123 Commits

Author SHA1 Message Date
tc-mb
fdfa37e768 Merge pull request #920 from ZMXJJ/patch-1
Update requirements_o2.6.txt to resolve TypeError during chatbot startup.
2025-05-15 15:35:13 +08:00
Dennis Huang
587306e3a6 Update requirements_o2.6.txt to resolve TypeError during chatbot demo startup
### Summary
- Resolved a `TypeError` encountered during the startup of the ChatBot Demo.
- Added version constraints for `pydantic` in the `requirements.txt` file to ensure dependency stability.

### Details
1. **Background**:
   - During the startup of the ChatBot Demo, a `TypeError` occurred due to incompatible versions of certain dependencies.
   - Investigation revealed that the issue was related to the `pydantic` library, where specific features were not functioning correctly in certain versions.

2. **Solution**:
   - Added version constraints for `pydantic` in the `requirements.txt` file to ensure compatibility.
   - Update:
     ```
     pydantic==2.10.6
     ```
   - By specifying the version, we avoid runtime errors caused by inconsistent dependency versions.

3. **Testing Verification**:
   - Reinstalled dependencies locally and restarted the ChatBot Demo to confirm the issue was resolved.
   - Verified that all functionalities work as expected without any additional errors.
2025-05-14 20:13:23 +08:00
yiranyyu
62327ab934 Update README 2025-03-03 19:54:53 +08:00
yiranyyu
8bfe84fa7e Update README 2025-03-03 19:50:09 +08:00
Boke Syo
f27b88951c Update README.md 2025-02-21 16:49:14 +08:00
Bokai Xu
784c46ba45 update default voice 2025-02-20 18:44:51 +08:00
Cui Junbo
8b1edaeffd Merge pull request #771 from lihytotoro/main
Modify eval_mm for MiniCPM-o 2.6
2025-02-17 12:26:07 +08:00
Zhangchi Feng
d364570bff update docs of llamafactory (#825) 2025-02-11 10:11:42 +08:00
Alphi
47283856a3 Update vllm example in ReadMe (#819)
* Update README.md

* Update README_zh.md
2025-02-08 17:52:37 +08:00
yiranyyu
06be4aa3d2 Update README 2025-01-27 23:32:33 +08:00
yiranyyu
166d987e48 Update README 2025-01-26 14:37:27 +08:00
yiranyyu
65932999c4 Update README 2025-01-24 21:23:23 +08:00
yiranyyu
94aad96afd Update README 2025-01-24 21:18:59 +08:00
Boke Syo
7770da6253 Update model_server.py 2025-01-24 16:32:26 +08:00
Boke Syo
e3415db52b Update README.md 2025-01-24 11:10:00 +08:00
yiranyyu
4d2de6f90f update README 2025-01-23 23:38:19 +08:00
YuzaChongyi
ae0df6cbb5 update readme (#790) 2025-01-23 16:07:25 +08:00
Hongji Zhu
56517f7a27 update readme web demo 2025-01-22 12:56:39 +08:00
Zhangchi Feng
1850a6b825 Update audio part of Llamafactory docs (#756)
* add llamafactory examples

* tiny fix

* update doc about inference

* update audio part of llamafactory
2025-01-22 12:45:09 +08:00
Cui Junbo
9cf46a3a2a Merge pull request #777 from linhaojia13/main
Update VITA-1.5 Results in README.md
2025-01-22 12:10:21 +08:00
Cui Junbo
3ed9416cd9 Merge pull request #779 from wangxiongts/main
Add VITA-1.5 asr results
2025-01-22 12:10:04 +08:00
Xiong Wang
1a3f00479f Update README.md 2025-01-22 11:55:38 +08:00
林豪佳
8df2c5e786 Update vita1.5 in README.md 2025-01-22 11:44:34 +08:00
flyingmrwang
a946b052c0 Update README 2025-01-22 11:15:50 +08:00
Poppy Xu
d8f382e157 Modify eval_mm for MiniCPM-o 2.6 2025-01-21 15:34:54 +08:00
Hongji Zhu
ec68cefc17 update req for chatbot demo 2025-01-21 00:15:21 +08:00
Hongji Zhu
3ad07c583a update local chatbot demo 2025-01-20 16:02:56 +08:00
tc-mb
0b9fa42dd6 Merge pull request #763 from bokesyo/patch-1
Add detailed description in speech mode (en version)
2025-01-20 12:52:04 +08:00
Boke Syo
f8f4998a49 Update README.md 2025-01-20 12:21:20 +08:00
yiranyyu
332ed62161 Update README 2025-01-19 21:42:35 +08:00
yiranyyu
e29c918333 Update README 2025-01-19 16:57:28 +08:00
yiranyyu
639cfc9412 Update README 2025-01-19 12:40:12 +08:00
yiranyyu
03d2412085 Update README 2025-01-19 12:29:01 +08:00
YuzaChongyi
4a011f46d1 Update README_zh.md 2025-01-18 11:16:03 +08:00
YuzaChongyi
2421a033fb Update README_zh.md 2025-01-17 17:42:04 +08:00
YuzaChongyi
2c093c2ab3 Update README.md 2025-01-17 17:40:37 +08:00
YuzaChongyi
ea1b4acc86 update news (#741) 2025-01-17 15:27:59 +08:00
Ikko Eltociear Ashimine
c4117b72a6 docs: update README.md (#735)
streaminig -> streaming
2025-01-17 00:30:32 +08:00
Hongji Zhu
4814f78a98 fix local web demo no permission for camera/mic 2025-01-16 22:48:50 +08:00
yiranyyu
62c5e88a17 update README 2025-01-16 22:33:54 +08:00
yiranyyu
a84fd37adc Merge branch 'main' of https://github.com/openbmb/minicpm-o 2025-01-16 22:29:17 +08:00
yiranyyu
10bee02ce5 update README 2025-01-16 22:29:14 +08:00
YuzaChongyi
5520d436ed add model init in Multimodal Live Streaming code (#733) 2025-01-16 20:20:58 +08:00
YuzaChongyi
2c0e7ff051 Update requirements.txt 2025-01-16 17:44:45 +08:00
YuzaChongyi
880095e28c add requirements for webdemo (#731) 2025-01-16 15:47:45 +08:00
yiranyyu
cddeb03396 Update README 2025-01-16 15:00:33 +08:00
YuzaChongyi
58f7328e7a Update requirements_o2.6.txt 2025-01-16 14:52:48 +08:00
YuzaChongyi
fadf8c398a remove unused doc (#729) 2025-01-16 13:44:41 +08:00
YuzaChongyi
25e0d84d2f Update README_zh.md 2025-01-16 11:52:40 +08:00
YuzaChongyi
fd8674cc72 Update README.md 2025-01-16 11:50:44 +08:00
Zhangchi Feng
cd0972c7a1 Best Practice with LLaMA-Factory (#711)
* add llamafactory examples

