss_fm, 'loss_mel': loss_mel, 'loss_tpr': loss_tpr, 'loss_f0': loss_f0}
|
||||||
|
|
||||||
|
def forward_discriminator(self, batch, device):
|
||||||
|
real_speech = batch['speech'].to(device)
|
||||||
|
# 1. calculate generator outputs
|
||||||
|
with torch.no_grad():
|
||||||
|
generated_speech, generated_f0 = self.generator(batch, device)
|
||||||
|
# 2. calculate discriminator outputs
|
||||||
|
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
||||||
|
# 3. calculate discriminator losses, tpr losses [Optional]
|
||||||
|
loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
|
||||||
|
if self.tpr_loss_weight != 0:
|
||||||
|
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
||||||
|
else:
|
||||||
|
loss_tpr = torch.zeros(1).to(device)
|
||||||
|
loss = loss_disc + self.tpr_loss_weight * loss_tpr
|
||||||
|
return {'loss': loss, 'loss_disc': loss_disc, 'loss_tpr': loss_tpr}
|
||||||
@@ -11,14 +11,16 @@
|
|||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
from typing import Dict, Optional, Union
|
from typing import Dict, Optional, Callable, List, Generator
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
from transformers import Qwen2ForCausalLM
|
||||||
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
||||||
from cosyvoice.utils.common import IGNORE_ID
|
from cosyvoice.utils.common import IGNORE_ID
|
||||||
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
||||||
from cosyvoice.utils.common import th_accuracy
|
from cosyvoice.utils.common import th_accuracy
|
||||||
|
from cosyvoice.utils.file_utils import logging
|
||||||
|
|
||||||
|
|
||||||
class TransformerLM(torch.nn.Module):
|
class TransformerLM(torch.nn.Module):
|
||||||
@@ -31,6 +33,7 @@ class TransformerLM(torch.nn.Module):
|
|||||||
speech_token_size: int,
|
speech_token_size: int,
|
||||||
text_encoder: torch.nn.Module,
|
text_encoder: torch.nn.Module,
|
||||||
llm: torch.nn.Module,
|
llm: torch.nn.Module,
|
||||||
|
sampling: Callable,
|
||||||
length_normalized_loss: bool = True,
|
length_normalized_loss: bool = True,
|
||||||
lsm_weight: float = 0.0,
|
lsm_weight: float = 0.0,
|
||||||
spk_embed_dim: int = 192,
|
spk_embed_dim: int = 192,
|
||||||
@@ -63,6 +66,9 @@ class TransformerLM(torch.nn.Module):
|
|||||||
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
||||||
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
||||||
|
|
||||||
|
# 4. sampling method
|
||||||
|
self.sampling = sampling
|
||||||
|
|
||||||
def encode(
|
def encode(
|
||||||
self,
|
self,
|
||||||
text: torch.Tensor,
|
text: torch.Tensor,
|
||||||
@@ -76,7 +82,8 @@ class TransformerLM(torch.nn.Module):
|
|||||||
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
||||||
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
||||||
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||||
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) for i in range(len(text_token))]
|
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
||||||
|
for i in range(len(text_token))]
|
||||||
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
||||||
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
||||||
return lm_input, lm_input_len
|
return lm_input, lm_input_len
|
||||||
@@ -100,7 +107,8 @@ class TransformerLM(torch.nn.Module):
|
|||||||
embedding = batch['embedding'].to(device)
|
embedding = batch['embedding'].to(device)
|
||||||
|
|
||||||
# 1. prepare llm_target
|
# 1. prepare llm_target
|
||||||
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
|
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
||||||
|
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||||
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||||
|
|
||||||
# 1. encode text_token
|
# 1. encode text_token
|
||||||
@@ -120,7 +128,8 @@ class TransformerLM(torch.nn.Module):
|
|||||||
speech_token = self.speech_embedding(speech_token)
|
speech_token = self.speech_embedding(speech_token)
|
||||||
|
|
||||||
# 5. unpad and pad
|
# 5. unpad and pad
|
||||||
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len)
|
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
||||||
|
task_id_emb, speech_token, speech_token_len)
|
||||||
|
|
||||||
# 6. run lm forward
|
# 6. run lm forward
|
||||||
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
||||||
@@ -132,16 +141,18 @@ class TransformerLM(torch.nn.Module):
|
|||||||
def sampling_ids(
|
def sampling_ids(
|
||||||
self,
|
self,
|
||||||
weighted_scores: torch.Tensor,
|
weighted_scores: torch.Tensor,
|
||||||
sampling: Union[bool, int, float] = True,
|
decoded_tokens: List,
|
||||||
beam_size: int = 1,
|
sampling: int,
|
||||||
ignore_eos: bool = True,
|
ignore_eos: bool = True,
|
||||||
):
|
):
|
||||||
|
num_trials, max_trials = 0, 100
|
||||||
while True:
|
while True:
|
||||||
prob, indices = weighted_scores.softmax(dim=-1).topk(sampling)
|
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
||||||
top_ids = prob.multinomial(beam_size, replacement=True)
|
|
||||||
top_ids = indices[top_ids]
|
|
||||||
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
||||||
break
|
break
|
||||||
|
num_trials += 1
|
||||||
|
if num_trials > max_trials:
|
||||||
|
raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
|
||||||
return top_ids
|
return top_ids
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
@@ -154,11 +165,13 @@ class TransformerLM(torch.nn.Module):
|
|||||||
prompt_speech_token: torch.Tensor,
|
prompt_speech_token: torch.Tensor,
|
||||||
prompt_speech_token_len: torch.Tensor,
|
prompt_speech_token_len: torch.Tensor,
|
||||||
embedding: torch.Tensor,
|
embedding: torch.Tensor,
|
||||||
beam_size: int = 1,
|
|
||||||
sampling: int = 25,
|
sampling: int = 25,
|
||||||
max_token_text_ratio: float = 20,
|
max_token_text_ratio: float = 20,
|
||||||
min_token_text_ratio: float = 2,
|
min_token_text_ratio: float = 2,
|
||||||
) -> torch.Tensor:
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
if self.fp16 is True:
|
||||||
|
embedding = embedding.half()
|
||||||
|
|
||||||
device = text.device
|
device = text.device
|
||||||
text = torch.concat([prompt_text, text], dim=1)
|
text = torch.concat([prompt_text, text], dim=1)
|
||||||
text_len += prompt_text_len
|
text_len += prompt_text_len
|
||||||
@@ -173,7 +186,7 @@ class TransformerLM(torch.nn.Module):
|
|||||||
embedding = self.spk_embed_affine_layer(embedding)
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
embedding = embedding.unsqueeze(dim=1)
|
embedding = embedding.unsqueeze(dim=1)
|
||||||
else:
|
else:
|
||||||
embedding = torch.zeros(1, 0, self.llm_input_size).to(device)
|
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
|
||||||
|
|
||||||
# 3. concat llm_input
|
# 3. concat llm_input
|
||||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
@@ -181,7 +194,7 @@ class TransformerLM(torch.nn.Module):
|
|||||||
if prompt_speech_token_len != 0:
|
if prompt_speech_token_len != 0:
|
||||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
else:
|
else:
|
||||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device)
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||||
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||||
|
|
||||||
# 4. cal min/max_length
|
# 4. cal min/max_length
|
||||||
@@ -193,14 +206,385 @@ class TransformerLM(torch.nn.Module):
|
|||||||
offset = 0
|
offset = 0
|
||||||
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
||||||
for i in range(max_len):
|
for i in range(max_len):
|
||||||
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=0, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache,
|
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
|
||||||
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool))
|
att_cache=att_cache, cnn_cache=cnn_cache,
|
||||||
|
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
||||||
|
device=lm_input.device)).to(torch.bool))
|
||||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), sampling, beam_size, ignore_eos=True if i < min_len else False).item()
|
# force continue decode first token
|
||||||
|
if i == 0:
|
||||||
|
logp[:, self.speech_token_size] = -float('inf')
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
||||||
if top_ids == self.speech_token_size:
|
if top_ids == self.speech_token_size:
|
||||||
break
|
break
|
||||||
|
# in stream mode, yield token one by one
|
||||||
|
yield top_ids
|
||||||
out_tokens.append(top_ids)
|
out_tokens.append(top_ids)
|
||||||
offset += lm_input.size(1)
|
offset += lm_input.size(1)
|
||||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
|
||||||
return torch.tensor([out_tokens], dtype=torch.int64, device=device)
|
|
||||||
|
class Qwen2Encoder(torch.nn.Module):
|
||||||
|
def __init__(self, pretrain_path):
|
||||||
|
super().__init__()
|
||||||
|
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
||||||
|
|
||||||
|
def forward_one_step(self, xs, masks, cache=None):
|
||||||
|
input_masks = masks[:, -1, :]
|
||||||
|
outs = self.model(
|
||||||
|
inputs_embeds=xs,
|
||||||
|
attention_mask=input_masks,
|
||||||
|
output_hidden_states=True,
|
||||||
|
return_dict=True,
|
||||||
|
use_cache=True,
|
||||||
|
past_key_values=cache,
|
||||||
|
)
|
||||||
|
xs = outs.hidden_states[-1]
|
||||||
|
new_cache = outs.past_key_values
|
||||||
|
return xs, new_cache
|
||||||
|
|
||||||
|
|
||||||
|
class Qwen2LM(TransformerLM):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
llm_input_size: int,
|
||||||
|
llm_output_size: int,
|
||||||
|
speech_token_size: int,
|
||||||
|
llm: torch.nn.Module,
|
||||||
|
sampling: Callable,
|
||||||
|
length_normalized_loss: bool = True,
|
||||||
|
lsm_weight: float = 0.0,
|
||||||
|
mix_ratio: List[int] = [5, 15],
|
||||||
|
):
|
||||||
|
torch.nn.Module.__init__(self)
|
||||||
|
self.llm_input_size = llm_input_size
|
||||||
|
self.llm_output_size = llm_output_size
|
||||||
|
self.speech_token_size = speech_token_size
|
||||||
|
|
||||||
|
# 2. build speech token language model related modules
|
||||||
|
self.sos_eos = 0
|
||||||
|
self.task_id = 1
|
||||||
|
self.fill_token = 2
|
||||||
|
|
||||||
|
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
||||||
|
self.llm = llm
|
||||||
|
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
|
||||||
|
self.criterion_ce = LabelSmoothingLoss(
|
||||||
|
size=speech_token_size + 3,
|
||||||
|
padding_idx=IGNORE_ID,
|
||||||
|
smoothing=lsm_weight,
|
||||||
|
normalize_length=length_normalized_loss,
|
||||||
|
)
|
||||||
|
|
||||||
|
# 3. [Optional] build speech token related modules
|
||||||
|
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
|
||||||
|
|
||||||
|
# 4. sampling method
|
||||||
|
self.sampling = sampling
|
||||||
|
self.mix_ratio = mix_ratio
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference(
|
||||||
|
self,
|
||||||
|
text: torch.Tensor,
|
||||||
|
text_len: torch.Tensor,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
vllm_codec_engine=None,
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
device = text.device
|
||||||
|
text = torch.concat([prompt_text, text], dim=1)
|
||||||
|
text_len += prompt_text_len
|
||||||
|
text = self.llm.model.model.embed_tokens(text)
|
||||||
|
|
||||||
|
# 3. concat llm_input
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
if prompt_speech_token_len != 0:
|
||||||
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
|
else:
|
||||||
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||||
|
lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||||
|
|
||||||
|
# 4. cal min/max_length
|
||||||
|
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||||
|
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
||||||
|
|
||||||
|
# 5. step by step decode
|
||||||
|
if vllm_codec_engine is None:
|
||||||
|
out_tokens = []
|
||||||
|
cache = None
|
||||||
|
for i in range(max_len):
|
||||||
|
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||||
|
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
||||||
|
cache=cache)
|
||||||
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
||||||
|
if top_ids == self.speech_token_size:
|
||||||
|
break
|
||||||
|
if top_ids > self.speech_token_size:
|
||||||
|
continue
|
||||||
|
# in stream mode, yield token one by one
|
||||||
|
yield top_ids
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
else:
|
||||||
|
from vllm import SamplingParams, RequestOutput
|
||||||
|
import uuid
|
||||||
|
sampling_params = SamplingParams(top_k=sampling,
|
||||||
|
stop_token_ids=[6561, 6563],
|
||||||
|
min_tokens=min_len,
|
||||||
|
max_tokens=max_len)
|
||||||
|
request_id = uuid.uuid4()
|
||||||
|
vllm_codec_engine.add_request(request_id,
|
||||||
|
{"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(device)},
|
||||||
|
sampling_params)
|
||||||
|
while True:
|
||||||
|
speech_token_break = False
|
||||||
|
request_outputs: List[RequestOutput] = vllm_codec_engine.step()
|
||||||
|
for request_output in request_outputs:
|
||||||
|
if str(request_output.request_id) != str(request_id):
|
||||||
|
continue
|
||||||
|
# print(f"request output: {request_output}")
|
||||||
|
top_ids = list(request_output.outputs[0].token_ids)[-1]
|
||||||
|
if top_ids == self.speech_token_size:
|
||||||
|
speech_token_break = True
|
||||||
|
break
|
||||||
|
if top_ids > self.speech_token_size:
|
||||||
|
continue
|
||||||
|
yield top_ids
|
||||||
|
|
||||||
|
if not vllm_codec_engine.has_unfinished_requests() or speech_token_break:
|
||||||
|
break
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference_bistream(
|
||||||
|
self,
|
||||||
|
text: Generator,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
|
||||||
|
device = prompt_text.device
|
||||||
|
# 1. prepare input
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
if prompt_speech_token_len != 0:
|
||||||
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
|
else:
|
||||||
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
||||||
|
lm_input = torch.concat([sos_eos_emb], dim=1)
|
||||||
|
|
||||||
|
# 2. iterate text
|
||||||
|
out_tokens = []
|
||||||
|
cache = None
|
||||||
|
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
||||||
|
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
||||||
|
next_fill_index = -1
|
||||||
|
for this_text in text:
|
||||||
|
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
||||||
|
# prompt_speech_token_emb not empty, try append to lm_input
|
||||||
|
while prompt_speech_token_emb.size(1) != 0:
|
||||||
|
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||||
|
lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
|
||||||
|
logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
|
||||||
|
lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
|
||||||
|
text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
|
||||||
|
else:
|
||||||
|
logging.info('not enough text token to decode, wait for more')
|
||||||
|
break
|
||||||
|
# no prompt_speech_token_emb remain, can decode some speech token
|
||||||
|
if prompt_speech_token_emb.size(1) == 0:
|
||||||
|
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
||||||
|
logging.info('get fill token, need to append more text token')
|
||||||
|
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||||
|
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
||||||
|
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
||||||
|
if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
|
||||||
|
lm_input = lm_input_text
|
||||||
|
else:
|
||||||
|
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
||||||
|
text_cache = text_cache[:, self.mix_ratio[0]:]
|
||||||
|
else:
|
||||||
|
logging.info('not enough text token to decode, wait for more')
|
||||||
|
continue
|
||||||
|
while True:
|
||||||
|
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||||
|
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||||
|
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||||
|
cache=cache)
|
||||||
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
|
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
||||||
|
top_ids = self.speech_token_size + 2
|
||||||
|
next_fill_index += (self.mix_ratio[1] + 1)
|
||||||
|
else:
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
|
||||||
|
if top_ids == self.speech_token_size + 2:
|
||||||
|
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
||||||
|
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
if top_ids >= self.speech_token_size:
|
||||||
|
if top_ids == self.speech_token_size + 2:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise ValueError('should not get token {}'.format(top_ids))
|
||||||
|
yield top_ids
|
||||||
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
# 3. final decode
|
||||||
|
lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
|
||||||
|
logging.info('no more text token, decode until met eos')
|
||||||
|
while True:
|
||||||
|
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||||
|
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||||
|
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||||
|
cache=cache)
|
||||||
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
if top_ids >= self.speech_token_size:
|
||||||
|
if top_ids == self.speech_token_size:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise ValueError('should not get token {}'.format(top_ids))
|
||||||
|
# in stream mode, yield token one by one
|
||||||
|
yield top_ids
|
||||||
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference_bistream_vllm(
|
||||||
|
self,
|
||||||
|
text: Generator,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
vllm_codec_engine=None,
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
|
||||||
|
device = prompt_text.device
|
||||||
|
# 1. prepare input
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
if prompt_speech_token_len != 0:
|
||||||
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
|
else:
|
||||||
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
||||||
|
lm_input = torch.concat([sos_eos_emb], dim=1)
|
||||||
|
|
||||||
|
# 2. iterate text
|
||||||
|
out_tokens = []
|
||||||
|
cache = None
|
||||||
|
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
||||||
|
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
||||||
|
next_fill_index = -1
|
||||||
|
from vllm import SamplingParams, RequestOutput
|
||||||
|
import uuid
|
||||||
|
sampling_params = SamplingParams(top_k=sampling,
|
||||||
|
stop_token_ids=[6561, 6563],
|
||||||
|
max_tokens=10000)
|
||||||
|
for this_text in text:
|
||||||
|
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
||||||
|
# prompt_speech_token_emb not empty, try append to lm_input
|
||||||
|
while prompt_speech_token_emb.size(1) != 0:
|
||||||
|
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||||
|
lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
|
||||||
|
logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
|
||||||
|
lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
|
||||||
|
text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
|
||||||
|
else:
|
||||||
|
logging.info('not enough text token to decode, wait for more')
|
||||||
|
break
|
||||||
|
# no prompt_speech_token_emb remain, can decode some speech token
|
||||||
|
if prompt_speech_token_emb.size(1) == 0:
|
||||||
|
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
||||||
|
logging.info('get fill token, need to append more text token')
|
||||||
|
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||||
|
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
||||||
|
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
||||||
|
if vllm_codec_engine is None and len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
|
||||||
|
lm_input = lm_input_text
|
||||||
|
else:
