update vllm_codec_engine

This commit is contained in:
雾聪
2025-02-25 19:40:30 +08:00
parent 4df0683a37
commit f6a18ee07a
3 changed files with 48 additions and 19 deletions

View File

@@ -158,7 +158,7 @@ class CosyVoice2(CosyVoice):
skip_tokenizer_init=True,
gpu_memory_utilization=0.1)
self.vllm_codec_engine = LLMEngine.from_engine_args(engine_args)
self.model.llm.vllm_codec_engine = self.vllm_codec_engine
self.model.vllm_codec_engine = self.vllm_codec_engine
if load_jit:
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))

View File

@@ -66,6 +66,7 @@ class CosyVoiceModel:
self.mel_overlap_dict = {}
self.flow_cache_dict = {}
self.hift_cache_dict = {}
self.vllm_codec_engine = None
def load(self, llm_model, flow_model, hift_model):
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
@@ -117,7 +118,8 @@ class CosyVoiceModel:
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
prompt_speech_token=llm_prompt_speech_token.to(self.device),
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
embedding=llm_embedding.to(self.device)):
embedding=llm_embedding.to(self.device),
vllm_codec_engine=self.vllm_codec_engine):
self.tts_speech_token_dict[uuid].append(i)
self.llm_end_dict[uuid] = True
@@ -314,6 +316,7 @@ class CosyVoice2Model(CosyVoiceModel):
self.tts_speech_token_dict = {}
self.llm_end_dict = {}
self.hift_cache_dict = {}
self.vllm_codec_engine = None
def load_jit(self, flow_encoder_model):
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)

View File

@@ -282,7 +282,6 @@ class Qwen2LM(TransformerLM):
# 4. sampling method
self.sampling = sampling
self.mix_ratio = mix_ratio
self.vllm_codec_engine = None
@torch.inference_mode()
def inference(
@@ -297,6 +296,7 @@ class Qwen2LM(TransformerLM):
sampling: int = 25,
max_token_text_ratio: float = 20,
min_token_text_ratio: float = 2,
vllm_codec_engine=None,
) -> Generator[torch.Tensor, None, None]:
device = text.device
text = torch.concat([prompt_text, text], dim=1)
@@ -317,22 +317,48 @@ class Qwen2LM(TransformerLM):
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
# 5. step by step decode
out_tokens = []
cache = None
for i in range(max_len):
y_pred, cache = self.llm.forward_one_step(lm_input,
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
cache=cache)
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
if top_ids == self.speech_token_size:
break
if top_ids > self.speech_token_size:
continue
# in stream mode, yield token one by one
yield top_ids
out_tokens.append(top_ids)
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
if vllm_codec_engine is None:
out_tokens = []
cache = None
for i in range(max_len):
y_pred, cache = self.llm.forward_one_step(lm_input,
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
cache=cache)
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
if top_ids == self.speech_token_size:
break
if top_ids > self.speech_token_size:
continue
# in stream mode, yield token one by one
yield top_ids
out_tokens.append(top_ids)
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
else:
from vllm import SamplingParams, RequestOutput
import uuid
sampling_params = SamplingParams(top_k=sampling,
stop_token_ids=[6561, 6563],
min_tokens=min_len,
max_tokens=max_len)
request_id = uuid.uuid4()
vllm_codec_engine.add_request(request_id,
{"prompt_embeds": lm_input.to(torch.bfloat16).to(device)},
sampling_params)
## generator
out_token_ids = []
while True:
request_outputs: List[RequestOutput] = vllm_codec_engine.step()
for request_output in request_outputs:
if str(request_output.request_id) != str(request_id):
continue
if not request_output.finished:
print(f"Partial request output: {request_output}")
out_token = list(request_output.outputs[0].token_ids)[-1]
yield out_token
out_token_ids.append(out_token)
else:
break
@torch.inference_mode()
def inference_bistream(