* tiny fix

* update doc about inference
2025-01-16 09:50:18 +08:00
yiranyyu
f2d4d4b130 Update README 2025-01-16 09:37:56 +08:00
yiranyyu
434e3874d3 Merge branch 'main' of https://github.com/openbmb/minicpm-o 2025-01-15 23:11:47 +08:00
yiranyyu
8c19a59cf8 Update README 2025-01-15 23:11:43 +08:00
Cui Junbo
28f1ed2925 Update README_zh.md 2025-01-15 22:46:35 +08:00
Cui Junbo
e81bf19555 Update README.md 2025-01-15 22:45:53 +08:00
yiranyyu
613803f6f1 Merge branch 'main' of https://github.com/openbmb/minicpm-o 2025-01-15 18:02:23 +08:00
yiranyyu
e1e04af112 Update README 2025-01-15 18:02:17 +08:00
Hongji Zhu
40a54bb0e3 update readme; demo model server add args for model path 2025-01-15 17:07:49 +08:00
yiranyyu
b178622f73 Update README 2025-01-15 16:57:47 +08:00
yiranyyu
7d160d7aeb Update README 2025-01-15 16:55:22 +08:00
Alexandra Hotti
4977fec2ff Update requirements.txt (#713)
Fixed typo in requirements
2025-01-15 14:40:46 +08:00
Hongji Zhu
f09ffe355a Update README_zh.md 2025-01-15 00:02:48 +08:00
Hongji Zhu
3c2f729530 update demo port 2025-01-14 23:57:57 +08:00
Hongji Zhu
f0d641b578 Update README.md 2025-01-14 22:52:59 +08:00
YuzaChongyi
ce0955c0f4 Update README.md 2025-01-14 21:59:41 +08:00
YuzaChongyi
5cfd89090e Update README_zh.md 2025-01-14 21:59:10 +08:00
YuzaChongyi
cbe7ade404 Update README_zh.md 2025-01-14 21:57:17 +08:00
YuzaChongyi
62034f183f Update README.md 2025-01-14 21:55:37 +08:00
yiranyyu
2cece543fa Merge branch 'main' of https://github.com/openbmb/minicpm-o 2025-01-14 21:20:23 +08:00
yiranyyu
1c51a220f0 Update Demo 2025-01-14 21:20:10 +08:00
YuzaChongyi
516777e462 Update README_zh.md 2025-01-14 21:08:14 +08:00
YuzaChongyi
5e719efab0 Update README.md 2025-01-14 21:07:44 +08:00
yiranyyu
495a810f87 Update README format 2025-01-14 21:06:19 +08:00
yiranyyu
806a1015d8 Update README format 2025-01-14 21:04:58 +08:00
yiranyyu
6ce232a06c Update README format 2025-01-14 16:50:43 +08:00
yiranyyu
b78137435a Update README format 2025-01-14 15:51:00 +08:00
yiranyyu
85a21c8dc7 Update README format 2025-01-14 15:50:02 +08:00
yiranyyu
088622f7be Update README format 2025-01-14 15:49:27 +08:00
yiranyyu
07afc8e39a Update README format 2025-01-14 15:48:19 +08:00
yiranyyu
53c0174797 Update to MiniCPM-o 2.6 2025-01-14 15:33:44 +08:00
qianyu chen
b75a362dd6 Merge pull request #708 from BUAADreamer/main
[Feature] Support video sft and fix some training bugs
2025-01-14 15:16:08 +08:00
fzc8578
4a087a8aec tiny fix 2025-01-11 13:58:19 +08:00
fzc8578
c5e82b1bc7 support video sft and auto save and load all files 2025-01-11 13:50:36 +08:00
Tianyu Yu
8464c94a7b Update dataset.py
Fix typo in a parameter name.
2024-10-22 16:08:52 +08:00
阿丹(adan)
2ab9fa7913 Update wechat.md 2024-10-18 17:37:01 +08:00
阿丹(adan)
96c9e25287 Add files via upload 2024-10-18 17:36:26 +08:00
Hongji Zhu
8ff6cc0ed0 update readme demo url 2024-10-16 16:36:50 +08:00
Cui Junbo
a209258d85 Merge pull request #484 from JamePeng/main
Update streamlit implementation for MiniCPM-V 2.6
2024-09-14 01:36:37 +08:00
LDLINGLINGLING
7bcca75e29 Update wechat.md 2024-09-12 13:58:54 +08:00
LDLINGLINGLING
fd938af276 Update wechat.md 2024-09-12 13:58:24 +08:00
LDLINGLINGLING
7ec8b3eca4 跟新微信入口 2024-09-12 13:57:47 +08:00
LDLINGLINGLING
0cda63b309 Update wechat.md 2024-09-12 13:53:48 +08:00
LDLINGLINGLING
f48f790d69 Add files via upload 2024-09-12 13:53:25 +08:00
Cui Junbo
c541f1044e Merge pull request #543 from lihytotoro/main
Modify eval_mm for MiniCPM-V 2.6
2024-09-01 00:51:28 +08:00
LDLINGLINGLING
e56f2373f2 Update wechat.md 2024-08-31 16:18:24 +08:00
LDLINGLINGLING
38c5495e1e Update wechat.md 2024-08-31 16:17:49 +08:00
LDLINGLINGLING
fa25b3f20f 跟新微信入口 2024-08-31 16:16:55 +08:00
Haoyu Li
59224808a1 Modify eval_mm for MiniCPM-V 2.6 2024-08-30 18:18:22 +00:00
JamePeng
b109c67478 fixed missing import 2024-08-27 20:52:52 +08:00
JamePeng
344ddc2cb1 Optimize video frame sampling logic
- Replaced manual index calculation with `np.linspace` for improved efficiency and readability.
- Reduced computation overhead by utilizing NumPy's vectorized operations for generating evenly spaced frame indices.
2024-08-27 04:40:48 +08:00
JamePeng
3745c3316a Update web_demo_streamlit-minicpmv2_6.py 2024-08-27 04:20:48 +08:00
JamePeng
dc5f809253 Update web_demo_streamlit-minicpmv2_6.py
1. Avoid using 'None' string when `user_text` is empty.
2. Added `st.spinner` to display a loading message during AI content generation.
2024-08-27 04:03:35 +08:00
JamePeng
48ed792ab8 Merge branch 'OpenBMB:main' into main 2024-08-27 03:39:30 +08:00
yiranyyu
ab1141ee45 update readme 2024-08-25 18:08:59 +08:00
yiranyyu
421c6d7838 update readme 2024-08-25 18:06:15 +08:00
yiranyyu
512d5a8bb0 update readme 2024-08-25 17:11:43 +08:00
LDLINGLINGLING
1c31c6aa78 Update wechat.md 2024-08-22 13:44:10 +08:00
LDLINGLINGLING
93aad9f29f Add files via upload 2024-08-22 13:43:45 +08:00
yiranyyu
c19087cd13 update readme 2024-08-21 11:02:58 +08:00
yiranyyu
0fadd70c9e Merge branch 'main' of https://github.com/OpenBMB/MiniCPM-V 2024-08-19 22:35:57 +08:00
yiranyyu
4b13c46dbb update readme 2024-08-19 22:35:54 +08:00
JamePeng
c9f5cd4b00 Update streamlit implementation for MiniCPM-V 2.6
Compared with the streamlit implementation of 2.5, this code implementation can better play the new multi-modal capabilities of 2.6:
1. The application supports the upload and processing of text, single image, multiple images and videos, and can process different types of input according to the mode selected by the user.

2. Video frame extraction and encoding: In video mode, frames are extracted from the uploaded video through the decord library and uniformly sampled so that the model can process and generate responses. More detailed and clear variables and annotations. Convenient for learning and use

3. File upload and processing: Support users to upload pictures and videos, and perform corresponding processing according to different modes, such as displaying pictures in single picture mode, displaying multiple pictures in multi-picture mode, and processing video frames in video mode. You can switch back and forth between different media.