|
||||||
|
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
||||||
|
text_cache = text_cache[:, self.mix_ratio[0]:]
|
||||||
|
else:
|
||||||
|
logging.info('not enough text token to decode, wait for more')
|
||||||
|
continue
|
||||||
|
request_id = uuid.uuid4()
|
||||||
|
vllm_codec_engine.add_request(request_id,
|
||||||
|
{"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(device)},
|
||||||
|
sampling_params)
|
||||||
|
## generator
|
||||||
|
while True:
|
||||||
|
speech_token_break = False
|
||||||
|
request_outputs: List[RequestOutput] = vllm_codec_engine.step()
|
||||||
|
for request_output in request_outputs:
|
||||||
|
if str(request_output.request_id) != str(request_id):
|
||||||
|
continue
|
||||||
|
# print(f"request output: {request_output}")
|
||||||
|
out_token = list(request_output.outputs[0].token_ids)[-1]
|
||||||
|
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
||||||
|
top_ids = self.speech_token_size + 2
|
||||||
|
next_fill_index += (self.mix_ratio[1] + 1)
|
||||||
|
else:
|
||||||
|
top_ids = out_token
|
||||||
|
if top_ids == self.speech_token_size + 2:
|
||||||
|
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
||||||
|
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
if top_ids >= self.speech_token_size:
|
||||||
|
if top_ids == self.speech_token_size + 2:
|
||||||
|
speech_token_break = True
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise ValueError('should not get token {}'.format(top_ids))
|
||||||
|
yield top_ids
|
||||||
|
token_embedding = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
lm_input = torch.concat([lm_input, token_embedding], dim=1)
|
||||||
|
|
||||||
|
if not vllm_codec_engine.has_unfinished_requests() or speech_token_break:
|
||||||
|
break
|
||||||
|
|
||||||
|
# 3. final decode
|
||||||
|
lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
|
||||||
|
logging.info('no more text token, decode until met eos')
|
||||||
|
request_id = uuid.uuid4()
|
||||||
|
vllm_codec_engine.add_request(request_id,
|
||||||
|
{"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(device)},
|
||||||
|
sampling_params)
|
||||||
|
## generator
|
||||||
|
while True:
|
||||||
|
speech_token_break = False
|
||||||
|
request_outputs: List[RequestOutput] = vllm_codec_engine.step()
|
||||||
|
for request_output in request_outputs:
|
||||||
|
if str(request_output.request_id) != str(request_id):
|
||||||
|
continue
|
||||||
|
# print(f"request output: {request_output}")
|
||||||
|
top_ids = list(request_output.outputs[0].token_ids)[-1]
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
if top_ids >= self.speech_token_size:
|
||||||
|
if top_ids == self.speech_token_size:
|
||||||
|
speech_token_break = True
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise ValueError('should not get token {}'.format(top_ids))
|
||||||
|
# in stream mode, yield token one by one
|
||||||
|
yield top_ids
|
||||||
|
|
||||||
|
if not vllm_codec_engine.has_unfinished_requests() or speech_token_break:
|
||||||
|
break
|
||||||
|
|||||||
58836
cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken
Normal file
58836
cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken
Normal file
File diff suppressed because it is too large
Load Diff
279
cosyvoice/tokenizer/tokenizer.py
Normal file
279
cosyvoice/tokenizer/tokenizer.py
Normal file
@@ -0,0 +1,279 @@
|
|||||||
|
import base64
|
||||||
|
import os
|
||||||
|
from functools import lru_cache
|
||||||
|
from typing import Optional
|
||||||
|
import torch
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
from whisper.tokenizer import Tokenizer
|
||||||
|
|
||||||
|
import tiktoken
|
||||||
|
|
||||||
|
LANGUAGES = {
|
||||||
|
"en": "english",
|
||||||
|
"zh": "chinese",
|
||||||
|
"de": "german",
|
||||||
|
"es": "spanish",
|
||||||
|
"ru": "russian",
|
||||||
|
"ko": "korean",
|
||||||
|
"fr": "french",
|
||||||
|
"ja": "japanese",
|
||||||
|
"pt": "portuguese",
|
||||||
|
"tr": "turkish",
|
||||||
|
"pl": "polish",
|
||||||
|
"ca": "catalan",
|
||||||
|
"nl": "dutch",
|
||||||
|
"ar": "arabic",
|
||||||
|
"sv": "swedish",
|
||||||
|
"it": "italian",
|
||||||
|
"id": "indonesian",
|
||||||
|
"hi": "hindi",
|
||||||
|
"fi": "finnish",
|
||||||
|
"vi": "vietnamese",
|
||||||
|
"he": "hebrew",
|
||||||
|
"uk": "ukrainian",
|
||||||
|
"el": "greek",
|
||||||
|
"ms": "malay",
|
||||||
|
"cs": "czech",
|
||||||
|
"ro": "romanian",
|
||||||
|
"da": "danish",
|
||||||
|
"hu": "hungarian",
|
||||||
|
"ta": "tamil",
|
||||||
|
"no": "norwegian",
|
||||||
|
"th": "thai",
|
||||||
|
"ur": "urdu",
|
||||||
|
"hr": "croatian",
|
||||||
|
"bg": "bulgarian",
|
||||||
|
"lt": "lithuanian",
|
||||||
|
"la": "latin",
|
||||||
|
"mi": "maori",
|
||||||
|
"ml": "malayalam",
|
||||||
|
"cy": "welsh",
|
||||||
|
"sk": "slovak",
|
||||||
|
"te": "telugu",
|
||||||
|
"fa": "persian",
|
||||||
|
"lv": "latvian",
|
||||||
|
"bn": "bengali",
|
||||||
|
"sr": "serbian",
|
||||||
|
"az": "azerbaijani",
|
||||||
|
"sl": "slovenian",
|
||||||
|
"kn": "kannada",
|
||||||
|
"et": "estonian",
|
||||||
|
"mk": "macedonian",
|
||||||
|
"br": "breton",
|
||||||
|
"eu": "basque",
|
||||||
|
"is": "icelandic",
|
||||||
|
"hy": "armenian",
|
||||||
|
"ne": "nepali",
|
||||||
|
"mn": "mongolian",
|
||||||
|
"bs": "bosnian",
|
||||||
|
"kk": "kazakh",
|
||||||
|
"sq": "albanian",
|
||||||
|
"sw": "swahili",
|
||||||
|
"gl": "galician",
|
||||||
|
"mr": "marathi",
|
||||||
|
"pa": "punjabi",
|
||||||
|
"si": "sinhala",
|
||||||
|
"km": "khmer",
|
||||||
|
"sn": "shona",
|
||||||
|
"yo": "yoruba",
|
||||||
|
"so": "somali",
|
||||||
|
"af": "afrikaans",
|
||||||
|
"oc": "occitan",
|
||||||
|
"ka": "georgian",
|
||||||
|
"be": "belarusian",
|
||||||
|
"tg": "tajik",
|
||||||
|
"sd": "sindhi",
|
||||||
|
"gu": "gujarati",
|
||||||
|
"am": "amharic",
|
||||||
|
"yi": "yiddish",
|
||||||
|
"lo": "lao",
|
||||||
|
"uz": "uzbek",
|
||||||
|
"fo": "faroese",
|
||||||
|
"ht": "haitian creole",
|
||||||
|
"ps": "pashto",
|
||||||
|
"tk": "turkmen",
|
||||||
|
"nn": "nynorsk",
|
||||||
|
"mt": "maltese",
|
||||||
|
"sa": "sanskrit",
|
||||||
|
"lb": "luxembourgish",
|
||||||
|
"my": "myanmar",
|
||||||
|
"bo": "tibetan",
|
||||||
|
"tl": "tagalog",
|
||||||
|
"mg": "malagasy",
|
||||||
|
"as": "assamese",
|
||||||
|
"tt": "tatar",
|
||||||
|
"haw": "hawaiian",
|
||||||
|
"ln": "lingala",
|
||||||
|
"ha": "hausa",
|
||||||
|
"ba": "bashkir",
|
||||||
|
"jw": "javanese",
|
||||||
|
"su": "sundanese",
|
||||||
|
"yue": "cantonese",
|
||||||
|
"minnan": "minnan",
|
||||||
|
"wuyu": "wuyu",
|
||||||
|
"dialect": "dialect",
|
||||||
|
"zh/en": "zh/en",
|
||||||
|
"en/zh": "en/zh",
|
||||||
|
}
|
||||||
|
|
||||||
|
# language code lookup by name, with a few language aliases
|
||||||
|
TO_LANGUAGE_CODE = {
|
||||||
|
**{language: code for code, language in LANGUAGES.items()},
|
||||||
|
"burmese": "my",
|
||||||
|
"valencian": "ca",
|
||||||
|
"flemish": "nl",
|
||||||
|
"haitian": "ht",
|
||||||
|
"letzeburgesch": "lb",
|
||||||
|
"pushto": "ps",
|
||||||
|
"panjabi": "pa",
|
||||||
|
"moldavian": "ro",
|
||||||
|
"moldovan": "ro",
|
||||||
|
"sinhalese": "si",
|
||||||
|
"castilian": "es",
|
||||||
|
"mandarin": "zh",
|
||||||
|
}
|
||||||
|
|
||||||
|
AUDIO_EVENT = {
|
||||||
|
"ASR": "ASR",
|
||||||
|
"AED": "AED",
|
||||||
|
"SER": "SER",
|
||||||
|
"Speech": "Speech",
|
||||||
|
"/Speech": "/Speech",
|
||||||
|
"BGM": "BGM",
|
||||||
|
"/BGM": "/BGM",
|
||||||
|
"Laughter": "Laughter",
|
||||||
|
"/Laughter": "/Laughter",
|
||||||
|
"Applause": "Applause",
|
||||||
|
"/Applause": "/Applause",
|
||||||
|
}
|
||||||
|
|
||||||
|
EMOTION = {
|
||||||
|
"HAPPY": "HAPPY",
|
||||||
|
"SAD": "SAD",
|
||||||
|
"ANGRY": "ANGRY",
|
||||||
|
"NEUTRAL": "NEUTRAL",
|
||||||
|
}
|
||||||
|
|
||||||
|
TTS_Vocal_Token = {
|
||||||
|
"TTS/B": "TTS/B",
|
||||||
|
"TTS/O": "TTS/O",
|
||||||
|
"TTS/Q": "TTS/Q",
|
||||||
|
"TTS/A": "TTS/A",
|
||||||
|
"TTS/CO": "TTS/CO",
|
||||||
|
"TTS/CL": "TTS/CL",
|
||||||
|
"TTS/H": "TTS/H",
|
||||||
|
**{f"TTS/SP{i:02d}": f"TTS/SP{i:02d}" for i in range(1, 14)}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@lru_cache(maxsize=None)
|
||||||
|
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
||||||
|
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
||||||
|
ranks = {
|
||||||
|
base64.b64decode(token): int(rank)
|
||||||
|
for token, rank in (line.split() for line in open(vocab_path) if line)
|
||||||
|
}
|
||||||
|
n_vocab = len(ranks)
|
||||||
|
special_tokens = {}
|
||||||
|
|
||||||
|
specials = [
|
||||||
|
"<|endoftext|>",
|
||||||
|
"<|startoftranscript|>",
|
||||||
|
*[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]],
|
||||||
|
*[f"<|{audio_event}|>" for audio_event in list(AUDIO_EVENT.keys())],
|
||||||
|
*[f"<|{emotion}|>" for emotion in list(EMOTION.keys())],
|
||||||
|
"<|translate|>",
|
||||||
|
"<|transcribe|>",
|
||||||
|
"<|startoflm|>",
|
||||||
|
"<|startofprev|>",
|
||||||
|
"<|nospeech|>",
|
||||||
|
"<|notimestamps|>",
|
||||||
|
*[f"<|SPECIAL_TOKEN_{i}|>" for i in range(1, 31)], # register special tokens for ASR
|
||||||
|
*[f"<|{tts}|>" for tts in list(TTS_Vocal_Token.keys())], # register special tokens for TTS
|
||||||
|
*[f"<|{i * 0.02:.2f}|>" for i in range(1501)],
|
||||||
|
]
|
||||||
|
|
||||||
|
for token in specials:
|
||||||
|
special_tokens[token] = n_vocab
|
||||||
|
n_vocab += 1
|
||||||
|
|
||||||
|
return tiktoken.Encoding(
|
||||||
|
name=os.path.basename(vocab_path),
|
||||||
|
explicit_n_vocab=n_vocab,
|
||||||
|
pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
|
||||||
|
mergeable_ranks=ranks,
|
||||||
|
special_tokens=special_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@lru_cache(maxsize=None)
|
||||||
|
def get_tokenizer(
|
||||||
|
multilingual: bool,
|
||||||
|
*,
|
||||||
|
num_languages: int = 99,
|
||||||
|
language: Optional[str] = None,
|
||||||
|
task: Optional[str] = None, # Literal["transcribe", "translate", None]
|
||||||
|
) -> Tokenizer:
|
||||||
|
if language is not None:
|
||||||
|
language = language.lower()
|
||||||
|
if language not in LANGUAGES:
|
||||||
|
if language in TO_LANGUAGE_CODE:
|
||||||
|
language = TO_LANGUAGE_CODE[language]
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported language: {language}")
|
||||||
|
|
||||||
|
if multilingual:
|
||||||
|
encoding_name = "multilingual_zh_ja_yue_char_del"
|
||||||
|
language = language or "en"
|
||||||
|
task = task or "transcribe"
|
||||||
|
else:
|
||||||
|
encoding_name = "gpt2"
|
||||||
|
language = None
|
||||||
|
task = None
|
||||||
|
|
||||||
|
encoding = get_encoding(name=encoding_name, num_languages=num_languages)
|
||||||
|
|
||||||
|
return Tokenizer(
|
||||||
|
encoding=encoding, num_languages=num_languages, language=language, task=task
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class QwenTokenizer():
|
||||||
|
def __init__(self, token_path, skip_special_tokens=True):
|
||||||
|
super().__init__()
|
||||||
|
# NOTE: non-chat model, all these special tokens keep randomly initialized.
|
||||||
|
special_tokens = {
|
||||||
|
'eos_token': '<|endoftext|>',
|
||||||
|
'pad_token': '<|endoftext|>',
|
||||||
|
'additional_special_tokens': [
|
||||||
|
'<|im_start|>', '<|im_end|>', '<|endofprompt|>',
|
||||||
|
'[breath]', '<strong>', '</strong>', '[noise]',
|
||||||
|
'[laughter]', '[cough]', '[clucking]', '[accent]',
|
||||||
|
'[quick_breath]',
|
||||||
|
"<laughter>", "</laughter>",
|
||||||
|
"[hissing]", "[sigh]", "[vocalized-noise]",
|
||||||
|
"[lipsmack]", "[mn]"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
self.special_tokens = special_tokens
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(token_path)
|
||||||
|
self.tokenizer.add_special_tokens(special_tokens)
|
||||||
|
self.skip_special_tokens = skip_special_tokens
|
||||||
|
|
||||||
|
def encode(self, text, **kwargs):
|
||||||
|
tokens = self.tokenizer([text], return_tensors="pt")
|
||||||
|
tokens = tokens["input_ids"][0].cpu().tolist()
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
def decode(self, tokens):
|
||||||
|
tokens = torch.tensor(tokens, dtype=torch.int64)
|
||||||
|
text = self.tokenizer.batch_decode([tokens], skip_special_tokens=self.skip_special_tokens)[0]
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
@lru_cache(maxsize=None)
|
||||||
|
def get_qwen_tokenizer(
|
||||||
|
token_path: str,
|
||||||
|
skip_special_tokens: bool
|
||||||
|
) -> QwenTokenizer:
|
||||||
|
return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
|
||||||
@@ -222,7 +222,7 @@ class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
|||||||
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
||||||
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
||||||
|
|
||||||
def rel_shift(self, x):
|
def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
"""Compute relative positional encoding.
|
"""Compute relative positional encoding.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -233,10 +233,14 @@ class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
|||||||
torch.Tensor: Output tensor.
|
torch.Tensor: Output tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
|
||||||
|
device=x.device,
|
||||||
|
dtype=x.dtype)
|
||||||
x_padded = torch.cat([zero_pad, x], dim=-1)
|
x_padded = torch.cat([zero_pad, x], dim=-1)
|
||||||
|
|
||||||
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
x_padded = x_padded.view(x.size()[0],
|
||||||
|
x.size()[1],
|
||||||
|
x.size(3) + 1, x.size(2))
|
||||||
x = x_padded[:, :, 1:].view_as(x)[
|
x = x_padded[:, :, 1:].view_as(x)[
|
||||||
:, :, :, : x.size(-1) // 2 + 1
|
:, :, :, : x.size(-1) // 2 + 1
|
||||||
] # only keep the positions from 0 to time2
|
] # only keep the positions from 0 to time2
|
||||||
|
|||||||
@@ -174,7 +174,7 @@ class TransformerDecoder(torch.nn.Module):
|
|||||||
memory_mask)
|
memory_mask)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
@torch.jit.ignore(drop=True)
|
@torch.jit.unused
|
||||||
def forward_layers_checkpointed(self, x: torch.Tensor,
|
def forward_layers_checkpointed(self, x: torch.Tensor,
|
||||||
tgt_mask: torch.Tensor,
|
tgt_mask: torch.Tensor,
|
||||||
memory: torch.Tensor,
|
memory: torch.Tensor,
|
||||||
|
|||||||
@@ -212,7 +212,7 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, d_model, dropout_rate, max_len=5000):
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
|
||||||
"""Construct an PositionalEncoding object."""
|
"""Construct an PositionalEncoding object."""
|
||||||
super(EspnetRelPositionalEncoding, self).__init__()
|
super(EspnetRelPositionalEncoding, self).__init__()
|
||||||
self.d_model = d_model
|
self.d_model = d_model
|
||||||
@@ -221,7 +221,7 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
|
|||||||
self.pe = None
|
self.pe = None
|
||||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||||
|
|
||||||
def extend_pe(self, x):
|
def extend_pe(self, x: torch.Tensor):
|
||||||
"""Reset the positional encodings."""
|
"""Reset the positional encodings."""
|
||||||
if self.pe is not None:
|
if self.pe is not None:
|
||||||
# self.pe contains both positive and negative parts
|
# self.pe contains both positive and negative parts
|
||||||
@@ -253,7 +253,8 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
|
|||||||
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0):
|
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \
|
||||||
|
-> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
"""Add positional encoding.
|
"""Add positional encoding.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -288,6 +289,6 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
|
|||||||
"""
|
"""
|
||||||
pos_emb = self.pe[
|
pos_emb = self.pe[
|
||||||
:,
|
:,
|
||||||
self.pe.size(1) // 2 - size + 1 : self.pe.size(1) // 2 + size,
|
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
|
||||||
]
|
]
|
||||||
return pos_emb
|
return pos_emb
|
||||||
|
|||||||
@@ -169,7 +169,7 @@ class BaseEncoder(torch.nn.Module):
|
|||||||
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||||
return xs
|
return xs
|
||||||
|
|
||||||
@torch.jit.ignore(drop=True)
|
@torch.jit.unused
|
||||||
def forward_layers_checkpointed(self, xs: torch.Tensor,
|
def forward_layers_checkpointed(self, xs: torch.Tensor,
|
||||||
chunk_masks: torch.Tensor,
|
chunk_masks: torch.Tensor,
|
||||||
pos_emb: torch.Tensor,
|
pos_emb: torch.Tensor,
|
||||||
@@ -180,6 +180,7 @@ class BaseEncoder(torch.nn.Module):
|
|||||||
mask_pad)
|
mask_pad)
|
||||||
return xs
|
return xs
|
||||||
|
|
||||||
|
@torch.jit.export
|
||||||
def forward_chunk(
|
def forward_chunk(
|
||||||
self,
|
self,
|
||||||
xs: torch.Tensor,
|
xs: torch.Tensor,
|
||||||
@@ -270,6 +271,7 @@ class BaseEncoder(torch.nn.Module):
|
|||||||
|
|
||||||
return (xs, r_att_cache, r_cnn_cache)
|
return (xs, r_att_cache, r_cnn_cache)
|
||||||
|
|
||||||
|
@torch.jit.unused
|
||||||
def forward_chunk_by_chunk(
|
def forward_chunk_by_chunk(
|
||||||
self,
|
self,
|
||||||
xs: torch.Tensor,
|
xs: torch.Tensor,
|
||||||
|
|||||||
@@ -49,8 +49,8 @@ class TransformerEncoderLayer(nn.Module):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
self.self_attn = self_attn
|
self.self_attn = self_attn
|
||||||
self.feed_forward = feed_forward
|
self.feed_forward = feed_forward
|
||||||
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
self.norm1 = nn.LayerNorm(size, eps=1e-12)
|
||||||
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
self.norm2 = nn.LayerNorm(size, eps=1e-12)
|
||||||
self.dropout = nn.Dropout(dropout_rate)
|
self.dropout = nn.Dropout(dropout_rate)
|
||||||
self.size = size
|
self.size = size
|
||||||
self.normalize_before = normalize_before
|
self.normalize_before = normalize_before
|
||||||
@@ -142,17 +142,17 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
self.feed_forward = feed_forward
|
self.feed_forward = feed_forward
|
||||||
self.feed_forward_macaron = feed_forward_macaron
|
self.feed_forward_macaron = feed_forward_macaron
|
||||||
self.conv_module = conv_module
|
self.conv_module = conv_module
|
||||||
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
|
self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module
|
||||||
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
|
self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module
|
||||||
if feed_forward_macaron is not None:
|
if feed_forward_macaron is not None:
|
||||||
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
|
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12)
|
||||||
self.ff_scale = 0.5
|
self.ff_scale = 0.5
|
||||||
else:
|
else:
|
||||||
self.ff_scale = 1.0
|
self.ff_scale = 1.0
|
||||||
if self.conv_module is not None:
|
if self.conv_module is not None:
|
||||||
self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module
|
self.norm_conv = nn.LayerNorm(size, eps=1e-12) # for the CNN module
|
||||||
self.norm_final = nn.LayerNorm(
|
self.norm_final = nn.LayerNorm(
|
||||||
size, eps=1e-5) # for the final output of the block
|
size, eps=1e-12) # for the final output of the block
|
||||||
self.dropout = nn.Dropout(dropout_rate)
|
self.dropout = nn.Dropout(dropout_rate)
|
||||||
self.size = size
|
self.size = size
|
||||||
self.normalize_before = normalize_before
|
self.normalize_before = normalize_before
|
||||||
|
|||||||
318
cosyvoice/transformer/upsample_encoder.py
Normal file
318
cosyvoice/transformer/upsample_encoder.py
Normal file
@@ -0,0 +1,318 @@
|
|||||||
|
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
||||||
|
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
||||||
|
# 2024 Alibaba Inc (Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||||
|
"""Encoder definition."""
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from cosyvoice.transformer.convolution import ConvolutionModule
|
||||||
|
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
|
||||||
|
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
||||||
|
from cosyvoice.utils.class_utils import (
|
||||||
|
COSYVOICE_EMB_CLASSES,
|
||||||
|
COSYVOICE_SUBSAMPLE_CLASSES,
|
||||||
|
COSYVOICE_ATTENTION_CLASSES,
|
||||||
|
COSYVOICE_ACTIVATION_CLASSES,
|
||||||
|
)
|
||||||
|
from cosyvoice.utils.mask import make_pad_mask
|
||||||
|
from cosyvoice.utils.mask import add_optional_chunk_mask
|
||||||
|
|
||||||
|
|
||||||
|
class Upsample1D(nn.Module):
|
||||||
|
"""A 1D upsampling layer with an optional convolution.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
channels (`int`):
|
||||||
|
number of channels in the inputs and outputs.
|
||||||
|
use_conv (`bool`, default `False`):
|
||||||
|
option to use a convolution.
|
||||||
|
use_conv_transpose (`bool`, default `False`):
|
||||||
|
option to use a convolution transpose.
|
||||||
|
out_channels (`int`, optional):
|
||||||
|
number of output channels. Defaults to `channels`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, channels: int, out_channels: int, stride: int = 2):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.stride = stride
|
||||||
|
# In this mode, first repeat interpolate, than conv with stride=1
|
||||||
|
self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
|
||||||
|
|
||||||
|
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor):
|
||||||
|
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
|
||||||
|
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
|
||||||
|
outputs = self.conv(outputs)
|
||||||
|
return outputs, input_lengths * self.stride
|
||||||
|
|
||||||
|
|
||||||
|
class PreLookaheadLayer(nn.Module):
|
||||||
|
def __init__(self, channels: int, pre_lookahead_len: int = 1):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.pre_lookahead_len = pre_lookahead_len
|
||||||
|
self.conv1 = nn.Conv1d(
|
||||||
|
channels, channels,
|
||||||
|
kernel_size=pre_lookahead_len + 1,
|
||||||
|
stride=1, padding=0,
|
||||||
|
)
|
||||||
|
self.conv2 = nn.Conv1d(
|
||||||
|
channels, channels,
|
||||||
|
kernel_size=3, stride=1, padding=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
inputs: (batch_size, seq_len, channels)
|
||||||
|
"""
|
||||||
|
outputs = inputs.transpose(1, 2).contiguous()
|
||||||
|
# look ahead
|
||||||
|
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
||||||
|
outputs = F.leaky_relu(self.conv1(outputs))
|
||||||
|
# outputs
|
||||||
|
outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0)
|
||||||
|
outputs = self.conv2(outputs)
|
||||||
|
outputs = outputs.transpose(1, 2).contiguous()
|
||||||
|
|
||||||
|
# residual connection
|
||||||
|
outputs = outputs + inputs
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
|
||||||
|
class UpsampleConformerEncoder(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
input_size: int,
|
||||||
|
output_size: int = 256,
|
||||||
|
attention_heads: int = 4,
|
||||||
|
linear_units: int = 2048,
|
||||||
|
num_blocks: int = 6,
|
||||||
|
dropout_rate: float = 0.1,
|
||||||
|
positional_dropout_rate: float = 0.1,
|
||||||
|
attention_dropout_rate: float = 0.0,
|
||||||
|
input_layer: str = "conv2d",
|
||||||
|
pos_enc_layer_type: str = "rel_pos",
|
||||||
|
normalize_before: bool = True,
|
||||||
|
static_chunk_size: int = 0,
|
||||||
|
use_dynamic_chunk: bool = False,
|
||||||
|
global_cmvn: torch.nn.Module = None,
|
||||||
|
use_dynamic_left_chunk: bool = False,
|
||||||
|
positionwise_conv_kernel_size: int = 1,
|
||||||
|
macaron_style: bool = True,
|
||||||
|
selfattention_layer_type: str = "rel_selfattn",
|
||||||
|
activation_type: str = "swish",
|
||||||
|
use_cnn_module: bool = True,
|
||||||
|
cnn_module_kernel: int = 15,
|
||||||
|
causal: bool = False,
|
||||||
|
cnn_module_norm: str = "batch_norm",
|
||||||
|
key_bias: bool = True,
|
||||||
|
gradient_checkpointing: bool = False,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
input_size (int): input dim
|
||||||
|
output_size (int): dimension of attention
|
||||||
|
attention_heads (int): the number of heads of multi head attention
|
||||||
|
linear_units (int): the hidden units number of position-wise feed
|
||||||
|
forward
|
||||||
|
num_blocks (int): the number of decoder blocks
|
||||||
|
dropout_rate (float): dropout rate
|
||||||
|
attention_dropout_rate (float): dropout rate in attention
|
||||||
|
positional_dropout_rate (float): dropout rate after adding
|
||||||
|
positional encoding
|
||||||
|
input_layer (str): input layer type.
|
||||||
|
optional [linear, conv2d, conv2d6, conv2d8]
|
||||||
|
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
||||||
|
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
||||||
|
normalize_before (bool):
|
||||||
|
True: use layer_norm before each sub-block of a layer.
|
||||||
|
False: use layer_norm after each sub-block of a layer.
|
||||||
|
static_chunk_size (int): chunk size for static chunk training and
|
||||||
|
decoding
|
||||||
|
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
||||||
|
training or not, You can only use fixed chunk(chunk_size > 0)
|
||||||
|
or dyanmic chunk size(use_dynamic_chunk = True)
|
||||||
|
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
||||||
|
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
||||||
|
dynamic chunk training
|
||||||
|
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
||||||
|
gradient_checkpointing: rerunning a forward-pass segment for each
|
||||||
|
checkpointed segment during backward.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self._output_size = output_size
|
||||||
|
|
||||||
|
self.global_cmvn = global_cmvn
|
||||||
|
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
||||||
|
input_size,
|
||||||
|
output_size,
|
||||||
|
dropout_rate,
|
||||||
|
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
||||||
|
positional_dropout_rate),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
||||||
|
self.static_chunk_size = static_chunk_size
|
||||||
|
self.use_dynamic_chunk = use_dynamic_chunk
|
||||||
|
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
||||||
|
self.gradient_checkpointing = gradient_checkpointing
|
||||||
|
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
||||||
|
# self-attention module definition
|
||||||
|
encoder_selfattn_layer_args = (
|
||||||
|
attention_heads,
|
||||||
|
output_size,
|
||||||
|
attention_dropout_rate,
|
||||||
|
key_bias,
|
||||||
|
)
|
||||||
|
# feed-forward module definition
|
||||||
|
positionwise_layer_args = (
|
||||||
|
output_size,
|
||||||
|
linear_units,
|
||||||
|
dropout_rate,
|
||||||
|
activation,
|
||||||
|
)
|
||||||
|
# convolution module definition
|
||||||
|
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
||||||
|
cnn_module_norm, causal)
|
||||||
|
self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
|
||||||
|
self.encoders = torch.nn.ModuleList([
|
||||||
|
ConformerEncoderLayer(
|
||||||
|
output_size,
|
||||||
|
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
||||||
|
*encoder_selfattn_layer_args),
|
||||||
|
PositionwiseFeedForward(*positionwise_layer_args),
|
||||||
|
PositionwiseFeedForward(
|
||||||
|
*positionwise_layer_args) if macaron_style else None,
|
||||||
|
ConvolutionModule(
|
||||||
|
*convolution_layer_args) if use_cnn_module else None,
|
||||||
|
dropout_rate,
|
||||||
|
normalize_before,
|
||||||
|
) for _ in range(num_blocks)
|
||||||
|
])
|
||||||
|
self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2)
|
||||||
|
self.up_embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
||||||
|
input_size,
|
||||||
|
output_size,
|
||||||
|
dropout_rate,
|
||||||
|
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
||||||
|
positional_dropout_rate),
|
||||||
|
)
|
||||||
|
self.up_encoders = torch.nn.ModuleList([
|
||||||
|
ConformerEncoderLayer(
|
||||||
|
output_size,
|
||||||
|
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
||||||
|
*encoder_selfattn_layer_args),
|
||||||
|
PositionwiseFeedForward(*positionwise_layer_args),
|
||||||
|
PositionwiseFeedForward(
|
||||||
|
*positionwise_layer_args) if macaron_style else None,
|
||||||
|
ConvolutionModule(
|
||||||
|
*convolution_layer_args) if use_cnn_module else None,
|
||||||
|
dropout_rate,
|
||||||
|
normalize_before,
|
||||||
|
) for _ in range(4)
|
||||||
|
])
|
||||||
|
|
||||||
|
def output_size(self) -> int:
|
||||||
|
return self._output_size
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
xs: torch.Tensor,
|
||||||
|
xs_lens: torch.Tensor,
|
||||||
|
decoding_chunk_size: int = 0,
|
||||||
|
num_decoding_left_chunks: int = -1,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""Embed positions in tensor.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
xs: padded input tensor (B, T, D)
|
||||||
|
xs_lens: input length (B)
|
||||||
|
decoding_chunk_size: decoding chunk size for dynamic chunk
|
||||||
|
0: default for training, use random dynamic chunk.
|
||||||
|
<0: for decoding, use full chunk.
|
||||||
|
>0: for decoding, use fixed chunk size as set.
|
||||||
|
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
||||||
|
the chunk size is decoding_chunk_size.
|
||||||
|
>=0: use num_decoding_left_chunks
|
||||||
|
<0: use all left chunks
|
||||||
|
Returns:
|
||||||
|
encoder output tensor xs, and subsampled masks
|
||||||
|
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
||||||
|
masks: torch.Tensor batch padding mask after subsample
|
||||||
|
(B, 1, T' ~= T/subsample_rate)
|
||||||
|
NOTE(xcsong):
|
||||||
|
We pass the `__call__` method of the modules instead of `forward` to the
|
||||||
|
checkpointing API because `__call__` attaches all the hooks of the module.
|
||||||
|
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
||||||
|
"""
|
||||||
|
T = xs.size(1)
|
||||||
|
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
||||||
|
if self.global_cmvn is not None:
|
||||||
|
xs = self.global_cmvn(xs)
|
||||||
|
xs, pos_emb, masks = self.embed(xs, masks)
|
||||||
|
mask_pad = masks # (B, 1, T/subsample_rate)
|
||||||
|
chunk_masks = add_optional_chunk_mask(xs, masks,
|
||||||
|
self.use_dynamic_chunk,
|
||||||
|
self.use_dynamic_left_chunk,
|
||||||
|
decoding_chunk_size,
|
||||||
|
self.static_chunk_size,
|
||||||
|
num_decoding_left_chunks)
|
||||||
|
# lookahead + conformer encoder
|
||||||
|
xs = self.pre_lookahead_layer(xs)
|
||||||
|
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
||||||
|
|
||||||
|
# upsample + conformer encoder
|
||||||
|
xs = xs.transpose(1, 2).contiguous()
|
||||||
|
xs, xs_lens = self.up_layer(xs, xs_lens)
|
||||||
|
xs = xs.transpose(1, 2).contiguous()
|
||||||
|
T = xs.size(1)
|
||||||
|
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
||||||
|
xs, pos_emb, masks = self.up_embed(xs, masks)
|
||||||
|
mask_pad = masks # (B, 1, T/subsample_rate)
|
||||||
|
chunk_masks = add_optional_chunk_mask(xs, masks,
|
||||||
|
self.use_dynamic_chunk,
|
||||||
|
self.use_dynamic_left_chunk,
|
||||||
|
decoding_chunk_size,
|
||||||
|
self.static_chunk_size * self.up_layer.stride,
|
||||||
|
num_decoding_left_chunks)
|
||||||
|
xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
|
||||||
|
|
||||||
|
if self.normalize_before:
|
||||||
|
xs = self.after_norm(xs)
|
||||||
|
# Here we assume the mask is not changed in encoder layers, so just
|
||||||
|
# return the masks before encoder layers, and the masks will be used
|
||||||
|
# for cross attention with decoder later
|
||||||
|
return xs, masks
|
||||||
|
|
||||||
|
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
||||||
|
pos_emb: torch.Tensor,
|
||||||
|
mask_pad: torch.Tensor) -> torch.Tensor:
|
||||||
|
for layer in self.encoders:
|
||||||
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||||
|
return xs
|
||||||
|
|
||||||
|
def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
||||||
|
pos_emb: torch.Tensor,
|
||||||
|
mask_pad: torch.Tensor) -> torch.Tensor:
|
||||||
|
for layer in self.up_encoders:
|
||||||
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||||
|
return xs
|
||||||
@@ -32,6 +32,10 @@ from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
|||||||
RelPositionMultiHeadedAttention)
|
RelPositionMultiHeadedAttention)
|
||||||
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
||||||
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
||||||
|
from cosyvoice.llm.llm import TransformerLM, Qwen2LM
|
||||||
|
from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec
|
||||||
|
from cosyvoice.hifigan.generator import HiFTGenerator
|
||||||
|
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
||||||
|
|
||||||
|
|
||||||
COSYVOICE_ACTIVATION_CLASSES = {
|
COSYVOICE_ACTIVATION_CLASSES = {
|
||||||
@@ -68,3 +72,12 @@ COSYVOICE_ATTENTION_CLASSES = {
|
|||||||
"selfattn": MultiHeadedAttention,
|
"selfattn": MultiHeadedAttention,
|
||||||
"rel_selfattn": RelPositionMultiHeadedAttention,
|
"rel_selfattn": RelPositionMultiHeadedAttention,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def get_model_type(configs):
|
||||||
|
# NOTE CosyVoice2Model inherits CosyVoiceModel
|
||||||
|
if isinstance(configs['llm'], TransformerLM) and isinstance(configs['flow'], MaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
||||||
|
return CosyVoiceModel
|
||||||
|
if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
||||||
|
return CosyVoice2Model
|
||||||
|
raise TypeError('No valid model type found!')
|
||||||
|
|||||||
@@ -15,8 +15,10 @@
|
|||||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||||
"""Unility functions for Transformer."""
|
"""Unility functions for Transformer."""
|
||||||
|
|
||||||
|
import random
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
IGNORE_ID = -1
|
IGNORE_ID = -1
|
||||||
@@ -101,3 +103,64 @@ def init_weights(m, mean=0.0, std=0.01):
|
|||||||
classname = m.__class__.__name__
|
classname = m.__class__.__name__
|
||||||
if classname.find("Conv") != -1:
|
if classname.find("Conv") != -1:
|
||||||
m.weight.data.normal_(mean, std)
|
m.weight.data.normal_(mean, std)
|
||||||
|
|
||||||
|
|
||||||
|
# Repetition Aware Sampling in VALL-E 2
|
||||||
|
def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
|
||||||
|
top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
|
||||||
|
rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
|
||||||
|
if rep_num >= win_size * tau_r:
|
||||||
|
top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
|
||||||
|
return top_ids
|
||||||
|
|
||||||
|
|
||||||
|
def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
|
||||||
|
prob, indices = [], []
|
||||||
|
cum_prob = 0.0
|
||||||
|
sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
|
||||||
|
for i in range(len(sorted_idx)):