4. Tip: You can use the command `streamlit run ./web_demo_streamlit-minicpmv2_6.py --server.maxUploadSize 1024` 
to adjust the maximum upload size to 1024MB or larger files. The default 200MB limit of Streamlit's file_uploader component might be insufficient for video-based interactions. Adjust the size based on your GPU memory usage.
2024-08-19 00:45:33 +08:00
JamePeng
259d54ed0a Update web_demo_streamlit-2_5.py
Fixed a bug where imagefile was not initialized when no image was passed in
2024-08-18 23:53:07 +08:00
LDLINGLINGLING
0e4ec319cf Update wechat.md 2024-08-16 16:16:35 +08:00
LDLINGLINGLING
b01d8e4adb 增加了微信群26的入口图片 2024-08-16 16:16:03 +08:00
LDLINGLINGLING
970cea7d60 增加了25群的入口图片 2024-08-16 16:14:35 +08:00
yiranyyu
338892394f update readme 2024-08-15 12:08:47 +08:00
yiranyyu
5553046db7 update readme 2024-08-15 12:06:40 +08:00
yiranyyu
30b2446b0f update readme 2024-08-15 12:05:31 +08:00
qianyu chen
cd64150b51 update finetuen for multi images sft (#462) 2024-08-15 11:24:50 +08:00
tc-mb
825abf10e2 Update README_zh.md 2024-08-15 11:04:58 +08:00
tc-mb
ee458ad848 Update README.md 2024-08-15 10:59:28 +08:00
256 changed files with 40428 additions and 5079 deletions

2087
README.md

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

BIN
assets/MiniCPM-V.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 163 KiB

BIN
assets/MiniCPM-V27.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 163 KiB

BIN
assets/MiniCPM-o.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 373 KiB

BIN
assets/Minicpm-v 37.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 KiB

BIN
assets/discord.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 272 B

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

3
assets/logo.html Normal file
View File

@@ -0,0 +1,3 @@
<span style="color:#56A7DA; font-size: 10em; font-weight: bold;">
MiniCPM-<span>o</span>
</span>

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1023 KiB

BIN
assets/minicpm-o-group.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

After

Width:  |  Height:  |  Size: 47 KiB

BIN
assets/minicpm-v26.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

BIN
assets/minicpm-v27.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 785 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

BIN
assets/minicpmv35-2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 307 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 MiB

BIN
assets/radar.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 842 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
assets/wechat-QR.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

BIN
assets/wechat.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 245 B

View File

@@ -0,0 +1,23 @@
# MiniCPM-V Best Practices
**MiniCPM-V** is a series of end-side multimodal LLMs (MLLMs) designed for vision-language understanding. The models take image, video and text as inputs and provide high-quality text output, aiming to achieve **strong performance and efficient deployment**. The most notable models in this series currently include MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.6. The following sections provide detailed tutorials and guidance for each version of the MiniCPM-V models.
## MiniCPM-V 2.6
MiniCPM-V 2.6 is the latest and most capable model in the MiniCPM-V series. With a total of 8B parameters, the model **surpasses GPT-4V in single image, multi-image and video understanding**. It outperforms **GPT-4o mini, Gemini 1.5 Pro and Claude 3.5 Sonnet** in single image understanding, and advances MiniCPM-Llama3-V 2.5's features such as strong OCR capability, trustworthy behavior, multilingual support, and end-side deployment. Due to its superior token density, MiniCPM-V 2.6 can for the first time support real-time video understanding on end-side devices such as iPad.
* [Deployment Tutorial](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf)
* [Training Tutorial](https://modelbest.feishu.cn/wiki/GeHMwLMa0i2FhUkV0f6cz3HWnV1)
* [Quantization Tutorial](https://modelbest.feishu.cn/wiki/YvsPwnPwWiqUjlkmW0scQ76TnBb)
## MiniCPM-Llama3-V 2.5
MiniCPM-Llama3-V 2.5 is built on SigLip-400M and Llama3-8B-Instruct with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.0.
* [Quantization Tutorial](https://modelbest.feishu.cn/wiki/Kc7ywV4X1ipSaAkuPFOc9SFun8b)
* [Training Tutorial](https://modelbest.feishu.cn/wiki/UpSiw63o9iGDhIklmwScX4a6nhW)
* [End-side Deployment](https://modelbest.feishu.cn/wiki/Lwr9wpOQdinr6AkLzHrc9LlgnJD)
* [Deployment Tutorial](https://modelbest.feishu.cn/wiki/LTOKw3Hz7il9kGkCLX9czsennKe)
* [HD Decoding Tutorial](https://modelbest.feishu.cn/wiki/Ug8iwdXfhiHVsDk2gGEco6xnnVg)
* [Model Structure](https://modelbest.feishu.cn/wiki/ACtAw9bOgiBQ9lkWyafcvtVEnQf)

View File

@@ -0,0 +1,22 @@
# MiniCPM-V 最佳实践
**MiniCPM-V**是面向图文理解的端侧多模态大模型系列。该系列模型接受图像和文本输入并提供高质量的文本输出。自2024年2月以来我们共发布了5个版本模型旨在实现**领先的性能和高效的部署**,目前该系列最值得关注的模型包括:
## MiniCPM-V 2.6
MiniCPM-V系列的最新、性能最佳模型。总参数量 8B单图、多图和视频理解性能**超越了 GPT-4V**。在单图理解上,它取得了优于 **GPT-4o mini、Gemini 1.5 Pro 和 Claude 3.5 Sonnet** 等商用闭源模型的表现,并进一步优化了 MiniCPM-Llama3-V 2.5 的 OCR、可信行为、多语言支持以及端侧部署等诸多特性。基于其领先的视觉 token 密度MiniCPM-V 2.6 成为了首个支持在 iPad 等端侧设备上进行实时视频理解的多模态大模型。
* [部署教程](https://modelbest.feishu.cn/wiki/LZxLwp4Lzi29vXklYLFchwN5nCf)
* [训练教程](https://modelbest.feishu.cn/wiki/HvfLwYzlIihqzXkmeCdczs6onmd)
* [量化教程](https://modelbest.feishu.cn/wiki/PAsHw6N6xiEy0DkJWpJcIocRnz9)
## MiniCPM-Llama3-V 2.5
MiniCPM-Llama3-V 2.5 基于 SigLip-400M 和 Llama3-8B-Instruct 构建,总共有 80 亿参数。其性能相比 MiniCPM-V 2.0 有了显著提升。
* [量化教程](https://modelbest.feishu.cn/wiki/O0KTwQV5piUPzTkRXl9cSFyHnQb)
* [训练教程](https://modelbest.feishu.cn/wiki/MPkPwvONEiZm3BkWMnyc83Tin4d)
* [端侧部署](https://modelbest.feishu.cn/wiki/CZZJw1EDGitSSZka664cZwbWnrb)
* [部署教程](https://modelbest.feishu.cn/wiki/BcHIwjOLGihJXCkkSdMc2WhbnZf)
* [高清解码教程](https://modelbest.feishu.cn/wiki/L0ajwm8VAiiPY6kDZfJce3B7nRg)
* [模型结构](https://modelbest.feishu.cn/wiki/X15nwGzqpioxlikbi2RcXDpJnjd)