|
||||||
|
# sampling both top-p and numbers.
|
||||||
|
if cum_prob < top_p and len(prob) < top_k:
|
||||||
|
cum_prob += sorted_value[i]
|
||||||
|
prob.append(sorted_value[i])
|
||||||
|
indices.append(sorted_idx[i])
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
prob = torch.tensor(prob).to(weighted_scores)
|
||||||
|
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
|
||||||
|
top_ids = indices[prob.multinomial(1, replacement=True)]
|
||||||
|
return top_ids
|
||||||
|
|
||||||
|
|
||||||
|
def random_sampling(weighted_scores, decoded_tokens, sampling):
|
||||||
|
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
|
||||||
|
return top_ids
|
||||||
|
|
||||||
|
|
||||||
|
def fade_in_out(fade_in_mel, fade_out_mel, window):
|
||||||
|
device = fade_in_mel.device
|
||||||
|
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
|
||||||
|
mel_overlap_len = int(window.shape[0] / 2)
|
||||||
|
if fade_in_mel.device == torch.device('cpu'):
|
||||||
|
fade_in_mel = fade_in_mel.clone()
|
||||||
|
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
|
||||||
|
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
|
||||||
|
return fade_in_mel.to(device)
|
||||||
|
|
||||||
|
|
||||||
|
def set_all_random_seed(seed):
|
||||||
|
random.seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
torch.cuda.manual_seed_all(seed)
|
||||||
|
|
||||||
|
|
||||||
|
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
||||||
|
assert mask.dtype == torch.bool
|
||||||
|
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
|
||||||
|
mask = mask.to(dtype)
|
||||||
|
# attention mask bias
|
||||||
|
# NOTE(Mddct): torch.finfo jit issues
|
||||||
|
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
|
||||||
|
mask = (1.0 - mask) * -1.0e+10
|
||||||
|
return mask
|
||||||
|
|||||||
@@ -25,13 +25,14 @@ from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, l
|
|||||||
|
|
||||||
class Executor:
|
class Executor:
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self, gan: bool = False):
|
||||||
|
self.gan = gan
|
||||||
self.step = 0
|
self.step = 0
|
||||||
self.epoch = 0
|
self.epoch = 0
|
||||||
self.rank = int(os.environ.get('RANK', 0))
|
self.rank = int(os.environ.get('RANK', 0))
|
||||||
self.device = torch.device('cuda:{}'.format(self.rank))
|
self.device = torch.device('cuda:{}'.format(self.rank))
|
||||||
|
|
||||||
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join):
|
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join):
|
||||||
''' Train one epoch
|
''' Train one epoch
|
||||||
'''
|
'''
|
||||||
|
|
||||||
@@ -64,13 +65,72 @@ class Executor:
|
|||||||
context = nullcontext
|
context = nullcontext
|
||||||
|
|
||||||
with context():
|
with context():
|
||||||
info_dict = batch_forward(model, batch_dict, info_dict)
|
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
||||||
info_dict = batch_backward(model, info_dict)
|
info_dict = batch_backward(model, scaler, info_dict)
|
||||||
|
|
||||||
info_dict = update_parameter_and_lr(model, optimizer, scheduler, info_dict)
|
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
||||||
log_per_step(writer, info_dict)
|
log_per_step(writer, info_dict)
|
||||||
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
||||||
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
||||||
|
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
dist.barrier()
|
||||||
|
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
||||||
|
model.train()
|
||||||
|
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
self.step += 1
|
||||||
|
dist.barrier()
|
||||||
|
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
||||||
|
|
||||||
|
def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
||||||
|
writer, info_dict, scaler, group_join):
|
||||||
|
''' Train one epoch
|
||||||
|
'''
|
||||||
|
|
||||||
|
lr = optimizer.param_groups[0]['lr']
|
||||||
|
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
||||||
|
logging.info('using accumulate grad, new batch size is {} times'
|
||||||
|
' larger than before'.format(info_dict['accum_grad']))
|
||||||
|
# A context manager to be used in conjunction with an instance of
|
||||||
|
# torch.nn.parallel.DistributedDataParallel to be able to train
|
||||||
|
# with uneven inputs across participating processes.
|
||||||
|
model.train()
|
||||||
|
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
||||||
|
with model_context():
|
||||||
|
for batch_idx, batch_dict in enumerate(train_data_loader):
|
||||||
|
info_dict["tag"] = "TRAIN"
|
||||||
|
info_dict["step"] = self.step
|
||||||
|
info_dict["epoch"] = self.epoch
|
||||||
|
info_dict["batch_idx"] = batch_idx
|
||||||
|
if cosyvoice_join(group_join, info_dict):
|
||||||
|
break
|
||||||
|
|
||||||
|
# Disable gradient synchronizations across DDP processes.
|
||||||
|
# Within this context, gradients will be accumulated on module
|
||||||
|
# variables, which will later be synchronized.
|
||||||
|
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
||||||
|
context = model.no_sync
|
||||||
|
# Used for single gpu training and DDP gradient synchronization
|
||||||
|
# processes.
|
||||||
|
else:
|
||||||
|
context = nullcontext
|
||||||
|
|
||||||
|
with context():
|
||||||
|
batch_dict['turn'] = 'discriminator'
|
||||||
|
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
||||||
|
info_dict = batch_backward(model, scaler, info_dict)
|
||||||
|
info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
log_per_step(writer, info_dict)
|
||||||
|
with context():
|
||||||
|
batch_dict['turn'] = 'generator'
|
||||||
|
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
||||||
|
info_dict = batch_backward(model, scaler, info_dict)
|
||||||
|
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
||||||
|
optimizer_d.zero_grad()
|
||||||
|
log_per_step(writer, info_dict)
|
||||||
|
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
||||||
|
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
||||||
|
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||||
dist.barrier()
|
dist.barrier()
|
||||||
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
||||||
model.train()
|
model.train()
|
||||||
@@ -95,7 +155,9 @@ class Executor:
|
|||||||
num_utts = len(batch_dict["utts"])
|
num_utts = len(batch_dict["utts"])
|
||||||
total_num_utts += num_utts
|
total_num_utts += num_utts
|
||||||
|
|
||||||
info_dict = batch_forward(model, batch_dict, info_dict)
|
if self.gan is True:
|
||||||
|
batch_dict['turn'] = 'generator'
|
||||||
|
info_dict = batch_forward(model, batch_dict, None, info_dict)
|
||||||
|
|
||||||
for k, v in info_dict['loss_dict'].items():
|
for k, v in info_dict['loss_dict'].items():
|
||||||
if k not in total_loss_dict:
|
if k not in total_loss_dict:
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
||||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
# 2024 Alibaba Inc (authors: Xiang Lyu, Zetao Hu)
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
@@ -15,6 +15,10 @@
|
|||||||
|
|
||||||
import json
|
import json
|
||||||
import torchaudio
|
import torchaudio
|
||||||
|
import logging
|
||||||
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||||
|
logging.basicConfig(level=logging.DEBUG,
|
||||||
|
format='%(asctime)s %(levelname)s %(message)s')
|
||||||
|
|
||||||
|
|
||||||
def read_lists(list_file):
|
def read_lists(list_file):
|
||||||
@@ -24,6 +28,7 @@ def read_lists(list_file):
|
|||||||
lists.append(line.strip())
|
lists.append(line.strip())
|
||||||
return lists
|
return lists
|
||||||
|
|
||||||
|
|
||||||
def read_json_lists(list_file):
|
def read_json_lists(list_file):
|
||||||
lists = read_lists(list_file)
|
lists = read_lists(list_file)
|
||||||
results = {}
|
results = {}
|
||||||
@@ -32,22 +37,53 @@ def read_json_lists(list_file):
|
|||||||
results.update(json.load(fin))
|
results.update(json.load(fin))
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
def load_wav(wav, target_sr):
|
def load_wav(wav, target_sr):
|
||||||
speech, sample_rate = torchaudio.load(wav)
|
speech, sample_rate = torchaudio.load(wav, backend='soundfile')
|
||||||
speech = speech.mean(dim=0, keepdim=True)
|
speech = speech.mean(dim=0, keepdim=True)
|
||||||
if sample_rate != target_sr:
|
if sample_rate != target_sr:
|
||||||
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
||||||
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
||||||
return speech
|
return speech
|
||||||
|
|
||||||
def speed_change(waveform, sample_rate, speed_factor: str):
|
|
||||||
effects = [
|
def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
||||||
["tempo", speed_factor], # speed_factor
|
import tensorrt as trt
|
||||||
["rate", f"{sample_rate}"]
|
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
|
||||||
]
|
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
|
||||||
augmented_waveform, new_sample_rate = torchaudio.sox_effects.apply_effects_tensor(
|
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
|
||||||
waveform,
|
input_names = ["x", "mask", "mu", "t", "spks", "cond"]
|
||||||
sample_rate,
|
|
||||||
effects
|
logging.info("Converting onnx to trt...")
|
||||||
)
|
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
||||||
return augmented_waveform, new_sample_rate
|
logger = trt.Logger(trt.Logger.INFO)
|
||||||
|
builder = trt.Builder(logger)
|
||||||
|
network = builder.create_network(network_flags)
|
||||||
|
parser = trt.OnnxParser(network, logger)
|
||||||
|
config = builder.create_builder_config()
|
||||||
|
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB
|
||||||
|
if fp16:
|
||||||
|
config.set_flag(trt.BuilderFlag.FP16)
|
||||||
|
profile = builder.create_optimization_profile()
|
||||||
|
# load onnx model
|
||||||
|
with open(onnx_model, "rb") as f:
|
||||||
|
if not parser.parse(f.read()):
|
||||||
|
for error in range(parser.num_errors):
|
||||||
|
print(parser.get_error(error))
|
||||||
|
raise ValueError('failed to parse {}'.format(onnx_model))
|
||||||
|
# set input shapes
|
||||||
|
for i in range(len(input_names)):
|
||||||
|
profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i])
|
||||||
|
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
|
||||||
|
# set input and output data type
|
||||||
|
for i in range(network.num_inputs):
|
||||||
|
input_tensor = network.get_input(i)
|
||||||
|
input_tensor.dtype = tensor_dtype
|
||||||
|
for i in range(network.num_outputs):
|
||||||
|
output_tensor = network.get_output(i)
|
||||||
|
output_tensor.dtype = tensor_dtype
|
||||||
|
config.add_optimization_profile(profile)
|
||||||
|
engine_bytes = builder.build_serialized_network(network, config)
|
||||||
|
# save trt engine
|
||||||
|
with open(trt_model, "wb") as f:
|
||||||
|
f.write(engine_bytes)
|
||||||
|
|||||||
@@ -13,8 +13,10 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import re
|
import re
|
||||||
|
import regex
|
||||||
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]+')
|
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]+')
|
||||||
|
|
||||||
|
|
||||||
# whether contain chinese character
|
# whether contain chinese character
|
||||||
def contains_chinese(text):
|
def contains_chinese(text):
|
||||||
return bool(chinese_char_pattern.search(text))
|
return bool(chinese_char_pattern.search(text))
|
||||||
@@ -79,6 +81,13 @@ def split_paragraph(text: str, tokenize, lang="zh", token_max_n=80, token_min_n=
|
|||||||
pounc = ['.', '?', '!', ';', ':']
|
pounc = ['.', '?', '!', ';', ':']
|
||||||
if comma_split:
|
if comma_split:
|
||||||
pounc.extend([',', ','])
|
pounc.extend([',', ','])
|
||||||
|
|
||||||
|
if text[-1] not in pounc:
|
||||||
|
if lang == "zh":
|
||||||
|
text += "。"
|
||||||
|
else:
|
||||||
|
text += "."
|
||||||
|
|
||||||
st = 0
|
st = 0
|
||||||
utts = []
|
utts = []
|
||||||
for i, c in enumerate(text):
|
for i, c in enumerate(text):
|
||||||
@@ -91,11 +100,7 @@ def split_paragraph(text: str, tokenize, lang="zh", token_max_n=80, token_min_n=
|
|||||||
st = i + 2
|
st = i + 2
|
||||||
else:
|
else:
|
||||||
st = i + 1
|
st = i + 1
|
||||||
if len(utts) == 0:
|
|
||||||
if lang == "zh":
|
|
||||||
utts.append(text + '。')
|
|
||||||
else:
|
|
||||||
utts.append(text + '.')
|
|
||||||
final_utts = []
|
final_utts = []
|
||||||
cur_utt = ""
|
cur_utt = ""
|
||||||
for utt in utts:
|
for utt in utts:
|
||||||
@@ -123,3 +128,9 @@ def replace_blank(text: str):
|
|||||||
else:
|
else:
|
||||||
out_str.append(c)
|
out_str.append(c)
|
||||||
return "".join(out_str)
|
return "".join(out_str)
|
||||||
|
|
||||||
|
|
||||||
|
def is_only_punctuation(text):
|
||||||
|
# Regular expression: Match strings that consist only of punctuation marks or are empty.
|
||||||
|
punctuation_pattern = r'^[\p{P}\p{S}]*$'
|
||||||
|
return bool(regex.fullmatch(punctuation_pattern, text))
|
||||||
|
|||||||
20
cosyvoice/utils/losses.py
Normal file
20
cosyvoice/utils/losses.py
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
|
||||||
|
loss = 0
|
||||||
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||||
|
m_DG = torch.median((dr - dg))
|
||||||
|
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
|
||||||
|
loss += tau - F.relu(tau - L_rel)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
def mel_loss(real_speech, generated_speech, mel_transforms):
|
||||||
|
loss = 0
|
||||||
|
for transform in mel_transforms:
|
||||||
|
mel_r = transform(real_speech)
|
||||||
|
mel_g = transform(generated_speech)
|
||||||
|
loss += F.l1_loss(mel_g, mel_r)
|
||||||
|
return loss
|
||||||
@@ -15,6 +15,7 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from cosyvoice.utils.file_utils import logging
|
||||||
'''
|
'''
|
||||||
def subsequent_mask(
|
def subsequent_mask(
|
||||||
size: int,
|
size: int,
|
||||||
@@ -86,7 +87,7 @@ def subsequent_mask(
|
|||||||
return mask
|
return mask
|
||||||
|
|
||||||
|
|
||||||
def subsequent_chunk_mask(
|
def subsequent_chunk_mask_deprecated(
|
||||||
size: int,
|
size: int,
|
||||||
chunk_size: int,
|
chunk_size: int,
|
||||||
num_left_chunks: int = -1,
|
num_left_chunks: int = -1,
|
||||||
@@ -124,6 +125,41 @@ def subsequent_chunk_mask(
|
|||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def subsequent_chunk_mask(
|
||||||
|
size: int,
|
||||||
|
chunk_size: int,
|
||||||
|
num_left_chunks: int = -1,
|
||||||
|
device: torch.device = torch.device("cpu"),
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""Create mask for subsequent steps (size, size) with chunk size,
|
||||||
|
this is for streaming encoder
|
||||||
|
|
||||||
|
Args:
|
||||||
|
size (int): size of mask
|
||||||
|
chunk_size (int): size of chunk
|
||||||
|
num_left_chunks (int): number of left chunks
|
||||||
|
<0: use full chunk
|
||||||
|
>=0: use num_left_chunks
|
||||||
|
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: mask
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> subsequent_chunk_mask(4, 2)
|
||||||
|
[[1, 1, 0, 0],
|
||||||
|
[1, 1, 0, 0],
|
||||||
|
[1, 1, 1, 1],
|
||||||
|
[1, 1, 1, 1]]
|
||||||
|
"""
|
||||||
|
# NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
|
||||||
|
# actually this is not needed after we have inference cache implemented, will remove it later
|
||||||
|
pos_idx = torch.arange(size, device=device)
|
||||||
|
block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
|
||||||
|
ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
def add_optional_chunk_mask(xs: torch.Tensor,
|
def add_optional_chunk_mask(xs: torch.Tensor,
|
||||||
masks: torch.Tensor,
|
masks: torch.Tensor,
|
||||||
use_dynamic_chunk: bool,
|
use_dynamic_chunk: bool,
|
||||||
@@ -195,6 +231,10 @@ def add_optional_chunk_mask(xs: torch.Tensor,
|
|||||||
chunk_masks = masks & chunk_masks # (B, L, L)
|
chunk_masks = masks & chunk_masks # (B, L, L)
|
||||||
else:
|
else:
|
||||||
chunk_masks = masks
|
chunk_masks = masks
|
||||||
|
assert chunk_masks.dtype == torch.bool
|
||||||
|
if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
|
||||||
|
logging.warning('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
|
||||||
|
chunk_masks[chunk_masks.sum(dim=-1)==0] = True
|
||||||
return chunk_masks
|
return chunk_masks
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -567,8 +567,7 @@ class NoamAnnealing(_LRScheduler):
|
|||||||
min_lr=0.0,
|
min_lr=0.0,
|
||||||
last_epoch=-1):
|
last_epoch=-1):
|
||||||
self._normalize = d_model**(-0.5)
|
self._normalize = d_model**(-0.5)
|
||||||
assert not (warmup_steps is not None
|
assert not (warmup_steps is not None and warmup_ratio is not None), \
|
||||||
and warmup_ratio is not None), \
|
|
||||||
"Either use particular number of step or ratio"
|
"Either use particular number of step or ratio"
|
||||||
assert warmup_ratio is None or max_steps is not None, \
|
assert warmup_ratio is None or max_steps is not None, \
|
||||||
"If there is a ratio, there should be a total steps"
|
"If there is a ratio, there should be a total steps"
|
||||||
|
|||||||
@@ -14,7 +14,6 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
from contextlib import nullcontext
|
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import torch
|
import torch
|
||||||
@@ -51,9 +50,10 @@ def init_distributed(args):
|
|||||||
return world_size, local_rank, rank
|
return world_size, local_rank, rank
|
||||||
|
|
||||||
|
|
||||||
def init_dataset_and_dataloader(args, configs):
|
def init_dataset_and_dataloader(args, configs, gan):
|
||||||
train_dataset = Dataset(args.train_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=True, partition=True)
|
data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
|
||||||
cv_dataset = Dataset(args.cv_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=False, partition=False)
|
train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True)
|
||||||
|
cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False)
|
||||||
|
|
||||||
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
||||||
train_data_loader = DataLoader(train_dataset,
|
train_data_loader = DataLoader(train_dataset,
|
||||||
@@ -69,7 +69,6 @@ def init_dataset_and_dataloader(args, configs):
|
|||||||
return train_dataset, cv_dataset, train_data_loader, cv_data_loader
|
return train_dataset, cv_dataset, train_data_loader, cv_data_loader
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def check_modify_and_save_config(args, configs):
|
def check_modify_and_save_config(args, configs):
|
||||||
if args.train_engine == "torch_ddp":
|
if args.train_engine == "torch_ddp":
|
||||||
configs['train_conf']["dtype"] = 'fp32'
|
configs['train_conf']["dtype"] = 'fp32'
|
||||||
@@ -84,7 +83,8 @@ def check_modify_and_save_config(args, configs):
|
|||||||
configs['train_conf']["dtype"] = "fp32"
|
configs['train_conf']["dtype"] = "fp32"
|
||||||
assert ds_configs["train_micro_batch_size_per_gpu"] == 1
|
assert ds_configs["train_micro_batch_size_per_gpu"] == 1
|
||||||
# if use deepspeed, override ddp config
|
# if use deepspeed, override ddp config
|
||||||
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] * configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
|
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] *
|
||||||
|
configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
|
||||||
configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
|
configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
|
||||||
configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
|
configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
|
||||||
configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
|
configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
|
||||||
@@ -108,38 +108,80 @@ def wrap_cuda_model(args, model):
|
|||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def init_optimizer_and_scheduler(args, configs, model):
|
def init_optimizer_and_scheduler(args, configs, model, gan):
|
||||||
if configs['train_conf']['optim'] == 'adam':
|
if gan is False:
|
||||||
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
|
if configs['train_conf']['optim'] == 'adam':
|
||||||
elif configs['train_conf']['optim'] == 'adamw':
|
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
|
elif configs['train_conf']['optim'] == 'adamw':
|
||||||
|
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||||
|
|
||||||
|
if configs['train_conf']['scheduler'] == 'warmuplr':
|
||||||
|
scheduler_type = WarmupLR
|
||||||
|
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||||
|
scheduler_type = NoamHoldAnnealing
|
||||||
|
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||||
|
scheduler_type = ConstantLR
|
||||||
|
scheduler = ConstantLR(optimizer)
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||||
|
|
||||||
|
# use deepspeed optimizer for speedup
|
||||||
|
if args.train_engine == "deepspeed":
|
||||||
|
def scheduler(opt):
|
||||||
|
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
|
||||||
|
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||||
|
args=args,
|
||||||
|
model=model,
|
||||||
|
optimizer=None,
|
||||||
|
lr_scheduler=scheduler,
|
||||||
|
model_parameters=model.parameters())
|
||||||
|
|
||||||
|
optimizer_d, scheduler_d = None, None
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
# currently we wrap generator and discriminator in one model, so we cannot use deepspeed
|
||||||
|
if configs['train_conf']['optim'] == 'adam':
|
||||||
|
optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
elif configs['train_conf']['optim'] == 'adamw':
|
||||||
|
optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||||
|
|
||||||
if configs['train_conf']['scheduler'] == 'warmuplr':
|
if configs['train_conf']['scheduler'] == 'warmuplr':
|
||||||
scheduler_type = WarmupLR
|
scheduler_type = WarmupLR
|
||||||
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||||
scheduler_type = NoamHoldAnnealing
|
scheduler_type = NoamHoldAnnealing
|
||||||
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
elif configs['train_conf']['scheduler'] == 'constantlr':
|
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||||
scheduler_type = ConstantLR
|
scheduler_type = ConstantLR
|
||||||
scheduler = ConstantLR(optimizer)
|
scheduler = ConstantLR(optimizer)
|
||||||
else:
|
else:
|
||||||
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||||
|
|
||||||
# use deepspeed optimizer for speedup
|
if configs['train_conf']['optim_d'] == 'adam':
|
||||||
if args.train_engine == "deepspeed":
|
optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
def scheduler(opt):
|
elif configs['train_conf']['optim_d'] == 'adamw':
|
||||||
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
|
optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
model, optimizer, _, scheduler = deepspeed.initialize(
|
else:
|
||||||
args=args,
|
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||||
model=model,
|
|
||||||
optimizer=None,
|
|
||||||
lr_scheduler=scheduler,
|
|
||||||
model_parameters=model.parameters())
|
|
||||||
|
|
||||||
return model, optimizer, scheduler
|
if configs['train_conf']['scheduler_d'] == 'warmuplr':
|
||||||
|
scheduler_type = WarmupLR
|
||||||
|
scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
|
||||||
|
scheduler_type = NoamHoldAnnealing
|
||||||
|
scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||||
|
scheduler_type = ConstantLR
|
||||||
|
scheduler_d = ConstantLR(optimizer_d)
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||||
|
return model, optimizer, scheduler, optimizer_d, scheduler_d
|
||||||
|
|
||||||
|
|
||||||
def init_summarywriter(args):
|
def init_summarywriter(args):
|
||||||
@@ -157,7 +199,7 @@ def save_model(model, model_name, info_dict):
|
|||||||
|
|
||||||
if info_dict["train_engine"] == "torch_ddp":
|
if info_dict["train_engine"] == "torch_ddp":
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
torch.save(model.module.state_dict(), save_model_path)
|
torch.save({**model.module.state_dict(), 'epoch': info_dict['epoch'], 'step': info_dict['step']}, save_model_path)
|
||||||
else:
|
else:
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
model.save_checkpoint(save_dir=model_dir,
|
model.save_checkpoint(save_dir=model_dir,
|
||||||
@@ -193,7 +235,7 @@ def cosyvoice_join(group_join, info_dict):
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
def batch_forward(model, batch, info_dict):
|
def batch_forward(model, batch, scaler, info_dict):
|
||||||
device = int(os.environ.get('LOCAL_RANK', 0))
|
device = int(os.environ.get('LOCAL_RANK', 0))
|
||||||
|
|
||||||
dtype = info_dict["dtype"]
|
dtype = info_dict["dtype"]
|
||||||
@@ -205,7 +247,7 @@ def batch_forward(model, batch, info_dict):
|
|||||||
dtype = torch.float32
|
dtype = torch.float32
|
||||||
|
|
||||||
if info_dict['train_engine'] == 'torch_ddp':
|
if info_dict['train_engine'] == 'torch_ddp':
|
||||||
autocast = nullcontext()
|
autocast = torch.cuda.amp.autocast(enabled=scaler is not None)
|
||||||
else:
|
else:
|
||||||
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
|
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
|
||||||
|
|
||||||
@@ -214,27 +256,41 @@ def batch_forward(model, batch, info_dict):
|
|||||||
return info_dict
|
return info_dict
|
||||||
|
|
||||||
|
|
||||||
def batch_backward(model, info_dict):
|
def batch_backward(model, scaler, info_dict):
|
||||||
if info_dict["train_engine"] == "deepspeed":
|
if info_dict["train_engine"] == "deepspeed":
|
||||||
scaled_loss = model.backward(info_dict['loss_dict']['loss'])
|
scaled_loss = model.backward(info_dict['loss_dict']['loss'])
|
||||||
else:
|
else:
|
||||||
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
|
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
|
||||||
scaled_loss.backward()
|
if scaler is not None:
|
||||||
|
scaler.scale(scaled_loss).backward()
|
||||||
|
else:
|
||||||
|
scaled_loss.backward()
|
||||||
|
|
||||||
info_dict['loss_dict']['loss'] = scaled_loss
|
info_dict['loss_dict']['loss'] = scaled_loss
|
||||||
return info_dict
|
return info_dict
|
||||||
|
|
||||||
|
|
||||||
def update_parameter_and_lr(model, optimizer, scheduler, info_dict):
|
def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
|
||||||
grad_norm = 0.0
|
grad_norm = 0.0
|
||||||
if info_dict['train_engine'] == "deepspeed":
|
if info_dict['train_engine'] == "deepspeed":
|
||||||
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
|
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
|
||||||
model.step()
|
model.step()
|
||||||
grad_norm = model.get_global_grad_norm()
|
grad_norm = model.get_global_grad_norm()
|
||||||
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
|
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
|
||||||
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
# Use mixed precision training
|
||||||
if torch.isfinite(grad_norm):
|
if scaler is not None:
|
||||||
optimizer.step()
|
scaler.unscale_(optimizer)
|
||||||
|
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||||
|
# We don't check grad here since that if the gradient
|
||||||
|
# has inf/nan values, scaler.step will skip
|
||||||
|
# optimizer.step().
|
||||||
|
if torch.isfinite(grad_norm):
|
||||||
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
|
else:
|
||||||
|
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||||
|
if torch.isfinite(grad_norm):
|
||||||
|
optimizer.step()
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
scheduler.step()
|
scheduler.step()
|
||||||
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
||||||
|
|||||||
51
docker/Dockerfile
Normal file
51
docker/Dockerfile
Normal file
@@ -0,0 +1,51 @@
|
|||||||
|
FROM nvidia/cuda:12.4.1-cudnn-devel-ubuntu22.04
|
||||||
|
|
||||||
|
ARG VENV_NAME="cosyvoice"
|
||||||
|
ENV VENV=$VENV_NAME
|
||||||
|
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
||||||
|
|
||||||
|
ENV DEBIAN_FRONTEN=noninteractive
|
||||||
|
ENV PYTHONUNBUFFERED=1
|
||||||
|
SHELL ["/bin/bash", "--login", "-c"]
|
||||||
|
|
||||||
|
RUN apt-get update -y --fix-missing
|
||||||
|
RUN apt-get install -y git build-essential curl wget ffmpeg unzip git git-lfs sox libsox-dev && \
|
||||||
|
apt-get clean && \
|
||||||
|
git lfs install
|
||||||
|
|
||||||
|
# ==================================================================
|
||||||
|
# conda install and conda forge channel as default
|
||||||
|
# ------------------------------------------------------------------
|
||||||
|
# Install miniforge
|
||||||
|
RUN wget --quiet https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh -O ~/miniforge.sh && \
|
||||||
|
/bin/bash ~/miniforge.sh -b -p /opt/conda && \
|
||||||
|
rm ~/miniforge.sh && \
|
||||||
|
ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \
|
||||||
|
echo "source /opt/conda/etc/profile.d/conda.sh" >> /opt/nvidia/entrypoint.d/100.conda.sh && \
|
||||||
|
echo "source /opt/conda/etc/profile.d/conda.sh" >> ~/.bashrc && \
|
||||||
|
echo "conda activate ${VENV}" >> /opt/nvidia/entrypoint.d/110.conda_default_env.sh && \
|
||||||
|
echo "conda activate ${VENV}" >> $HOME/.bashrc
|
||||||
|
|
||||||
|
ENV PATH /opt/conda/bin:$PATH
|
||||||
|
|
||||||
|
RUN conda config --add channels conda-forge && \
|
||||||
|
conda config --set channel_priority strict
|
||||||
|
# ------------------------------------------------------------------
|
||||||
|
# ~conda
|
||||||
|
# ==================================================================
|
||||||
|
|
||||||
|
RUN conda create -y -n ${VENV} python=3.10
|
||||||
|
ENV CONDA_DEFAULT_ENV=${VENV}
|
||||||
|
ENV PATH /opt/conda/bin:/opt/conda/envs/${VENV}/bin:$PATH
|
||||||
|
|
||||||
|
WORKDIR /workspace
|
||||||
|
|
||||||
|
ENV PYTHONPATH="${PYTHONPATH}:/workspace/CosyVoice:/workspace/CosyVoice/third_party/Matcha-TTS"
|
||||||
|
|
||||||
|
RUN git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
|
||||||
|
|
||||||
|
RUN conda activate ${VENV} && conda install -y -c conda-forge pynini==2.1.5
|
||||||
|
RUN conda activate ${VENV} && cd CosyVoice && \
|
||||||
|
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||||
|
|
||||||
|
WORKDIR /workspace/CosyVoice
|
||||||
@@ -18,7 +18,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
|||||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||||
llm_input_size: !ref <llm_input_size>
|
llm_input_size: !ref <llm_input_size>
|
||||||
llm_output_size: !ref <llm_output_size>
|
llm_output_size: !ref <llm_output_size>
|
||||||
text_token_size: 51866
|
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
speech_token_size: 4096
|
speech_token_size: 4096
|
||||||
length_normalized_loss: True
|
length_normalized_loss: True
|
||||||
lsm_weight: 0
|
lsm_weight: 0
|
||||||
@@ -31,7 +31,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
|||||||
num_blocks: 3
|
num_blocks: 3
|
||||||
dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
positional_dropout_rate: 0.1
|
positional_dropout_rate: 0.1
|
||||||
attention_dropout_rate: 0
|
attention_dropout_rate: 0.0
|
||||||
normalize_before: True
|
normalize_before: True
|
||||||
input_layer: 'linear'
|
input_layer: 'linear'
|
||||||
pos_enc_layer_type: 'rel_pos_espnet'
|
pos_enc_layer_type: 'rel_pos_espnet'
|
||||||
@@ -49,11 +49,16 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
|||||||
num_blocks: 7
|
num_blocks: 7
|
||||||
dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
positional_dropout_rate: 0.1
|
positional_dropout_rate: 0.1
|
||||||
attention_dropout_rate: 0
|
attention_dropout_rate: 0.0
|
||||||
input_layer: 'linear_legacy'
|
input_layer: 'linear_legacy'
|
||||||
pos_enc_layer_type: 'rel_pos_espnet'
|
pos_enc_layer_type: 'rel_pos_espnet'
|
||||||
selfattention_layer_type: 'rel_selfattn'
|
selfattention_layer_type: 'rel_selfattn'
|
||||||
static_chunk_size: 1
|
static_chunk_size: 1
|
||||||
|
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||||
|
top_p: 0.8
|
||||||
|
top_k: 25
|
||||||
|
win_size: 10
|
||||||
|
tau_r: 0.1
|
||||||
|
|
||||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||||
input_size: 512
|
input_size: 512
|
||||||
@@ -61,7 +66,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
|||||||
spk_embed_dim: !ref <spk_embed_dim>
|
spk_embed_dim: !ref <spk_embed_dim>
|
||||||
output_type: 'mel'
|
output_type: 'mel'
|
||||||
vocab_size: 4096
|
vocab_size: 4096
|
||||||
input_frame_rate: 50
|
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
only_mask_loss: True
|
only_mask_loss: True
|
||||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||||
output_size: 512
|
output_size: 512
|
||||||
@@ -97,7 +102,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
|||||||
in_channels: 320
|
in_channels: 320
|
||||||
out_channels: 80
|
out_channels: 80
|
||||||
channels: [256, 256]
|
channels: [256, 256]
|
||||||
dropout: 0
|
dropout: 0.0
|
||||||
attention_head_dim: 64
|
attention_head_dim: 64
|
||||||
n_blocks: 4
|
n_blocks: 4
|
||||||
num_mid_blocks: 8
|
num_mid_blocks: 8
|
||||||
@@ -128,9 +133,28 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
|||||||
in_channels: 80
|
in_channels: 80
|
||||||
cond_channels: 512
|
cond_channels: 512
|
||||||
|
|
||||||
|
# gan related module
|
||||||
|
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
||||||
|
n_fft: 1024
|
||||||
|
num_mels: 80
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
hop_size: 256
|
||||||
|
win_size: 1024
|
||||||
|
fmin: 0
|
||||||
|
fmax: null
|
||||||
|
center: False
|
||||||
|
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||||
|
generator: !ref <hift>
|
||||||
|
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||||
|
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||||
|
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
||||||
|
mel_spec_transform: [
|
||||||
|
!ref <mel_spec_transform1>
|
||||||
|
]
|
||||||
|
|
||||||
# processor functions
|
# processor functions
|
||||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
multilingual: True
|
multilingual: True
|
||||||
num_languages: 100
|
num_languages: 100
|
||||||
language: 'en'
|
language: 'en'
|
||||||
@@ -146,6 +170,8 @@ filter: !name:cosyvoice.dataset.processor.filter
|
|||||||
token_min_length: 1
|
token_min_length: 1
|
||||||
resample: !name:cosyvoice.dataset.processor.resample
|
resample: !name:cosyvoice.dataset.processor.resample
|
||||||
resample_rate: !ref <sample_rate>
|
resample_rate: !ref <sample_rate>
|
||||||
|
truncate: !name:cosyvoice.dataset.processor.truncate
|
||||||
|
truncate_length: 24576 # must be a multiplier of hop_size
|
||||||
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||||
n_fft: 1024
|
n_fft: 1024
|
||||||
num_mels: 80
|
num_mels: 80
|
||||||
@@ -157,6 +183,9 @@ feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
|||||||
center: False
|
center: False
|
||||||
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||||
feat_extractor: !ref <feat_extractor>
|
feat_extractor: !ref <feat_extractor>
|
||||||
|
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||||
|
sample_rate: !ref <sample_rate>
|
||||||
|
hop_size: 256
|
||||||
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||||
normalize: True
|
normalize: True
|
||||||
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||||
@@ -182,8 +211,22 @@ data_pipeline: [
|
|||||||
!ref <batch>,
|
!ref <batch>,
|
||||||
!ref <padding>,
|
!ref <padding>,
|
||||||
]
|
]
|
||||||
|
data_pipeline_gan: [
|
||||||
|
!ref <parquet_opener>,
|
||||||
|
!ref <tokenize>,
|
||||||
|
!ref <filter>,
|
||||||
|
!ref <resample>,
|
||||||
|
!ref <truncate>,
|
||||||
|
!ref <compute_fbank>,
|
||||||
|
!ref <compute_f0>,
|
||||||
|
!ref <parse_embedding>,
|
||||||
|
!ref <shuffle>,
|
||||||
|
!ref <sort>,
|
||||||
|
!ref <batch>,
|
||||||
|
!ref <padding>,
|
||||||
|
]
|
||||||
|
|
||||||
# train conf
|
# llm flow train conf
|
||||||
train_conf:
|
train_conf:
|
||||||
optim: adam
|
optim: adam
|
||||||
optim_conf:
|
optim_conf:
|
||||||
@@ -196,3 +239,19 @@ train_conf:
|
|||||||
accum_grad: 2
|
accum_grad: 2
|
||||||
log_interval: 100
|
log_interval: 100
|
||||||
save_per_step: -1
|
save_per_step: -1
|
||||||
|
|
||||||
|
# gan train conf
|
||||||
|
train_conf_gan:
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler: constantlr
|
||||||
|
optim_d: adam
|
||||||
|
optim_conf_d:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler_d: constantlr
|
||||||
|
max_epoch: 200
|
||||||
|
grad_clip: 5
|
||||||
|
accum_grad: 1 # in gan training, accum_grad must be 1
|
||||||
|
log_interval: 100
|
||||||
|
save_per_step: -1
|
||||||
@@ -18,7 +18,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
|||||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||||
llm_input_size: !ref <llm_input_size>
|
llm_input_size: !ref <llm_input_size>
|
||||||
llm_output_size: !ref <llm_output_size>
|
llm_output_size: !ref <llm_output_size>
|
||||||
text_token_size: 51866
|
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
speech_token_size: 4096
|
speech_token_size: 4096
|
||||||
length_normalized_loss: True
|
length_normalized_loss: True
|
||||||
lsm_weight: 0
|
lsm_weight: 0
|
||||||
@@ -31,7 +31,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
|||||||
num_blocks: 6
|
num_blocks: 6
|
||||||
dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
positional_dropout_rate: 0.1
|
positional_dropout_rate: 0.1
|
||||||
attention_dropout_rate: 0
|
attention_dropout_rate: 0.0
|
||||||
normalize_before: True
|
normalize_before: True
|
||||||
input_layer: 'linear'
|
input_layer: 'linear'
|
||||||
pos_enc_layer_type: 'rel_pos_espnet'
|
pos_enc_layer_type: 'rel_pos_espnet'
|
||||||
@@ -49,11 +49,16 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
|||||||
num_blocks: 14
|
num_blocks: 14
|
||||||
dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
positional_dropout_rate: 0.1
|
positional_dropout_rate: 0.1
|
||||||
attention_dropout_rate: 0
|
attention_dropout_rate: 0.0
|
||||||
input_layer: 'linear_legacy'
|
input_layer: 'linear_legacy'
|
||||||
pos_enc_layer_type: 'rel_pos_espnet'
|
pos_enc_layer_type: 'rel_pos_espnet'
|
||||||
selfattention_layer_type: 'rel_selfattn'
|
selfattention_layer_type: 'rel_selfattn'
|
||||||
static_chunk_size: 1
|
static_chunk_size: 1
|
||||||
|
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||||
|
top_p: 0.8
|
||||||
|
top_k: 25
|
||||||
|
win_size: 10
|
||||||
|
tau_r: 0.1
|
||||||
|
|
||||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||||
input_size: 512
|
input_size: 512
|
||||||
@@ -61,7 +66,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
|||||||
spk_embed_dim: !ref <spk_embed_dim>
|
spk_embed_dim: !ref <spk_embed_dim>
|
||||||
output_type: 'mel'
|
output_type: 'mel'
|
||||||
vocab_size: 4096
|
vocab_size: 4096
|
||||||
input_frame_rate: 50
|
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
only_mask_loss: True
|
only_mask_loss: True
|
||||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||||
output_size: 512
|
output_size: 512
|
||||||
@@ -97,7 +102,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
|||||||
in_channels: 320
|
in_channels: 320
|
||||||
out_channels: 80
|
out_channels: 80
|
||||||
channels: [256, 256]
|
channels: [256, 256]
|
||||||
dropout: 0
|
dropout: 0.0
|
||||||
attention_head_dim: 64
|
attention_head_dim: 64
|
||||||
n_blocks: 4
|
n_blocks: 4
|
||||||
num_mid_blocks: 12
|
num_mid_blocks: 12
|
||||||
@@ -128,9 +133,28 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
|||||||
in_channels: 80
|
in_channels: 80
|
||||||
cond_channels: 512
|
cond_channels: 512
|
||||||
|
|
||||||
|
# gan related module
|
||||||
|
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
||||||
|
n_fft: 1024
|
||||||
|
num_mels: 80
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
hop_size: 256
|
||||||
|
win_size: 1024
|
||||||
|
fmin: 0
|
||||||
|
fmax: null
|
||||||
|
center: False
|
||||||
|
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||||
|
generator: !ref <hift>
|
||||||
|
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||||
|
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||||
|
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
||||||
|
mel_spec_transform: [
|
||||||
|
!ref <mel_spec_transform1>
|
||||||
|
]
|
||||||
|
|
||||||
# processor functions
|
# processor functions
|
||||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
multilingual: True
|
multilingual: True
|
||||||
num_languages: 100
|
num_languages: 100
|
||||||
language: 'en'
|
language: 'en'
|
||||||
@@ -146,6 +170,8 @@ filter: !name:cosyvoice.dataset.processor.filter
|
|||||||
token_min_length: 1
|
token_min_length: 1
|
||||||
resample: !name:cosyvoice.dataset.processor.resample
|
resample: !name:cosyvoice.dataset.processor.resample
|
||||||
resample_rate: !ref <sample_rate>
|
resample_rate: !ref <sample_rate>
|
||||||
|
truncate: !name:cosyvoice.dataset.processor.truncate
|
||||||
|
truncate_length: 24576 # must be a multiplier of hop_size
|
||||||
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||||
n_fft: 1024
|
n_fft: 1024
|
||||||
num_mels: 80
|
num_mels: 80
|
||||||
@@ -157,6 +183,9 @@ feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
|||||||
center: False
|
center: False
|
||||||
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||||
feat_extractor: !ref <feat_extractor>
|
feat_extractor: !ref <feat_extractor>
|
||||||
|
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||||
|
sample_rate: !ref <sample_rate>
|
||||||
|
hop_size: 256
|
||||||
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||||
normalize: True
|
normalize: True
|
||||||
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||||
@@ -165,7 +194,7 @@ sort: !name:cosyvoice.dataset.processor.sort
|
|||||||
sort_size: 500 # sort_size should be less than shuffle_size
|
sort_size: 500 # sort_size should be less than shuffle_size
|
||||||
batch: !name:cosyvoice.dataset.processor.batch
|
batch: !name:cosyvoice.dataset.processor.batch
|
||||||
batch_type: 'dynamic'
|
batch_type: 'dynamic'
|
||||||
max_frames_in_batch: 2000
|
max_frames_in_batch: 2000 # change to 1400 in gan train on v100 16g
|
||||||
padding: !name:cosyvoice.dataset.processor.padding
|
padding: !name:cosyvoice.dataset.processor.padding
|
||||||
use_spk_embedding: False # change to True during sft
|
use_spk_embedding: False # change to True during sft
|
||||||
|
|
||||||
@@ -182,8 +211,22 @@ data_pipeline: [
|
|||||||
!ref <batch>,
|
!ref <batch>,
|
||||||
!ref <padding>,
|
!ref <padding>,
|
||||||
]
|
]
|
||||||
|
data_pipeline_gan: [
|
||||||
|
!ref <parquet_opener>,
|
||||||
|
!ref <tokenize>,
|
||||||
|
!ref <filter>,
|
||||||
|
!ref <resample>,
|
||||||
|
!ref <truncate>,
|
||||||
|
!ref <compute_fbank>,
|
||||||
|
!ref <compute_f0>,
|
||||||
|
!ref <parse_embedding>,
|
||||||
|
!ref <shuffle>,
|
||||||
|
!ref <sort>,
|