View File

@@ -0,0 +1,445 @@
# Best Practice with LLaMA-Factory
## Contents <!-- omit in toc -->
- [Support Models](#Support-Models)
- [LLaMA-Factory Installation](#LLaMA-Factory-Installation)
- [Dataset Prepare](#Dataset-Prepare)
- [Image Dataset](#Image-Dataset)
- [Video Dataset](#Video-Dataset)
- [Audio Dataset](#Audio-Dataset)
- [Lora Fine-Tuning](#Lora-Fine-Tuning)
- [Full Parameters Fine-Tuning](#Full-Parameters-Fine-Tuning)
- [Inference](#Inference)
## Support Models
* [openbmb/MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6)
* [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6)
## LLaMA-Factory Installation
You can install LLaMA-Factory using commands below.
```
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics,deepspeed,minicpm_v]"
mkdir configs # let's put all yaml files here
```
## Dataset Prepare
Refer to [data/dataset_info.json](https://github.com/hiyouga/LLaMA-Factory/blob/main/data/dataset_info.json) to add your customised dataset. Let's use the two existing demo datasets `mllm_demo`, `mllm_video_demo` and `mllm_audio_demo` as examples (audio is only for MiniCPM-o-2.6).
### Image Dataset
Refer to image sft demo data: [data/mllm_demo.json](https://github.com/hiyouga/LLaMA-Factory/blob/main/data/mllm_demo.json)
<details>
<summary>
<b>data/mllm_demo.json</b>
</summary>
```json
[
{
"messages": [
{
"content": "<image>Who are they?",
"role": "user"
},
{
"content": "They're Kane and Gretzka from Bayern Munich.",
"role": "assistant"
},
{
"content": "What are they doing?",
"role": "user"
},
{
"content": "They are celebrating on the soccer field.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/1.jpg"
]
},
{
"messages": [
{
"content": "<image>Who is he?",
"role": "user"
},
{
"content": "He's Thomas Muller from Bayern Munich.",
"role": "assistant"
},
{
"content": "Why is he on the ground?",
"role": "user"
},
{
"content": "Because he's sliding on his knees to celebrate.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/2.jpg"
]
},
{
"messages": [
{
"content": "<image>Please describe this image",
"role": "user"
},
{
"content": "Chinese astronaut Gui Haichao is giving a speech.",
"role": "assistant"
},
{
"content": "What has he accomplished?",
"role": "user"
},
{
"content": "He was appointed to be a payload specialist on Shenzhou 16 mission in June 2022, thus becoming the first Chinese civilian of Group 3 in space on 30 May 2023. He is responsible for the on-orbit operation of space science experimental payloads.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/3.jpg"
]
}
]
```
</details>
### Video Dataset
Refer to video sft demo data: [data/mllm_video_demo.json](https://github.com/hiyouga/LLaMA-Factory/blob/main/data/mllm_video_demo.json)
<details>
<summary>
<b>data/mllm_video_demo.json</b>
</summary>
```json
[
{
"messages": [
{
"content": "<video>Why is this video funny?",
"role": "user"
},
{
"content": "Because a baby is reading, and he is so cute!",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/1.mp4"
]
},
{
"messages": [
{
"content": "<video>What is she doing?",
"role": "user"
},
{
"content": "She is cooking.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/2.avi"
]
},
{
"messages": [
{
"content": "<video>What's in the video?",
"role": "user"
},
{
"content": "A baby is playing in the living room.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/3.mp4"
]
}
]
```
</details>
### Audio Dataset
Refer to audio sft demo data: [data/mllm_audio_demo.json](https://github.com/hiyouga/LLaMA-Factory/blob/main/data/mllm_audio_demo.json)
<details>
<summary>
<b>data/mllm_audio_demo.json</b>
</summary>
```json
[
{
"messages": [
{
"content": "<audio>What's that sound?",
"role": "user"
},
{
"content": "It is the sound of glass shattering.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/1.mp3"
]
},
{
"messages": [
{
"content": "<audio>What can you hear?",
"role": "user"
},
{
"content": "A woman is coughing.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/2.wav"
]
},
{
"messages": [
{
"content": "<audio>What does the person say?",
"role": "user"
},
{
"content": "Mister Quiller is the apostle of the middle classes and we are glad to welcome his gospel.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/3.flac"
]
}
]
```
</details>
## Lora Fine-Tuning
We can use one command to do lora sft:
```shell
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train configs/minicpmo_2_6_lora_sft.yaml
```
<details>
<summary>
<b>configs/minicpmo_2_6_lora_sft.yaml</b>
</summary>
```yaml
### model
model_name_or_path: openbmb/MiniCPM-o-2_6 # MiniCPM-o-2_6 MiniCPM-V-2_6
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
### dataset
dataset: mllm_demo # mllm_demo mllm_video_demo mllm_audio_demo
template: minicpm_o # minicpm_o minicpm_v
cutoff_len: 3072
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/minicpmo_2_6/lora/sft
logging_steps: 1
save_steps: 100
plot_loss: true
overwrite_output_dir: true
save_total_limit: 10
### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 1
learning_rate: 1.0e-5
num_train_epochs: 20.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
save_only_model: true
### eval
do_eval: false
```
</details>
### Lora Model Export
One command to export lora model
```shell
llamafactory-cli export configs/minicpmo_2_6_lora_export.yaml
```
<details>
<summary>
<b>configs/minicpmo_2_6_lora_export.yaml</b>
</summary>
```yaml
### model
model_name_or_path: openbmb/MiniCPM-o-2_6 # MiniCPM-o-2_6 MiniCPM-V-2_6
adapter_name_or_path: saves/minicpmo_2_6/lora/sft
template: minicpm_o # minicpm_o minicpm_v
finetuning_type: lora
trust_remote_code: true
### export
export_dir: models/minicpmo_2_6_lora_sft
export_size: 2
export_device: cpu
export_legacy_format: false
```
</details>
## Full Parameters Fine-Tuning
We can use one command to do full sft:
```shell
llamafactory-cli train configs/minicpmo_2_6_full_sft.yaml
```
<details>
<summary>
<b>configs/minicpmo_2_6_full_sft.yaml</b>
</summary>
```yaml
### model
model_name_or_path: openbmb/MiniCPM-o-2_6 # MiniCPM-o-2_6 MiniCPM-V-2_6
trust_remote_code: true
freeze_vision_tower: true
print_param_status: true
flash_attn: fa2
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: configs/deepspeed/ds_z2_config.json
### dataset
dataset: mllm_demo # mllm_demo mllm_video_demo
template: minicpm_o # minicpm_o minicpm_v
cutoff_len: 3072
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/minicpmo_2_6/full/sft
logging_steps: 1
save_steps: 100
plot_loss: true
overwrite_output_dir: true
save_total_limit: 10
### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 1
learning_rate: 1.0e-5
num_train_epochs: 20.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
save_only_model: true
### eval
do_eval: false
```
</details>
## Inference
### Web UI ChatBox
Refer [LLaMA-Factory doc](https://github.com/hiyouga/LLaMA-Factory/tree/main/examples#inferring-lora-fine-tuned-models) for more inference usages.
For example, we can use one command to run web chat:
```shell
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat configs/minicpmo_2_6_infer.yaml
```
<details>
<summary>
<b>configs/minicpmo_2_6_infer.yaml</b>
</summary>
```yaml
model_name_or_path: saves/minicpmo_2_6/full/sft
template: minicpm_o # minicpm_o minicpm_v
infer_backend: huggingface
trust_remote_code: true
```
</details>
### Official Code
You can also use official code to inference
<details>
<summary>
<b>official inference code</b>
</summary>
```python
# test.py
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
model_id = "saves/minicpmo_2_6/full/sft"
model = AutoModel.from_pretrained(model_id, trust_remote_code=True,
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
image = Image.open('data/mllm_demo_data/1.jpg').convert('RGB')
question = 'Who are they??'
msgs = [{'role': 'user', 'content': [image, question]}]
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer
)
print(res)
```
</details>