||||||
|
!ref <batch>,
|
||||||
|
!ref <padding>,
|
||||||
|
]
|
||||||
|
|
||||||
# train conf
|
# llm flow train conf
|
||||||
train_conf:
|
train_conf:
|
||||||
optim: adam
|
optim: adam
|
||||||
optim_conf:
|
optim_conf:
|
||||||
@@ -196,3 +239,19 @@ train_conf:
|
|||||||
accum_grad: 2
|
accum_grad: 2
|
||||||
log_interval: 100
|
log_interval: 100
|
||||||
save_per_step: -1
|
save_per_step: -1
|
||||||
|
|
||||||
|
# gan train conf
|
||||||
|
train_conf_gan:
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler: constantlr
|
||||||
|
optim_d: adam
|
||||||
|
optim_conf_d:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler_d: constantlr
|
||||||
|
max_epoch: 200
|
||||||
|
grad_clip: 5
|
||||||
|
accum_grad: 1 # in gan training, accum_grad must be 1
|
||||||
|
log_interval: 100
|
||||||
|
save_per_step: -1
|
||||||
@@ -7,6 +7,7 @@ from tqdm import tqdm
|
|||||||
|
|
||||||
logger = logging.getLogger()
|
logger = logging.getLogger()
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
wavs = list(glob.glob('{}/*/*/*wav'.format(args.src_dir)))
|
wavs = list(glob.glob('{}/*/*/*wav'.format(args.src_dir)))
|
||||||
|
|
||||||
@@ -41,6 +42,7 @@ def main():
|
|||||||
f.write('{} {}\n'.format(k, ' '.join(v)))
|
f.write('{} {}\n'.format(k, ' '.join(v)))
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--src_dir',
|
parser.add_argument('--src_dir',
|
||||||
|
|||||||
@@ -83,9 +83,9 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
|||||||
fi
|
fi
|
||||||
cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
|
cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
|
||||||
cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
|
cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
|
||||||
for model in llm; do
|
for model in llm flow hifigan; do
|
||||||
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
|
||||||
cosyvoice/bin/train.py \
|
cosyvoice/bin/train.py \
|
||||||
--train_engine $train_engine \
|
--train_engine $train_engine \
|
||||||
--config conf/cosyvoice.yaml \
|
--config conf/cosyvoice.yaml \
|
||||||
@@ -99,7 +99,28 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
|||||||
--num_workers ${num_workers} \
|
--num_workers ${num_workers} \
|
||||||
--prefetch ${prefetch} \
|
--prefetch ${prefetch} \
|
||||||
--pin_memory \
|
--pin_memory \
|
||||||
|
--use_amp \
|
||||||
--deepspeed_config ./conf/ds_stage2.json \
|
--deepspeed_config ./conf/ds_stage2.json \
|
||||||
--deepspeed.save_states model+optimizer
|
--deepspeed.save_states model+optimizer
|
||||||
done
|
done
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
# average model
|
||||||
|
average_num=5
|
||||||
|
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||||
|
for model in llm flow hifigan; do
|
||||||
|
decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
|
||||||
|
echo "do model average and final checkpoint is $decode_checkpoint"
|
||||||
|
python cosyvoice/bin/average_model.py \
|
||||||
|
--dst_model $decode_checkpoint \
|
||||||
|
--src_path `pwd`/exp/cosyvoice/$model/$train_engine \
|
||||||
|
--num ${average_num} \
|
||||||
|
--val_best
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
|
||||||
|
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
||||||
|
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
||||||
|
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
||||||
|
fi
|
||||||
1
examples/libritts/cosyvoice2/cosyvoice
Symbolic link
1
examples/libritts/cosyvoice2/cosyvoice
Symbolic link
@@ -0,0 +1 @@
|
|||||||
|
../../../cosyvoice
|
||||||
1
examples/libritts/cosyvoice2/tools
Symbolic link
1
examples/libritts/cosyvoice2/tools
Symbolic link
@@ -0,0 +1 @@
|
|||||||
|
../../../tools
|
||||||
@@ -18,7 +18,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
|||||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||||
llm_input_size: !ref <llm_input_size>
|
llm_input_size: !ref <llm_input_size>
|
||||||
llm_output_size: !ref <llm_output_size>
|
llm_output_size: !ref <llm_output_size>
|
||||||
text_token_size: 51866
|
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
speech_token_size: 4096
|
speech_token_size: 4096
|
||||||
length_normalized_loss: True
|
length_normalized_loss: True
|
||||||
lsm_weight: 0
|
lsm_weight: 0
|
||||||
@@ -54,6 +54,11 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
|||||||
pos_enc_layer_type: 'rel_pos_espnet'
|
pos_enc_layer_type: 'rel_pos_espnet'
|
||||||
selfattention_layer_type: 'rel_selfattn'
|
selfattention_layer_type: 'rel_selfattn'
|
||||||
static_chunk_size: 1
|
static_chunk_size: 1
|
||||||
|
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||||
|
top_p: 0.8
|
||||||
|
top_k: 25
|
||||||
|
win_size: 10
|
||||||
|
tau_r: 0.1
|
||||||
|
|
||||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||||
input_size: 512
|
input_size: 512
|
||||||
@@ -61,7 +66,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
|||||||
spk_embed_dim: !ref <spk_embed_dim>
|
spk_embed_dim: !ref <spk_embed_dim>
|
||||||
output_type: 'mel'
|
output_type: 'mel'
|
||||||
vocab_size: 4096
|
vocab_size: 4096
|
||||||
input_frame_rate: 50
|
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
only_mask_loss: True
|
only_mask_loss: True
|
||||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||||
output_size: 512
|
output_size: 512
|
||||||
@@ -130,7 +135,7 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
|||||||
|
|
||||||
# processor functions
|
# processor functions
|
||||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
multilingual: True
|
multilingual: True
|
||||||
num_languages: 100
|
num_languages: 100
|
||||||
language: 'en'
|
language: 'en'
|
||||||
|
|||||||
@@ -18,7 +18,7 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
|||||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||||
llm_input_size: !ref <llm_input_size>
|
llm_input_size: !ref <llm_input_size>
|
||||||
llm_output_size: !ref <llm_output_size>
|
llm_output_size: !ref <llm_output_size>
|
||||||
text_token_size: 51866
|
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
speech_token_size: 4096
|
speech_token_size: 4096
|
||||||
length_normalized_loss: True
|
length_normalized_loss: True
|
||||||
lsm_weight: 0
|
lsm_weight: 0
|
||||||
@@ -54,6 +54,11 @@ llm: !new:cosyvoice.llm.llm.TransformerLM
|
|||||||
pos_enc_layer_type: 'rel_pos_espnet'
|
pos_enc_layer_type: 'rel_pos_espnet'
|
||||||
selfattention_layer_type: 'rel_selfattn'
|
selfattention_layer_type: 'rel_selfattn'
|
||||||
static_chunk_size: 1
|
static_chunk_size: 1
|
||||||
|
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||||
|
top_p: 0.8
|
||||||
|
top_k: 25
|
||||||
|
win_size: 10
|
||||||
|
tau_r: 0.1
|
||||||
|
|
||||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||||
input_size: 512
|
input_size: 512
|
||||||
@@ -61,7 +66,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
|||||||
spk_embed_dim: !ref <spk_embed_dim>
|
spk_embed_dim: !ref <spk_embed_dim>
|
||||||
output_type: 'mel'
|
output_type: 'mel'
|
||||||
vocab_size: 4096
|
vocab_size: 4096
|
||||||
input_frame_rate: 50
|
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
only_mask_loss: True
|
only_mask_loss: True
|
||||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||||
output_size: 512
|
output_size: 512
|
||||||
@@ -130,7 +135,7 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
|||||||
|
|
||||||
# processor functions
|
# processor functions
|
||||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
multilingual: True
|
multilingual: True
|
||||||
num_languages: 100
|
num_languages: 100
|
||||||
language: 'en'
|
language: 'en'
|
||||||
|
|||||||
@@ -6,6 +6,7 @@ from tqdm import tqdm
|
|||||||
|
|
||||||
logger = logging.getLogger()
|
logger = logging.getLogger()
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
utt2wav, utt2text, utt2spk, spk2utt = {}, {}, {}, {}
|
utt2wav, utt2text, utt2spk, spk2utt = {}, {}, {}, {}
|
||||||
with open(os.path.join(args.src_dir, "TRANS.txt"), "r") as f:
|
with open(os.path.join(args.src_dir, "TRANS.txt"), "r") as f:
|
||||||
@@ -40,6 +41,7 @@ def main():
|
|||||||
f.write('{} {}\n'.format(k, ' '.join(v)))
|
f.write('{} {}\n'.format(k, ' '.join(v)))
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--src_dir',
|
parser.add_argument('--src_dir',
|
||||||
|
|||||||
@@ -83,7 +83,7 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
|||||||
fi
|
fi
|
||||||
cp data/train/parquet/data.list data/train.data.list
|
cp data/train/parquet/data.list data/train.data.list
|
||||||
cp data/dev/parquet/data.list data/dev.data.list
|
cp data/dev/parquet/data.list data/dev.data.list
|
||||||
for model in llm; do
|
for model in llm flow; do
|
||||||
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
||||||
cosyvoice/bin/train.py \
|
cosyvoice/bin/train.py \
|
||||||
@@ -103,3 +103,9 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
|||||||
--deepspeed.save_states model+optimizer
|
--deepspeed.save_states model+optimizer
|
||||||
done
|
done
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||||
|
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
||||||
|
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
||||||
|
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
||||||
|
fi
|
||||||
@@ -1,9 +1,10 @@
|
|||||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
--extra-index-url https://download.pytorch.org/whl/cu121
|
||||||
|
--extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/ # https://github.com/microsoft/onnxruntime/issues/21684
|
||||||
conformer==0.3.2
|
conformer==0.3.2
|
||||||
deepspeed==0.14.2; sys_platform == 'linux'
|
deepspeed==0.14.2; sys_platform == 'linux'
|
||||||
diffusers==0.27.2
|
diffusers==0.29.0
|
||||||
gdown==5.1.0
|
gdown==5.1.0
|
||||||
gradio==4.32.2
|
gradio==5.4.0
|
||||||
grpcio==1.57.0
|
grpcio==1.57.0
|
||||||
grpcio-tools==1.57.0
|
grpcio-tools==1.57.0
|
||||||
hydra-core==1.3.2
|
hydra-core==1.3.2
|
||||||
@@ -15,17 +16,24 @@ matplotlib==3.7.5
|
|||||||
modelscope==1.15.0
|
modelscope==1.15.0
|
||||||
networkx==3.1
|
networkx==3.1
|
||||||
omegaconf==2.3.0
|
omegaconf==2.3.0
|
||||||
onnxruntime-gpu==1.16.0; sys_platform == 'linux'
|
onnx==1.16.0
|
||||||
onnxruntime==1.16.0; sys_platform == 'darwin' or sys_platform == 'windows'
|
onnxruntime-gpu==1.18.0; sys_platform == 'linux'
|
||||||
|
onnxruntime==1.18.0; sys_platform == 'darwin' or sys_platform == 'windows'
|
||||||
openai-whisper==20231117
|
openai-whisper==20231117
|
||||||
protobuf==4.25
|
protobuf==4.25
|
||||||
pydantic==2.7.0
|
pydantic==2.7.0
|
||||||
|
pyworld==0.3.4
|
||||||
rich==13.7.1
|
rich==13.7.1
|
||||||
soundfile==0.12.1
|
soundfile==0.12.1
|
||||||
tensorboard==2.14.0
|
tensorboard==2.14.0
|
||||||
torch==2.0.1
|
tensorrt-cu12==10.0.1; sys_platform == 'linux'
|
||||||
torchaudio==2.0.2
|
tensorrt-cu12-bindings==10.0.1; sys_platform == 'linux'
|
||||||
|
tensorrt-cu12-libs==10.0.1; sys_platform == 'linux'
|
||||||
|
torch==2.4.0
|
||||||
|
torchaudio==2.4.0
|
||||||
|
transformers==4.40.1
|
||||||
|
uvicorn==0.30.0
|
||||||
wget==3.2
|
wget==3.2
|
||||||
fastapi==0.111.0
|
fastapi==0.115.6
|
||||||
fastapi-cli==0.0.4
|
fastapi-cli==0.0.4
|
||||||
WeTextProcessing==1.0.3
|
WeTextProcessing==1.0.3
|
||||||
|
|||||||
@@ -1,56 +1,69 @@
|
|||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import requests
|
import requests
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
def saveResponse(path, response):
|
|
||||||
# 以二进制写入模式打开文件
|
|
||||||
with open(path, 'wb') as file:
|
|
||||||
# 将响应的二进制内容写入文件
|
|
||||||
file.write(response.content)
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
api = args.api_base
|
url = "http://{}:{}/inference_{}".format(args.host, args.port, args.mode)
|
||||||
if args.mode == 'sft':
|
if args.mode == 'sft':
|
||||||
url = api + "/api/inference/sft"
|
|
||||||
payload={
|
|
||||||
'tts': args.tts_text,
|
|
||||||
'role': args.spk_id
|
|
||||||
}
|
|
||||||
response = requests.request("POST", url, data=payload)
|
|
||||||
saveResponse(args.tts_wav, response)
|
|
||||||
elif args.mode == 'zero_shot':
|
|
||||||
url = api + "/api/inference/zero-shot"
|
|
||||||
payload={
|
|
||||||
'tts': args.tts_text,
|
|
||||||
'prompt': args.prompt_text
|
|
||||||
}
|
|
||||||
files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))]
|
|
||||||
response = requests.request("POST", url, data=payload, files=files)
|
|
||||||
saveResponse(args.tts_wav, response)
|
|
||||||
elif args.mode == 'cross_lingual':
|
|
||||||
url = api + "/api/inference/cross-lingual"
|
|
||||||
payload={
|
|
||||||
'tts': args.tts_text,
|
|
||||||
}
|
|
||||||
files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))]
|
|
||||||
response = requests.request("POST", url, data=payload, files=files)
|
|
||||||
saveResponse(args.tts_wav, response)
|
|
||||||
else:
|
|
||||||
url = api + "/api/inference/instruct"
|
|
||||||
payload = {
|
payload = {
|
||||||
'tts': args.tts_text,
|
'tts_text': args.tts_text,
|
||||||
'role': args.spk_id,
|
'spk_id': args.spk_id
|
||||||
'instruct': args.instruct_text
|
|
||||||
}
|
}
|
||||||
response = requests.request("POST", url, data=payload)
|
response = requests.request("GET", url, data=payload, stream=True)
|
||||||
saveResponse(args.tts_wav, response)
|
elif args.mode == 'zero_shot':
|
||||||
logging.info("Response save to {}", args.tts_wav)
|
payload = {
|
||||||
|
'tts_text': args.tts_text,
|
||||||
|
'prompt_text': args.prompt_text
|
||||||
|
}
|
||||||
|
files = [('prompt_wav', ('prompt_wav', open(args.prompt_wav, 'rb'), 'application/octet-stream'))]
|
||||||
|
response = requests.request("GET", url, data=payload, files=files, stream=True)
|
||||||
|
elif args.mode == 'cross_lingual':
|
||||||
|
payload = {
|
||||||
|
'tts_text': args.tts_text,
|
||||||
|
}
|
||||||
|
files = [('prompt_wav', ('prompt_wav', open(args.prompt_wav, 'rb'), 'application/octet-stream'))]
|
||||||
|
response = requests.request("GET", url, data=payload, files=files, stream=True)
|
||||||
|
else:
|
||||||
|
payload = {
|
||||||
|
'tts_text': args.tts_text,
|
||||||
|
'spk_id': args.spk_id,
|
||||||
|
'instruct_text': args.instruct_text
|
||||||
|
}
|
||||||
|
response = requests.request("GET", url, data=payload, stream=True)
|
||||||
|
tts_audio = b''
|
||||||
|
for r in response.iter_content(chunk_size=16000):
|
||||||
|
tts_audio += r
|
||||||
|
tts_speech = torch.from_numpy(np.array(np.frombuffer(tts_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||||
|
logging.info('save response to {}'.format(args.tts_wav))
|
||||||
|
torchaudio.save(args.tts_wav, tts_speech, target_sr)
|
||||||
|
logging.info('get response')
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--api_base',
|
parser.add_argument('--host',
|
||||||
type=str,
|
type=str,
|
||||||
default='http://127.0.0.1:6006')
|
default='0.0.0.0')
|
||||||
|
parser.add_argument('--port',
|
||||||
|
type=int,
|
||||||
|
default='50000')
|
||||||
parser.add_argument('--mode',
|
parser.add_argument('--mode',
|
||||||
default='sft',
|
default='sft',
|
||||||
choices=['sft', 'zero_shot', 'cross_lingual', 'instruct'],
|
choices=['sft', 'zero_shot', 'cross_lingual', 'instruct'],
|
||||||
@@ -66,10 +79,11 @@ if __name__ == "__main__":
|
|||||||
default='希望你以后能够做的比我还好呦。')
|
default='希望你以后能够做的比我还好呦。')
|
||||||
parser.add_argument('--prompt_wav',
|
parser.add_argument('--prompt_wav',
|
||||||
type=str,
|
type=str,
|
||||||
default='../../../zero_shot_prompt.wav')
|
default='../../../asset/zero_shot_prompt.wav')
|
||||||
parser.add_argument('--instruct_text',
|
parser.add_argument('--instruct_text',
|
||||||
type=str,
|
type=str,
|
||||||
default='Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
|
default='Theo \'Crimson\', is a fiery, passionate rebel leader. \
|
||||||
|
Fights with fervor for justice, but struggles with impulsiveness.')
|
||||||
parser.add_argument('--tts_wav',
|
parser.add_argument('--tts_wav',
|
||||||
type=str,
|
type=str,
|
||||||
default='demo.wav')
|
default='demo.wav')
|
||||||
|
|||||||
@@ -1,119 +1,101 @@
|
|||||||
# Set inference model
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
# export MODEL_DIR=pretrained_models/CosyVoice-300M-Instruct
|
#
|
||||||
# For development
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# fastapi dev --port 6006 fastapi_server.py
|
# you may not use this file except in compliance with the License.
|
||||||
# For production deployment
|
# You may obtain a copy of the License at
|
||||||
# fastapi run --port 6006 fastapi_server.py
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import io,time
|
import argparse
|
||||||
from fastapi import FastAPI, Response, File, UploadFile, Form
|
import logging
|
||||||
from fastapi.responses import HTMLResponse
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||||
from fastapi.middleware.cors import CORSMiddleware #引入 CORS中间件模块
|
from fastapi import FastAPI, UploadFile, Form, File
|
||||||
from contextlib import asynccontextmanager
|
from fastapi.responses import StreamingResponse
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
import uvicorn
|
||||||
|
import numpy as np
|
||||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
||||||
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||||
from cosyvoice.utils.file_utils import load_wav
|
from cosyvoice.utils.file_utils import load_wav
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
import torchaudio
|
|
||||||
import logging
|
|
||||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
|
||||||
|
|
||||||
class LaunchFailed(Exception):
|
app = FastAPI()
|
||||||
pass
|
# set cross region allowance
|
||||||
|
|
||||||
@asynccontextmanager
|
|
||||||
async def lifespan(app: FastAPI):
|
|
||||||
model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT")
|
|
||||||
if model_dir:
|
|
||||||
logging.info("MODEL_DIR is {}", model_dir)
|
|
||||||
app.cosyvoice = CosyVoice(model_dir)
|
|
||||||
# sft usage
|
|
||||||
logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks())
|
|
||||||
else:
|
|
||||||
raise LaunchFailed("MODEL_DIR environment must set")
|
|
||||||
yield
|
|
||||||
|
|
||||||
app = FastAPI(lifespan=lifespan)
|
|
||||||
|
|
||||||
#设置允许访问的域名
|
|
||||||
origins = ["*"] #"*",即为所有,也可以改为允许的特定ip。
|
|
||||||
app.add_middleware(
|
app.add_middleware(
|
||||||
CORSMiddleware,
|
CORSMiddleware,
|
||||||
allow_origins=origins, #设置允许的origins来源
|
allow_origins=["*"],
|
||||||
allow_credentials=True,
|
allow_credentials=True,
|
||||||
allow_methods=["*"], # 设置允许跨域的http方法,比如 get、post、put等。
|
allow_methods=["*"],
|
||||||
allow_headers=["*"]) #允许跨域的headers,可以用来鉴别来源等作用。
|
allow_headers=["*"])
|
||||||
|
|
||||||
def buildResponse(output):
|
|
||||||
buffer = io.BytesIO()
|
|
||||||
torchaudio.save(buffer, output, 22050, format="wav")
|
|
||||||
buffer.seek(0)
|
|
||||||
return Response(content=buffer.read(-1), media_type="audio/wav")
|
|
||||||
|
|
||||||
@app.post("/api/inference/sft")
|
def generate_data(model_output):
|
||||||
@app.get("/api/inference/sft")
|
for i in model_output:
|
||||||
async def sft(tts: str = Form(), role: str = Form()):
|
tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
|
||||||
start = time.process_time()
|
yield tts_audio
|
||||||
output = app.cosyvoice.inference_sft(tts, role)
|
|
||||||
end = time.process_time()
|
|
||||||
logging.info("infer time is {} seconds", end-start)
|
|
||||||
return buildResponse(output['tts_speech'])
|
|
||||||
|
|
||||||
@app.post("/api/inference/zero-shot")
|
|
||||||
async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()):
|
|
||||||
start = time.process_time()
|
|
||||||
prompt_speech = load_wav(audio.file, 16000)
|
|
||||||
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
|
||||||
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
|
||||||
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
|
||||||
|
|
||||||
output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k)
|
@app.get("/inference_sft")
|
||||||
end = time.process_time()
|
@app.post("/inference_sft")
|
||||||
logging.info("infer time is {} seconds", end-start)
|
async def inference_sft(tts_text: str = Form(), spk_id: str = Form()):
|
||||||
return buildResponse(output['tts_speech'])
|
model_output = cosyvoice.inference_sft(tts_text, spk_id)
|
||||||
|
return StreamingResponse(generate_data(model_output))
|
||||||
|
|
||||||
@app.post("/api/inference/cross-lingual")
|
|
||||||
async def crossLingual(tts: str = Form(), audio: UploadFile = File()):
|
|
||||||
start = time.process_time()
|
|
||||||
prompt_speech = load_wav(audio.file, 16000)
|
|
||||||
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
|
||||||
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
|
||||||
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
|
||||||
|
|
||||||
output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k)
|
@app.get("/inference_zero_shot")
|
||||||
end = time.process_time()
|
@app.post("/inference_zero_shot")
|
||||||
logging.info("infer time is {} seconds", end-start)
|
async def inference_zero_shot(tts_text: str = Form(), prompt_text: str = Form(), prompt_wav: UploadFile = File()):
|
||||||
return buildResponse(output['tts_speech'])
|
prompt_speech_16k = load_wav(prompt_wav.file, 16000)
|
||||||
|
model_output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
|
||||||
|
return StreamingResponse(generate_data(model_output))
|
||||||
|
|
||||||
@app.post("/api/inference/instruct")
|
|
||||||
@app.get("/api/inference/instruct")
|
|
||||||
async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()):
|
|
||||||
start = time.process_time()
|
|
||||||
output = app.cosyvoice.inference_instruct(tts, role, instruct)
|
|
||||||
end = time.process_time()
|
|
||||||
logging.info("infer time is {} seconds", end-start)
|
|
||||||
return buildResponse(output['tts_speech'])
|
|
||||||
|
|
||||||
@app.get("/api/roles")
|
@app.get("/inference_cross_lingual")
|
||||||
async def roles():
|
@app.post("/inference_cross_lingual")
|
||||||
return {"roles": app.cosyvoice.list_avaliable_spks()}
|
async def inference_cross_lingual(tts_text: str = Form(), prompt_wav: UploadFile = File()):
|
||||||
|
prompt_speech_16k = load_wav(prompt_wav.file, 16000)
|
||||||
|
model_output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k)
|
||||||
|
return StreamingResponse(generate_data(model_output))
|
||||||
|
|
||||||
@app.get("/", response_class=HTMLResponse)
|
|
||||||
async def root():
|
@app.get("/inference_instruct")
|
||||||
return """
|
@app.post("/inference_instruct")
|
||||||
<!DOCTYPE html>
|
async def inference_instruct(tts_text: str = Form(), spk_id: str = Form(), instruct_text: str = Form()):
|
||||||
<html lang=zh-cn>
|
model_output = cosyvoice.inference_instruct(tts_text, spk_id, instruct_text)
|
||||||
<head>
|
return StreamingResponse(generate_data(model_output))
|
||||||
<meta charset=utf-8>
|
|
||||||
<title>Api information</title>
|
@app.get("/inference_instruct2")
|
||||||
</head>
|
@app.post("/inference_instruct2")
|
||||||
<body>
|
async def inference_instruct2(tts_text: str = Form(), instruct_text: str = Form(), prompt_wav: UploadFile = File()):
|
||||||
Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. <a href='./docs'>Documents of API</a>
|
prompt_speech_16k = load_wav(prompt_wav.file, 16000)
|
||||||
</body>
|
model_output = cosyvoice.inference_instruct2(tts_text, instruct_text, prompt_speech_16k)
|
||||||
</html>
|
return StreamingResponse(generate_data(model_output))
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--port',
|
||||||
|
type=int,
|
||||||
|
default=50000)
|
||||||
|
parser.add_argument('--model_dir',
|
||||||
|
type=str,
|
||||||
|
default='iic/CosyVoice-300M',
|
||||||
|
help='local path or modelscope repo id')
|
||||||
|
args = parser.parse_args()
|
||||||
|
try:
|
||||||
|
cosyvoice = CosyVoice(args.model_dir)
|
||||||
|
except Exception:
|
||||||
|
try:
|
||||||
|
cosyvoice = CosyVoice2(args.model_dir)
|
||||||
|
except Exception:
|
||||||
|
raise TypeError('no valid model_type!')
|
||||||
|
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
||||||
@@ -61,8 +61,11 @@ def main():
|
|||||||
request.instruct_request.CopyFrom(instruct_request)
|
request.instruct_request.CopyFrom(instruct_request)
|
||||||
|
|
||||||
response = stub.Inference(request)
|
response = stub.Inference(request)
|
||||||
|
tts_audio = b''
|
||||||
|
for r in response:
|
||||||
|
tts_audio += r.tts_audio
|
||||||
|
tts_speech = torch.from_numpy(np.array(np.frombuffer(tts_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||||
logging.info('save response to {}'.format(args.tts_wav))
|
logging.info('save response to {}'.format(args.tts_wav))
|
||||||
tts_speech = torch.from_numpy(np.array(np.frombuffer(response.tts_audio, dtype=np.int16))).unsqueeze(dim=0)
|
|
||||||
torchaudio.save(args.tts_wav, tts_speech, target_sr)
|
torchaudio.save(args.tts_wav, tts_speech, target_sr)
|
||||||
logging.info('get response')
|
logging.info('get response')
|
||||||
|
|
||||||
@@ -90,10 +93,11 @@ if __name__ == "__main__":
|
|||||||
default='希望你以后能够做的比我还好呦。')
|
default='希望你以后能够做的比我还好呦。')
|
||||||
parser.add_argument('--prompt_wav',
|
parser.add_argument('--prompt_wav',
|
||||||
type=str,
|
type=str,
|
||||||
default='../../../zero_shot_prompt.wav')
|
default='../../../asset/zero_shot_prompt.wav')
|
||||||
parser.add_argument('--instruct_text',
|
parser.add_argument('--instruct_text',
|
||||||
type=str,
|
type=str,
|
||||||
default='Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
|
default='Theo \'Crimson\', is a fiery, passionate rebel leader. \
|
||||||
|
Fights with fervor for justice, but struggles with impulsiveness.')
|
||||||
parser.add_argument('--tts_wav',
|
parser.add_argument('--tts_wav',
|
||||||
type=str,
|
type=str,
|
||||||
default='demo.wav')
|
default='demo.wav')
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ package cosyvoice;
|
|||||||
option go_package = "protos/";
|
option go_package = "protos/";
|
||||||
|
|
||||||
service CosyVoice{
|
service CosyVoice{
|
||||||
rpc Inference(Request) returns (Response) {}
|
rpc Inference(Request) returns (stream Response) {}
|
||||||
}
|
}
|
||||||
|
|
||||||
message Request{
|
message Request{
|
||||||
|
|||||||
@@ -13,9 +13,6 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
||||||
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
|
||||||
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
|
||||||
from concurrent import futures
|
from concurrent import futures
|
||||||
import argparse
|
import argparse
|
||||||
import cosyvoice_pb2
|
import cosyvoice_pb2
|
||||||
@@ -25,14 +22,24 @@ logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
|||||||
import grpc
|
import grpc
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
sys.path.append('{}/../../..'.format(ROOT_DIR))
|
||||||
|
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
|
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||||
|
|
||||||
logging.basicConfig(level=logging.DEBUG,
|
logging.basicConfig(level=logging.DEBUG,
|
||||||
format='%(asctime)s %(levelname)s %(message)s')
|
format='%(asctime)s %(levelname)s %(message)s')
|
||||||
|
|
||||||
|
|
||||||
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
|
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
|
||||||
def __init__(self, args):
|
def __init__(self, args):
|
||||||
self.cosyvoice = CosyVoice(args.model_dir)
|
try:
|
||||||
|
self.cosyvoice = CosyVoice(args.model_dir)
|
||||||
|
except Exception:
|
||||||
|
try:
|
||||||
|
self.cosyvoice = CosyVoice2(args.model_dir)
|
||||||
|
except Exception:
|
||||||
|
raise TypeError('no valid model_type!')