View File

@@ -0,0 +1,333 @@
## MiniCPM-Llama3-V 2.5
> Archieve at: 2025-01-13
**MiniCPM-Llama3-V 2.5** is the latest model in the MiniCPM-V series. The model is built on SigLip-400M and Llama3-8B-Instruct with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.0. Notable features of MiniCPM-Llama3-V 2.5 include:
- 🔥 **Leading Performance.**
MiniCPM-Llama3-V 2.5 has achieved an average score of 65.1 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4V-1106, Gemini Pro, Claude 3 and Qwen-VL-Max** and greatly outperforms other Llama 3-based MLLMs.
- 💪 **Strong OCR Capabilities.**
MiniCPM-Llama3-V 2.5 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344), achieving a **700+ score on OCRBench, surpassing proprietary models such as GPT-4o, GPT-4V-0409, Qwen-VL-Max and Gemini Pro**. Based on recent user feedback, MiniCPM-Llama3-V 2.5 has now enhanced full-text OCR extraction, table-to-markdown conversion, and other high-utility capabilities, and has further strengthened its instruction-following and complex reasoning abilities, enhancing multimodal interaction experiences.
- 🏆 **Trustworthy Behavior.**
Leveraging the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) method (the newest technique in the [RLHF-V](https://github.com/RLHF-V) [CVPR'24] series), MiniCPM-Llama3-V 2.5 exhibits more trustworthy behavior. It achieves a **10.3%** hallucination rate on Object HalBench, lower than GPT-4V-1106 (13.6%), achieving the best-level performance within the open-source community. [Data released](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset).
- 🌏 **Multilingual Support.**
Thanks to the strong multilingual capabilities of Llama 3 and the cross-lingual generalization technique from [VisCPM](https://github.com/OpenBMB/VisCPM), MiniCPM-Llama3-V 2.5 extends its bilingual (Chinese-English) multimodal capabilities to **over 30 languages including German, French, Spanish, Italian, Korean etc.** [All Supported Languages](./assets/minicpm-llama-v-2-5_languages.md).
- 🚀 **Efficient Deployment.**
MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations**, achieving high-efficiency deployment on end-side devices. For mobile phones with Qualcomm chips, we have integrated the NPU acceleration framework QNN into llama.cpp for the first time. After systematic optimization, MiniCPM-Llama3-V 2.5 has realized a **150x acceleration in end-side MLLM image encoding** and a **3x speedup in language decoding**.
- 💫 **Easy Usage.**
MiniCPM-Llama3-V 2.5 can be easily used in various ways: (1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) and [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5) support for efficient CPU inference on local devices, (2) [GGUF](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) format quantized models in 16 sizes, (3) efficient [LoRA](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#lora-finetuning) fine-tuning with only 2 V100 GPUs, (4) [streaming output](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage), (5) quick local WebUI demo setup with [Gradio](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_2.5.py) and [Streamlit](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_streamlit-2_5.py), and (6) interactive demos on [HuggingFace Spaces](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5).
### Evaluation <!-- omit in toc -->
<div align="center">
<img src=../assets/MiniCPM-Llama3-V-2.5-peformance.png width=66% />
</div>
<details>
<summary>Click to view results on TextVQA, DocVQA, OCRBench, OpenCompass, MME, MMBench, MMMU, MathVista, LLaVA Bench, RealWorld QA, Object HalBench. </summary>
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>OCRBench</th>
<th>TextVQA val</th>
<th>DocVQA test</th>
<th>Open-Compass</th>
<th>MME</th>
<th>MMB test (en)</th>
<th>MMB test (cn)</th>
<th>MMMU val</th>
<th>Math-Vista</th>
<th>LLaVA Bench</th>
<th>RealWorld QA</th>
<th>Object HalBench</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="14" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Gemini Pro</td>
<td>-</td>
<td>680</td>
<td>74.6</td>
<td>88.1</td>
<td>62.9</td>
<td>2148.9</td>
<td>73.6</td>
<td>74.3</td>
<td>48.9</td>
<td>45.8</td>
<td>79.9</td>
<td>60.4</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4V (2023.11.06)</td>
<td>-</td>
<td>645</td>
<td>78.0</td>
<td>88.4</td>
<td>63.5</td>
<td>1771.5</td>
<td>77.0</td>
<td>74.4</td>
<td>53.8</td>
<td>47.8</td>
<td>93.1</td>
<td>63.0</td>
<td>86.4</td>
</tr>
<tr>
<td colspan="14" align="left"><strong>Open-source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Mini-Gemini</td>
<td>2.2B</td>
<td>-</td>
<td>56.2</td>
<td>34.2*</td>
<td>-</td>
<td>1653.0</td>
<td>-</td>
<td>-</td>
<td>31.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Qwen-VL-Chat</td>
<td>9.6B</td>
<td>488</td>
<td>61.5</td>
<td>62.6</td>
<td>51.6</td>
<td>1860.0</td>
<td>61.8</td>
<td>56.3</td>
<td>37.0</td>
<td>33.8</td>
<td>67.7</td>
<td>49.3</td>
<td>56.2</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">DeepSeek-VL-7B</td>
<td>7.3B</td>
<td>435</td>
<td>64.7*</td>
<td>47.0*</td>
<td>54.6</td>
<td>1765.4</td>
<td>73.8</td>
<td>71.4</td>
<td>38.3</td>
<td>36.8</td>
<td>77.8</td>
<td>54.2</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Yi-VL-34B</td>
<td>34B</td>
<td>290</td>
<td>43.4*</td>
<td>16.9*</td>
<td>52.2</td>
<td><strong>2050.2</strong></td>
<td>72.4</td>
<td>70.7</td>
<td>45.1</td>
<td>30.7</td>
<td>62.3</td>
<td>54.8</td>
<td>79.3</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">CogVLM-Chat</td>
<td>17.4B</td>
<td>590</td>
<td>70.4</td>
<td>33.3*</td>
<td>54.2</td>
<td>1736.6</td>
<td>65.8</td>
<td>55.9</td>
<td>37.3</td>
<td>34.7</td>
<td>73.9</td>
<td>60.3</td>
<td>73.6</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">TextMonkey</td>
<td>9.7B</td>
<td>558</td>
<td>64.3</td>
<td>66.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Idefics2</td>
<td>8.0B</td>
<td>-</td>
<td>73.0</td>
<td>74.0</td>
<td>57.2</td>
<td>1847.6</td>
<td>75.7</td>
<td>68.6</td>
<td>45.2</td>
<td>52.2</td>
<td>49.1</td>
<td>60.7</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Bunny-LLama-3-8B</td>
<td>8.4B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54.3</td>
<td>1920.3</td>
<td>77.0</td>
<td>73.9</td>
<td>41.3</td>
<td>31.5</td>
<td>61.2</td>
<td>58.8</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-NeXT Llama-3-8B</td>
<td>8.4B</td>
<td>-</td>
<td>-</td>
<td>78.2</td>
<td>-</td>
<td>1971.5</td>
<td>-</td>
<td>-</td>
<td>41.7</td>
<td>37.5</td>
<td>80.1</td>
<td>60.0</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Phi-3-vision-128k-instruct</td>
<td>4.2B</td>
<td>639*</td>
<td>70.9</td>
<td>-</td>
<td>-</td>
<td>1537.5*</td>
<td>-</td>
<td>-</td>
<td>40.4</td>
<td>44.5</td>
<td>64.2*</td>
<td>58.8*</td>
<td>-</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-V 1.0</td>
<td>2.8B</td>
<td>366</td>
<td>60.6</td>
<td>38.2</td>
<td>47.5</td>
<td>1650.2</td>
<td>64.1</td>
<td>62.6</td>
<td>38.3</td>
<td>28.9</td>
<td>51.3</td>
<td>51.2</td>
<td>78.4</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-V 2.0</td>
<td>2.8B</td>
<td>605</td>
<td>74.1</td>
<td>71.9</td>
<td>54.5</td>
<td>1808.6</td>
<td>69.1</td>
<td>66.5</td>
<td>38.2</td>
<td>38.7</td>
<td>69.2</td>
<td>55.8</td>
<td>85.5</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-Llama3-V 2.5</td>
<td>8.5B</td>
<td><strong>725</strong></td>
<td><strong>76.6</strong></td>
<td><strong>84.8</strong></td>
<td><strong>65.1</strong></td>
<td>2024.6</td>
<td><strong>77.2</strong></td>
<td><strong>74.2</strong></td>
<td><strong>45.8</strong></td>
<td><strong>54.3</strong></td>
<td><strong>86.7</strong></td>
<td><strong>63.5</strong></td>
<td><strong>89.7</strong></td>
</tr>
</tbody>
</table>
</div>
* We evaluate the officially released checkpoint by ourselves.
</details>
<div align="center">
<img src="../assets/llavabench_compare_3.png" width="100%" />
<br>
Evaluation results of multilingual LLaVA Bench
</div>
### Examples <!-- omit in toc -->
<table align="center" >
<p align="center" >
<img src="../assets/minicpmv-llama3-v2.5/cases_all.png" />
</p>
</table>
</details>
### Model Zoo
| Model | Device | Memory | &emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; Description | Download |
|:-----------|:--:|:-----------:|:-------------------|:---------------:|
| MiniCPM-Llama3-V 2.5 | GPU | 19 GB | Strong end-side multimodal performance. | [🤗](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/) &nbsp;&nbsp; [<img src="../assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-Llama3-V-2_5) |
| MiniCPM-Llama3-V 2.5 gguf | CPU | 6 GB | The gguf version, lower memory usage and faster inference. | [🤗](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) &nbsp;&nbsp;[<img src="../assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-Llama3-V-2_5-gguf) |
| MiniCPM-Llama3-V 2.5 int4 | GPU | 8 GB | The int4 quantized version, lower GPU memory usage. | [🤗](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-int4/) &nbsp;&nbsp; [<img src="../assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-Llama3-V-2_5-int4) |