|
||||||
logging.info('grpc service initialized')
|
logging.info('grpc service initialized')
|
||||||
|
|
||||||
def Inference(self, request, context):
|
def Inference(self, request, context):
|
||||||
@@ -43,7 +50,9 @@ class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
|
|||||||
logging.info('get zero_shot inference request')
|
logging.info('get zero_shot inference request')
|
||||||
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.zero_shot_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.zero_shot_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||||
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
||||||
model_output = self.cosyvoice.inference_zero_shot(request.zero_shot_request.tts_text, request.zero_shot_request.prompt_text, prompt_speech_16k)
|
model_output = self.cosyvoice.inference_zero_shot(request.zero_shot_request.tts_text,
|
||||||
|
request.zero_shot_request.prompt_text,
|
||||||
|
prompt_speech_16k)
|
||||||
elif request.HasField('cross_lingual_request'):
|
elif request.HasField('cross_lingual_request'):
|
||||||
logging.info('get cross_lingual inference request')
|
logging.info('get cross_lingual inference request')
|
||||||
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.cross_lingual_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.cross_lingual_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
||||||
@@ -51,12 +60,16 @@ class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
|
|||||||
model_output = self.cosyvoice.inference_cross_lingual(request.cross_lingual_request.tts_text, prompt_speech_16k)
|
model_output = self.cosyvoice.inference_cross_lingual(request.cross_lingual_request.tts_text, prompt_speech_16k)
|
||||||
else:
|
else:
|
||||||
logging.info('get instruct inference request')
|
logging.info('get instruct inference request')
|
||||||
model_output = self.cosyvoice.inference_instruct(request.instruct_request.tts_text, request.instruct_request.spk_id, request.instruct_request.instruct_text)
|
model_output = self.cosyvoice.inference_instruct(request.instruct_request.tts_text,
|
||||||
|
request.instruct_request.spk_id,
|
||||||
|
request.instruct_request.instruct_text)
|
||||||
|
|
||||||
logging.info('send inference response')
|
logging.info('send inference response')
|
||||||
response = cosyvoice_pb2.Response()
|
for i in model_output:
|
||||||
response.tts_audio = (model_output['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
|
response = cosyvoice_pb2.Response()
|
||||||
return response
|
response.tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
|
||||||
|
yield response
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
grpcServer = grpc.server(futures.ThreadPoolExecutor(max_workers=args.max_conc), maximum_concurrent_rpcs=args.max_conc)
|
grpcServer = grpc.server(futures.ThreadPoolExecutor(max_workers=args.max_conc), maximum_concurrent_rpcs=args.max_conc)
|
||||||
|
|||||||
@@ -13,14 +13,50 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import argparse
|
import argparse
|
||||||
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||||
|
import onnxruntime
|
||||||
import torch
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from tqdm import tqdm
|
|
||||||
import onnxruntime
|
|
||||||
import torchaudio.compliance.kaldi as kaldi
|
import torchaudio.compliance.kaldi as kaldi
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
def single_job(utt):
|
||||||
|
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
||||||
|
if sample_rate != 16000:
|
||||||
|
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
||||||
|
feat = kaldi.fbank(audio,
|
||||||
|
num_mel_bins=80,
|
||||||
|
dither=0,
|
||||||
|
sample_frequency=16000)
|
||||||
|
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||||
|
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||||||
|
return utt, embedding
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
def main(args):
|
||||||
|
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
||||||
|
utt2embedding, spk2embedding = {}, {}
|
||||||
|
for future in tqdm(as_completed(all_task)):
|
||||||
|
utt, embedding = future.result()
|
||||||
|
utt2embedding[utt] = embedding
|
||||||
|
spk = utt2spk[utt]
|
||||||
|
if spk not in spk2embedding:
|
||||||
|
spk2embedding[spk] = []
|
||||||
|
spk2embedding[spk].append(embedding)
|
||||||
|
for k, v in spk2embedding.items():
|
||||||
|
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
||||||
|
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
||||||
|
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--dir", type=str)
|
||||||
|
parser.add_argument("--onnx_path", type=str)
|
||||||
|
parser.add_argument("--num_thread", type=int, default=8)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
utt2wav, utt2spk = {}, {}
|
utt2wav, utt2spk = {}, {}
|
||||||
with open('{}/wav.scp'.format(args.dir)) as f:
|
with open('{}/wav.scp'.format(args.dir)) as f:
|
||||||
for l in f:
|
for l in f:
|
||||||
@@ -36,34 +72,6 @@ def main(args):
|
|||||||
option.intra_op_num_threads = 1
|
option.intra_op_num_threads = 1
|
||||||
providers = ["CPUExecutionProvider"]
|
providers = ["CPUExecutionProvider"]
|
||||||
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
||||||
|
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
||||||
|
|
||||||
utt2embedding, spk2embedding = {}, {}
|
|
||||||
for utt in tqdm(utt2wav.keys()):
|
|
||||||
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
|
||||||
if sample_rate != 16000:
|
|
||||||
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
|
||||||
feat = kaldi.fbank(audio,
|
|
||||||
num_mel_bins=80,
|
|
||||||
dither=0,
|
|
||||||
sample_frequency=16000)
|
|
||||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
|
||||||
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
|
||||||
utt2embedding[utt] = embedding
|
|
||||||
spk = utt2spk[utt]
|
|
||||||
if spk not in spk2embedding:
|
|
||||||
spk2embedding[spk] = []
|
|
||||||
spk2embedding[spk].append(embedding)
|
|
||||||
for k, v in spk2embedding.items():
|
|
||||||
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
|
||||||
|
|
||||||
torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir))
|
|
||||||
torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir))
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument('--dir',
|
|
||||||
type=str)
|
|
||||||
parser.add_argument('--onnx_path',
|
|
||||||
type=str)
|
|
||||||
args = parser.parse_args()
|
|
||||||
main(args)
|
main(args)
|
||||||
|
|||||||
@@ -13,6 +13,7 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import argparse
|
import argparse
|
||||||
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||||
import logging
|
import logging
|
||||||
import torch
|
import torch
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
@@ -22,7 +23,39 @@ import torchaudio
|
|||||||
import whisper
|
import whisper
|
||||||
|
|
||||||
|
|
||||||
|
def single_job(utt):
|
||||||
|
audio, sample_rate = torchaudio.load(utt2wav[utt], backend='soundfile')
|
||||||
|
if sample_rate != 16000:
|
||||||
|
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
||||||
|
# Convert audio to mono
|
||||||
|
if audio.shape[0] > 1:
|
||||||
|
audio = audio.mean(dim=0, keepdim=True)
|
||||||
|
if audio.shape[1] / 16000 > 30:
|
||||||
|
logging.warning('do not support extract speech token for audio longer than 30s')
|
||||||
|
speech_token = []
|
||||||
|
else:
|
||||||
|
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
||||||
|
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
||||||
|
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
||||||
|
return utt, speech_token
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
def main(args):
|
||||||
|
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
||||||
|
utt2speech_token = {}
|
||||||
|
for future in tqdm(as_completed(all_task)):
|
||||||
|
utt, speech_token = future.result()
|
||||||
|
utt2speech_token[utt] = speech_token
|
||||||
|
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--dir", type=str)
|
||||||
|
parser.add_argument("--onnx_path", type=str)
|
||||||
|
parser.add_argument("--num_thread", type=int, default=8)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
utt2wav = {}
|
utt2wav = {}
|
||||||
with open('{}/wav.scp'.format(args.dir)) as f:
|
with open('{}/wav.scp'.format(args.dir)) as f:
|
||||||
for l in f:
|
for l in f:
|
||||||
@@ -34,28 +67,6 @@ def main(args):
|
|||||||
option.intra_op_num_threads = 1
|
option.intra_op_num_threads = 1
|
||||||
providers = ["CUDAExecutionProvider"]
|
providers = ["CUDAExecutionProvider"]
|
||||||
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
||||||
|
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
||||||
|
|
||||||
utt2speech_token = {}
|
|
||||||
for utt in tqdm(utt2wav.keys()):
|
|
||||||
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
|
||||||
if sample_rate != 16000:
|
|
||||||
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
|
||||||
if audio.shape[1] / 16000 > 30:
|
|
||||||
logging.warning('do not support extract speech token for audio longer than 30s')
|
|
||||||
speech_token = []
|
|
||||||
else:
|
|
||||||
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
|
||||||
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
|
||||||
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
|
||||||
utt2speech_token[utt] = speech_token
|
|
||||||
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument('--dir',
|
|
||||||
type=str)
|
|
||||||
parser.add_argument('--onnx_path',
|
|
||||||
type=str)
|
|
||||||
args = parser.parse_args()
|
|
||||||
main(args)
|
main(args)
|
||||||
|
|||||||
@@ -53,6 +53,7 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
|
|||||||
json.dump({k: parquet_file for k in list(set(spk_list))}, f, ensure_ascii=False, indent=2)
|
json.dump({k: parquet_file for k in list(set(spk_list))}, f, ensure_ascii=False, indent=2)
|
||||||
logging.info('spend time {}'.format(time.time() - start_time))
|
logging.info('spend time {}'.format(time.time() - start_time))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--num_utts_per_parquet',
|
parser.add_argument('--num_utts_per_parquet',
|
||||||
|
|||||||
116
webui.py
116
webui.py
@@ -13,9 +13,6 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
||||||
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -23,15 +20,20 @@ import torch
|
|||||||
import torchaudio
|
import torchaudio
|
||||||
import random
|
import random
|
||||||
import librosa
|
import librosa
|
||||||
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||||
|
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||||
|
from cosyvoice.utils.file_utils import load_wav, logging
|
||||||
|
from cosyvoice.utils.common import set_all_random_seed
|
||||||
|
|
||||||
import logging
|
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
|
||||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成音频按钮',
|
||||||
|
'3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮',
|
||||||
|
'跨语种复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 点击生成音频按钮',
|
||||||
|
'自然语言控制': '1. 选择预训练音色\n2. 输入instruct文本\n3. 点击生成音频按钮'}
|
||||||
|
stream_mode_list = [('否', False), ('是', True)]
|
||||||
|
max_val = 0.8
|
||||||
|
|
||||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
|
||||||
from cosyvoice.utils.file_utils import load_wav, speed_change
|
|
||||||
|
|
||||||
logging.basicConfig(level=logging.DEBUG,
|
|
||||||
format='%(asctime)s %(levelname)s %(message)s')
|
|
||||||
|
|
||||||
def generate_seed():
|
def generate_seed():
|
||||||
seed = random.randint(1, 100000000)
|
seed = random.randint(1, 100000000)
|
||||||
@@ -40,13 +42,7 @@ def generate_seed():
|
|||||||
"value": seed
|
"value": seed
|
||||||
}
|
}
|
||||||
|
|
||||||
def set_all_random_seed(seed):
|
|
||||||
random.seed(seed)
|
|
||||||
np.random.seed(seed)
|
|
||||||
torch.manual_seed(seed)
|
|
||||||
torch.cuda.manual_seed_all(seed)
|
|
||||||
|
|
||||||
max_val = 0.8
|
|
||||||
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
||||||
speech, _ = librosa.effects.trim(
|
speech, _ = librosa.effects.trim(
|
||||||
speech, top_db=top_db,
|
speech, top_db=top_db,
|
||||||
@@ -55,18 +51,16 @@ def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
|||||||
)
|
)
|
||||||
if speech.abs().max() > max_val:
|
if speech.abs().max() > max_val:
|
||||||
speech = speech / speech.abs().max() * max_val
|
speech = speech / speech.abs().max() * max_val
|
||||||
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
|
speech = torch.concat([speech, torch.zeros(1, int(cosyvoice.sample_rate * 0.2))], dim=1)
|
||||||
return speech
|
return speech
|
||||||
|
|
||||||
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
|
|
||||||
instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成音频按钮',
|
|
||||||
'3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮',
|
|
||||||
'跨语种复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 点击生成音频按钮',
|
|
||||||
'自然语言控制': '1. 选择预训练音色\n2. 输入instruct文本\n3. 点击生成音频按钮'}
|
|
||||||
def change_instruction(mode_checkbox_group):
|
def change_instruction(mode_checkbox_group):
|
||||||
return instruct_dict[mode_checkbox_group]
|
return instruct_dict[mode_checkbox_group]
|
||||||
|
|
||||||
def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, speed_factor):
|
|
||||||
|
def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
||||||
|
seed, stream, speed):
|
||||||
if prompt_wav_upload is not None:
|
if prompt_wav_upload is not None:
|
||||||
prompt_wav = prompt_wav_upload
|
prompt_wav = prompt_wav_upload
|
||||||
elif prompt_wav_record is not None:
|
elif prompt_wav_record is not None:
|
||||||
@@ -75,86 +69,87 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
|
|||||||
prompt_wav = None
|
prompt_wav = None
|
||||||
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
|
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
|
||||||
if mode_checkbox_group in ['自然语言控制']:
|
if mode_checkbox_group in ['自然语言控制']:
|
||||||
if cosyvoice.frontend.instruct is False:
|
if cosyvoice.instruct is False:
|
||||||
gr.Warning('您正在使用自然语言控制模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M-Instruct模型'.format(args.model_dir))
|
gr.Warning('您正在使用自然语言控制模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M-Instruct模型'.format(args.model_dir))
|
||||||
return (target_sr, default_data)
|
yield (cosyvoice.sample_rate, default_data)
|
||||||
if instruct_text == '':
|
if instruct_text == '':
|
||||||
gr.Warning('您正在使用自然语言控制模式, 请输入instruct文本')
|
gr.Warning('您正在使用自然语言控制模式, 请输入instruct文本')
|
||||||
return (target_sr, default_data)
|
yield (cosyvoice.sample_rate, default_data)
|
||||||
if prompt_wav is not None or prompt_text != '':
|
if prompt_wav is not None or prompt_text != '':
|
||||||
gr.Info('您正在使用自然语言控制模式, prompt音频/prompt文本会被忽略')
|
gr.Info('您正在使用自然语言控制模式, prompt音频/prompt文本会被忽略')
|
||||||
# if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
|
# if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
|
||||||
if mode_checkbox_group in ['跨语种复刻']:
|
if mode_checkbox_group in ['跨语种复刻']:
|
||||||
if cosyvoice.frontend.instruct is True:
|
if cosyvoice.instruct is True:
|
||||||
gr.Warning('您正在使用跨语种复刻模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M模型'.format(args.model_dir))
|
gr.Warning('您正在使用跨语种复刻模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M模型'.format(args.model_dir))
|
||||||
return (target_sr, default_data)
|
yield (cosyvoice.sample_rate, default_data)
|
||||||
if instruct_text != '':
|
if instruct_text != '':
|
||||||
gr.Info('您正在使用跨语种复刻模式, instruct文本会被忽略')
|
gr.Info('您正在使用跨语种复刻模式, instruct文本会被忽略')
|
||||||
if prompt_wav is None:
|
if prompt_wav is None:
|
||||||
gr.Warning('您正在使用跨语种复刻模式, 请提供prompt音频')
|
gr.Warning('您正在使用跨语种复刻模式, 请提供prompt音频')
|
||||||
return (target_sr, default_data)
|
yield (cosyvoice.sample_rate, default_data)
|
||||||
gr.Info('您正在使用跨语种复刻模式, 请确保合成文本和prompt文本为不同语言')
|
gr.Info('您正在使用跨语种复刻模式, 请确保合成文本和prompt文本为不同语言')
|
||||||
# if in zero_shot cross_lingual, please make sure that prompt_text and prompt_wav meets requirements
|
# if in zero_shot cross_lingual, please make sure that prompt_text and prompt_wav meets requirements
|
||||||
if mode_checkbox_group in ['3s极速复刻', '跨语种复刻']:
|
if mode_checkbox_group in ['3s极速复刻', '跨语种复刻']:
|
||||||
if prompt_wav is None:
|
if prompt_wav is None:
|
||||||
gr.Warning('prompt音频为空,您是否忘记输入prompt音频?')
|
gr.Warning('prompt音频为空,您是否忘记输入prompt音频?')
|
||||||
return (target_sr, default_data)
|
yield (cosyvoice.sample_rate, default_data)
|
||||||
if torchaudio.info(prompt_wav).sample_rate < prompt_sr:
|
if torchaudio.info(prompt_wav).sample_rate < prompt_sr:
|
||||||
gr.Warning('prompt音频采样率{}低于{}'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr))
|
gr.Warning('prompt音频采样率{}低于{}'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr))
|
||||||
return (target_sr, default_data)
|
yield (cosyvoice.sample_rate, default_data)
|
||||||
# sft mode only use sft_dropdown
|
# sft mode only use sft_dropdown
|
||||||
if mode_checkbox_group in ['预训练音色']:
|
if mode_checkbox_group in ['预训练音色']:
|
||||||
if instruct_text != '' or prompt_wav is not None or prompt_text != '':
|
if instruct_text != '' or prompt_wav is not None or prompt_text != '':
|
||||||
gr.Info('您正在使用预训练音色模式,prompt文本/prompt音频/instruct文本会被忽略!')
|
gr.Info('您正在使用预训练音色模式,prompt文本/prompt音频/instruct文本会被忽略!')
|
||||||
|
if sft_dropdown == '':
|
||||||
|
gr.Warning('没有可用的预训练音色!')
|
||||||
|
yield (cosyvoice.sample_rate, default_data)
|
||||||
# zero_shot mode only use prompt_wav prompt text
|
# zero_shot mode only use prompt_wav prompt text
|
||||||
if mode_checkbox_group in ['3s极速复刻']:
|
if mode_checkbox_group in ['3s极速复刻']:
|
||||||
if prompt_text == '':
|
if prompt_text == '':
|
||||||
gr.Warning('prompt文本为空,您是否忘记输入prompt文本?')
|
gr.Warning('prompt文本为空,您是否忘记输入prompt文本?')
|
||||||
return (target_sr, default_data)
|
yield (cosyvoice.sample_rate, default_data)
|
||||||
if instruct_text != '':
|
if instruct_text != '':
|
||||||
gr.Info('您正在使用3s极速复刻模式,预训练音色/instruct文本会被忽略!')
|
gr.Info('您正在使用3s极速复刻模式,预训练音色/instruct文本会被忽略!')
|
||||||
|
|
||||||
if mode_checkbox_group == '预训练音色':
|
if mode_checkbox_group == '预训练音色':
|
||||||
logging.info('get sft inference request')
|
logging.info('get sft inference request')
|
||||||
set_all_random_seed(seed)
|
set_all_random_seed(seed)
|
||||||
output = cosyvoice.inference_sft(tts_text, sft_dropdown)
|
for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream, speed=speed):
|
||||||
|
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
||||||
elif mode_checkbox_group == '3s极速复刻':
|
elif mode_checkbox_group == '3s极速复刻':
|
||||||
logging.info('get zero_shot inference request')
|
logging.info('get zero_shot inference request')
|
||||||
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
||||||
set_all_random_seed(seed)
|
set_all_random_seed(seed)
|
||||||
output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
|
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed):
|
||||||
|
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
||||||
elif mode_checkbox_group == '跨语种复刻':
|
elif mode_checkbox_group == '跨语种复刻':
|
||||||
logging.info('get cross_lingual inference request')
|
logging.info('get cross_lingual inference request')
|
||||||
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
||||||
set_all_random_seed(seed)
|
set_all_random_seed(seed)
|
||||||
output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k)
|
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed):
|
||||||
|
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
||||||
else:
|
else:
|
||||||
logging.info('get instruct inference request')
|
logging.info('get instruct inference request')
|
||||||
set_all_random_seed(seed)
|
set_all_random_seed(seed)
|
||||||
output = cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text)
|
for i in cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text, stream=stream, speed=speed):
|
||||||
|
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
||||||
|
|
||||||
if speed_factor != 1.0:
|
|
||||||
try:
|
|
||||||
audio_data, sample_rate = speed_change(output["tts_speech"], target_sr, str(speed_factor))
|
|
||||||
audio_data = audio_data.numpy().flatten()
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Failed to change speed of audio: \n{e}")
|
|
||||||
else:
|
|
||||||
audio_data = output['tts_speech'].numpy().flatten()
|
|
||||||
|
|
||||||
return (target_sr, audio_data)
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
with gr.Blocks() as demo:
|
with gr.Blocks() as demo:
|
||||||
gr.Markdown("### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) 预训练模型 [CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) [CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) [CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)")
|
gr.Markdown("### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \
|
||||||
|
预训练模型 [CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \
|
||||||
|
[CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) \
|
||||||
|
[CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)")
|
||||||
gr.Markdown("#### 请输入需要合成的文本,选择推理模式,并按照提示步骤进行操作")
|
gr.Markdown("#### 请输入需要合成的文本,选择推理模式,并按照提示步骤进行操作")
|
||||||
|
|
||||||
tts_text = gr.Textbox(label="输入合成文本", lines=1, value="我是通义实验室语音团队全新推出的生成式语音大模型,提供舒适自然的语音合成能力。")
|
tts_text = gr.Textbox(label="输入合成文本", lines=1, value="我是通义实验室语音团队全新推出的生成式语音大模型,提供舒适自然的语音合成能力。")
|
||||||
speed_factor = gr.Slider(minimum=0.25, maximum=4, step=0.05, label="语速调节", value=1.0, interactive=True)
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0])
|
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0])
|
||||||
instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5)
|
instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5)
|
||||||
sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=0.25)
|
sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=0.25)
|
||||||
|
stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1])
|
||||||
|
speed = gr.Number(value=1, label="速度调节(仅支持非流式推理)", minimum=0.5, maximum=2.0, step=0.1)
|
||||||
with gr.Column(scale=0.25):
|
with gr.Column(scale=0.25):
|
||||||
seed_button = gr.Button(value="\U0001F3B2")
|
seed_button = gr.Button(value="\U0001F3B2")
|
||||||
seed = gr.Number(value=0, label="随机推理种子")
|
seed = gr.Number(value=0, label="随机推理种子")
|
||||||
@@ -167,16 +162,18 @@ def main():
|
|||||||
|
|
||||||
generate_button = gr.Button("生成音频")
|
generate_button = gr.Button("生成音频")
|
||||||
|
|
||||||
audio_output = gr.Audio(label="合成音频")
|
audio_output = gr.Audio(label="合成音频", autoplay=True, streaming=True)
|
||||||
|
|
||||||
seed_button.click(generate_seed, inputs=[], outputs=seed)
|
seed_button.click(generate_seed, inputs=[], outputs=seed)
|
||||||
generate_button.click(generate_audio,
|
generate_button.click(generate_audio,
|
||||||
inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, speed_factor],
|
inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
||||||
|
seed, stream, speed],
|
||||||
outputs=[audio_output])
|
outputs=[audio_output])
|
||||||
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
|
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
|
||||||
demo.queue(max_size=4, default_concurrency_limit=2)
|
demo.queue(max_size=4, default_concurrency_limit=2)
|
||||||
demo.launch(server_name='0.0.0.0', server_port=args.port)
|
demo.launch(server_name='0.0.0.0', server_port=args.port)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--port',
|
parser.add_argument('--port',
|
||||||
@@ -184,11 +181,20 @@ if __name__ == '__main__':
|
|||||||
default=8000)
|
default=8000)
|
||||||
parser.add_argument('--model_dir',
|
parser.add_argument('--model_dir',
|
||||||
type=str,
|
type=str,
|
||||||
default='iic/CosyVoice-300M',
|
default='pretrained_models/CosyVoice2-0.5B',
|
||||||
help='local path or modelscope repo id')
|
help='local path or modelscope repo id')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
cosyvoice = CosyVoice(args.model_dir)
|
try:
|
||||||
sft_spk = cosyvoice.list_avaliable_spks()
|
cosyvoice = CosyVoice(args.model_dir)
|
||||||
prompt_sr, target_sr = 16000, 22050
|
except Exception:
|
||||||
default_data = np.zeros(target_sr)
|
try:
|
||||||
|
cosyvoice = CosyVoice2(args.model_dir)
|
||||||
|
except Exception:
|
||||||
|
raise TypeError('no valid model_type!')
|
||||||
|
|
||||||
|
sft_spk = cosyvoice.list_available_spks()
|
||||||
|
if len(sft_spk) == 0:
|
||||||
|
sft_spk = ['']
|
||||||
|
prompt_sr = 16000
|
||||||
|
default_data = np.zeros(cosyvoice.sample_rate)
|
||||||
main()
|
main()
|
||||||
|
|||||||
Reference in New Issue
Block a user