299
docs/minicpm_v2.md Normal file
View File

@@ -0,0 +1,299 @@
## MiniCPM-V 2.0
> Archive at2025-01-13
**MiniCPM-V 2.0** is an efficient version with promising performance for deployment. The model is built based on SigLip-400M and [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/), connected by a perceiver resampler. Our latest version, MiniCPM-V 2.0 has several notable features.
- 🔥 **State-of-the-art Performance.**
MiniCPM-V 2.0 achieves **state-of-the-art performance** on multiple benchmarks (including OCRBench, TextVQA, MME, MMB, MathVista, etc) among models under 7B parameters. It even **outperforms strong Qwen-VL-Chat 9.6B, CogVLM-Chat 17.4B, and Yi-VL 34B on OpenCompass, a comprehensive evaluation over 11 popular benchmarks**. Notably, MiniCPM-V 2.0 shows **strong OCR capability**, achieving **comparable performance to Gemini Pro in scene-text understanding**, and **state-of-the-art performance on OCRBench** among open-source models.
- 🏆 **Trustworthy Behavior.**
LMMs are known for suffering from hallucination, often generating text not factually grounded in images. MiniCPM-V 2.0 is **the first end-side LMM aligned via multimodal RLHF for trustworthy behavior** (using the recent [RLHF-V](https://rlhf-v.github.io/) [CVPR'24] series technique). This allows the model to **match GPT-4V in preventing hallucinations** on Object HalBench.
- 🌟 **High-Resolution Images at Any Aspect Raito.**
MiniCPM-V 2.0 can accept **1.8 million pixels (e.g., 1344x1344) images at any aspect ratio**. This enables better perception of fine-grained visual information such as small objects and optical characters, which is achieved via a recent technique from [LLaVA-UHD](https://arxiv.org/pdf/2403.11703.pdf).
- ⚡️ **High Efficiency.**
MiniCPM-V 2.0 can be **efficiently deployed on most GPU cards and personal computers**, and **even on end devices such as mobile phones**. For visual encoding, we compress the image representations into much fewer tokens via a perceiver resampler. This allows MiniCPM-V 2.0 to operate with **favorable memory cost and speed during inference even when dealing with high-resolution images**.
- 🙌 **Bilingual Support.**
MiniCPM-V 2.0 **supports strong bilingual multimodal capabilities in both English and Chinese**. This is enabled by generalizing multimodal capabilities across languages, a technique from [VisCPM](https://arxiv.org/abs/2308.12038) [ICLR'24].
### Evaluation <!-- omit in toc -->
<div align="center">
<img src=../assets/minicpmv-2-peformance.png width=66% />
</div>
<details>
<summary>Click to view results on TextVQA, DocVQA, OCRBench, OpenCompass, MME, MMBench, MMMU, MathVista, LLaVA Bench, Object HalBench. </summary>
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>TextVQA val</th>
<th>DocVQA test</th>
<th>OCRBench</th>
<th>OpenCompass</th>
<th nowrap="nowrap" >MME</th>
<th>MMB dev(en)</th>
<th>MMB dev(zh)</th>
<th>MMMU val</th>
<th>MathVista</th>
<th>LLaVA Bench</th>
<th nowrap="nowrap">Object HalBench</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="12" align="left"><strong>Proprietary models</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Gemini Pro Vision</td>
<td>- </td>
<td>74.6</td>
<td>88.1</td>
<td>680</td>
<td>63.8</td>
<td>2148.9</td>
<td>75.2</td>
<td>74.0</td>
<td>48.9</td>
<td>45.8</td>
<td>79.9</td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4V</td>
<td>- </td>
<td>78.0</td>
<td>88.4</td>
<td>645</td>
<td>63.2</td>
<td>1771.5</td>
<td>75.1</td>
<td>75.0</td>
<td>53.8</td>
<td>47.8</td>
<td>93.1</td>
<td>86.4 / 92.7</td>
</tr>
<tr>
<td colspan="12" align="left"><strong>Open-source models 6B~34B</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Yi-VL-6B</td>
<td align="right" >6.7B</td>
<td>45.5*</td>
<td>17.1*</td>
<td>290</td>
<td>49.3</td>
<td>1915.1 </td>
<td>68.6 </td>
<td>68.3 </td>
<td>40.3 </td>
<td>28.8 </td>
<td>51.9 </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Qwen-VL-Chat</td>
<td align="right" >9.6B</td>
<td>61.5</td>
<td>62.6</td>
<td>488 </td>
<td>52.1 </td>
<td>1860.0 </td>
<td>60.6 </td>
<td>56.7 </td>
<td>37.0 </td>
<td>33.8 </td>
<td>67.7 </td>
<td>56.2 / 80.0</td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Yi-VL-34B</td>
<td align="right" >34B</td>
<td>43.4*</td>
<td>16.9*</td>
<td>290</td>
<td>52.6 </td>
<td>2050.2</td>
<td>71.1</td>
<td>71.4</td>
<td>45.1</td>
<td>30.7</td>
<td>62.3</td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >DeepSeek-VL-7B</td>
<td align="right" >7.3B</td>
<td>64.7*</td>
<td>47.0* </td>
<td>435</td>
<td>55.6 </td>
<td>1765.4 </td>
<td>74.1 </td>
<td>72.8 </td>
<td>38.3 </td>
<td>36.8</td>
<td>77.8 </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >TextMonkey</td>
<td align="right" >9.7B</td>
<td>64.3</td>
<td>66.7 </td>
<td>558</td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>-</td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >CogVLM-Chat</td>
<td align="right" >17.4B</td>
<td>70.4</td>
<td>33.3*</td>
<td>590 </td>
<td>52.5 </td>
<td>1736.6 </td>
<td>63.7 </td>
<td>53.8 </td>
<td>37.3 </td>
<td>34.7 </td>
<td>73.9 </td>
<td>73.6 / 87.4 </td>
</tr>
<tr>
<td colspan="12" align="left"><strong>Open-source models 1B~3B </strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >DeepSeek-VL-1.3B</td>
<td align="right" >1.7B</td>
<td>58.4*</td>
<td>37.9*</td>
<td>413</td>
<td>46.0 </td>
<td>1531.6 </td>
<td>64.0 </td>
<td>61.2 </td>
<td>33.8 </td>
<td>29.4 </td>
<td>51.1 </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >MobileVLM V2</td>
<td align="right" >3.1B</td>
<td>57.5</td>
<td>19.4*</td>
<td>-</td>
<td>-</td>
<td>1440.5(P) </td>
<td>63.2 </td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Mini-Gemini</td>
<td align="right" >2.2B</td>
<td>56.2</td>
<td>34.2*</td>
<td>-</td>
<td>-</td>
<td>1653.0 </td>
<td>59.8 </td>
<td>- </td>
<td>31.7 </td>
<td>-</td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >MiniCPM-V</td>
<td align="right" >2.8B </td>
<td>60.6</td>
<td>38.2 </td>
<td>366</td>
<td>47.6</td>
<td>1650.2 </td>
<td>67.9 </td>
<td>65.3 </td>
<td><strong>38.3</strong></td>
<td>28.9</td>
<td>51.3 </td>
<td>78.4 / 88.5 </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" ><strong>MiniCPM-V 2.0</strong></td>
<td align="right" >2.8B </td>
<td><strong>74.1</strong></td>
<td><strong>71.9</strong> </td>
<td><strong>605</strong></td>
<td><strong>55.0</strong></td>
<td><strong>1808.6</strong> </td>
<td><strong>69.6</strong> </td>
<td><strong>68.1</strong> </td>
<td>38.2 </td>
<td><strong>38.7</strong></td>
<td><strong>69.2</strong> </td>
<td><strong>85.5 / 92.2 </strong></td>
</tr>
</tbody>
</table>
</div>
* We evaluate the officially released checkpoint by ourselves.
</details>
### Examples <!-- omit in toc -->
<table align="center">
<p align="center">
<img src="../assets/minicpmv2-cases_2.png" width=95%/>
</p>
</table>
We deploy MiniCPM-V 2.0 on end devices. The demo video is the raw screen recording on a Xiaomi 14 Pro without edition.
<table align="center">
<p align="center">
<img src="../assets/gif_cases/station.gif" width=36%/>
<img src="../assets/gif_cases/london_car.gif" width=36%/>
</p>
</table>
### Model Zoo
| Model | Device | Memory | &emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; Description | Download |
|:-----------|:--:|:-----------:|:-------------------|:---------------:|
| MiniCPM-V 2.0 | GPU | 8 GB | Light version, balance the performance the computation cost. | [🤗](https://huggingface.co/openbmb/MiniCPM-V-2) &nbsp;&nbsp; [<img src="../assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V-2) |
| MiniCPM-V 1.0 | GPU | 7 GB | Lightest version, achieving the fastest inference. | [🤗](https://huggingface.co/openbmb/MiniCPM-V) &nbsp;&nbsp; [<img src="../assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V) |
### Deployment on Mobile Phone
MiniCPM-V 2.0 can be deployed on mobile phones with Android operating systems. 🚀 Click [MiniCPM-V 2.0](https://github.com/OpenBMB/mlc-MiniCPM) to install apk.

945
docs/minicpm_v2dot6.md Normal file
View File

@@ -0,0 +1,945 @@
## MiniCPM-V 2.6
> Archieve at: 2025-01-13
**MiniCPM-V 2.6** is the latest and most capable model in the MiniCPM-V series. The model is built on SigLip-400M and Qwen2-7B with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-Llama3-V 2.5, and introduces new features for multi-image and video understanding. Notable features of MiniCPM-V 2.6 include:
- 🔥 **Leading Performance.**
MiniCPM-V 2.6 achieves an average score of 65.2 on the latest version of OpenCompass, a comprehensive evaluation over 8 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4o mini, GPT-4V, Gemini 1.5 Pro, and Claude 3.5 Sonnet** for single image understanding.
- 🖼️ **Multi Image Understanding and In-context Learning.** MiniCPM-V 2.6 can also perform **conversation and reasoning over multiple images**. It achieves **state-of-the-art performance** on popular multi-image benchmarks such as Mantis-Eval, BLINK, Mathverse mv and Sciverse mv, and also shows promising in-context learning capability.
- 🎬 **Video Understanding.** MiniCPM-V 2.6 can also **accept video inputs**, performing conversation and providing dense captions for spatial-temporal information. It outperforms **GPT-4V, Claude 3.5 Sonnet and LLaVA-NeXT-Video-34B** on Video-MME with/without subtitles.
- 💪 **Strong OCR Capability and Others.**
MiniCPM-V 2.6 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344). It achieves **state-of-the-art performance on OCRBench, surpassing proprietary models such as GPT-4o, GPT-4V, and Gemini 1.5 Pro**.
Based on the the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) and [VisCPM](https://github.com/OpenBMB/VisCPM) techniques, it features **trustworthy behaviors**, with significantly lower hallucination rates than GPT-4o and GPT-4V on Object HalBench, and supports **multilingual capabilities** on English, Chinese, German, French, Italian, Korean, etc.
- 🚀 **Superior Efficiency.**
In addition to its friendly size, MiniCPM-V 2.6 also shows **state-of-the-art token density** (i.e., number of pixels encoded into each visual token). **It produces only 640 tokens when processing a 1.8M pixel image, which is 75% fewer than most models**. This directly improves the inference speed, first-token latency, memory usage, and power consumption. As a result, MiniCPM-V 2.6 can efficiently support **real-time video understanding** on end-side devices such as iPad.
- 💫 **Easy Usage.**
MiniCPM-V 2.6 can be easily used in various ways: (1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpmv-main/examples/llava/README-minicpmv2.6.md) and [ollama](https://github.com/OpenBMB/ollama/blob/minicpm-v2.6/examples/minicpm-v2.6/README.md) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-V-2_6-int4) and [GGUF](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) format quantized models in 16 sizes, (3) [vLLM](#inference-with-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks, (5) quick local WebUI demo setup with [Gradio](#chat-with-our-demo-on-gradio), and (6) online web [demo](http://120.92.209.146:8887/).
### Evaluation <!-- omit in toc -->
<div align="center">
<img src=../assets/radar_final.png width=66% />
</div>
<details>
<summary>Click to view single image results on OpenCompass, MME, MMVet, OCRBench, MMMU, MathVista, MMB, AI2D, TextVQA, DocVQA, HallusionBench, Object HalBench. </summary>
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>Token Density<sup>+</sup></th>
<th>OpenCompass</th>
<th>MME</th>
<th>MMVet</th>
<th>OCRBench</th>
<th>MMMU val</th>
<th>MathVista mini</th>
<th>MMB1.1 test</th>
<th>AI2D</th>
<th>TextVQA val</th>
<th>DocVQA test</th>
<th>HallusionBench</th>
<th>Object HalBench</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="15" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4o</td>
<td>-</td>
<td>1088</td>
<td>69.9</td>
<td>2328.7</td>
<td>69.1</td>
<td>736</td>
<td>69.2</td>
<td>61.3</td>
<td>82.2</td>
<td>84.6</td>
<td>-</td>
<td>92.8</td>
<td>55.0</td>
<td>17.6</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Claude 3.5 Sonnet</td>
<td>-</td>
<td>750</td>
<td>67.9</td>
<td>1920.0</td>
<td>66.0</td>
<td>788</td>
<td>65.9</td>
<td>61.6</td>
<td>78.5</td>
<td>80.2</td>
<td>-</td>
<td>95.2</td>
<td>49.9</td>
<td>13.8</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Gemini 1.5 Pro</td>
<td>-</td>
<td>-</td>
<td>64.4</td>
<td>2110.6</td>
<td>64.0</td>
<td>754</td>
<td>60.6</td>
<td>57.7</td>
<td>73.9</td>
<td>79.1</td>
<td>73.5</td>
<td>86.5</td>
<td>45.6</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4o mini</td>
<td>-</td>
<td>1088</td>
<td>64.1</td>
<td>2003.4</td>
<td>66.9</td>
<td>785</td>
<td>60.0</td>
<td>52.4</td>
<td>76.0</td>
<td>77.8</td>
<td>-</td>
<td>-</td>
<td>46.1</td>
<td>12.4</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4V</td>
<td>-</td>
<td>1088</td>
<td>63.5</td>
<td>2070.2</td>
<td>67.5</td>
<td>656</td>
<td>61.7</td>
<td>54.7</td>
<td>79.8</td>
<td>78.6</td>
<td>78.0</td>
<td>87.2</td>
<td>43.9</td>
<td>14.2</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Step-1V</td>
<td>-</td>
<td>-</td>
<td>59.5</td>
<td>2206.4</td>
<td>63.3</td>
<td>625</td>
<td>49.9</td>
<td>44.8</td>
<td>78.0</td>
<td>79.2</td>
<td>71.6</td>
<td>-</td>
<td>48.4</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Qwen-VL-Max</td>
<td>-</td>
<td>784</td>
<td>58.3</td>
<td>2281.7</td>
<td>61.8</td>
<td>684</td>
<td>52.0</td>
<td>43.4</td>
<td>74.6</td>
<td>75.7</td>
<td>79.5</td>
<td>93.1</td>
<td>41.2</td>
<td>13.4</td>
</tr>
<tr>
<td colspan="15" align="left"><strong>Open-source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-NeXT-Yi-34B</td>
<td>34B</td>
<td>157</td>
<td>55.0</td>
<td>2006.5</td>
<td>50.7</td>
<td>574</td>
<td>48.8</td>
<td>40.4</td>
<td>77.8</td>
<td>78.9</td>
<td>69.3</td>
<td>-</td>
<td>34.8</td>
<td>12.6</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Mini-Gemini-HD-34B</td>
<td>34B</td>
<td>157</td>
<td>-</td>
<td>2141.0</td>
<td>59.3</td>
<td>518</td>
<td>48.0</td>
<td>43.3</td>
<td>-</td>
<td>80.5</td>
<td>74.1</td>
<td>78.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Cambrian-34B</td>
<td>34B</td>
<td>1820</td>
<td>58.3</td>
<td>2049.9</td>
<td>53.2</td>
<td>591</td>
<td>50.4</td>
<td>50.3</td>
<td>77.8</td>
<td>79.5</td>
<td>76.7</td>
<td>75.5</td>
<td>41.6</td>
<td>14.7</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GLM-4V-9B</td>
<td>13B</td>
<td>784</td>
<td>59.1</td>
<td>2018.8</td>
<td>58.0</td>
<td>776</td>
<td>46.9</td>
<td>51.1</td>
<td>67.9</td>
<td>71.2</td>
<td>-</td>
<td>-</td>
<td>45.0</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">InternVL2-8B</td>
<td>8B</td>
<td>706</td>
<td>64.1</td>
<td>2215.1</td>
<td>54.3</td>
<td>794</td>
<td><strong>51.2</strong></td>
<td>58.3</td>
<td><strong>79.4</strong></td>
<td><strong>83.6</strong></td>
<td>77.4</td>
<td><strong>91.6</strong></td>
<td>45.0</td>
<td>21.3</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-Llama-V 2.5</td>
<td>8B</td>
<td>1882</td>
<td>58.8</td>
<td>2024.6</td>
<td>52.8</td>
<td>725</td>
<td>45.8</td>
<td>54.3</td>
<td>72.0</td>
<td>78.4</td>
<td>76.6</td>
<td>84.8</td>
<td>42.4</td>
<td>10.3</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
<td>8B</td>
<td><strong>2822</strong></td>
<td><strong>65.2</strong></td>
<td><strong>2348.4</strong>*</td>
<td><strong>60.0</strong></td>
<td><strong>852</strong>*</td>
<td>49.8*</td>
<td><strong>60.6</strong></td>
<td>78.0</td>
<td>82.1</td>
<td><strong>80.1<strong></td>
<td>90.8</td>
<td><strong>48.1</strong>*</td>
<td><strong>8.2</strong></td>
</tr>
</tbody>
</table>
</div>
* We evaluate this benchmark using chain-of-thought prompting. Specifically, for MME, we used this technique only for the Cognition set.
<sup>+</sup> Token Density: number of pixels encoded into each visual token at maximum resolution, i.e., # pixels at maximum resolution / # visual tokens.
Note: For proprietary models, we calculate token density based on the image encoding charging strategy defined in the official API documentation, which provides an upper-bound estimation.
</details>
<details>
<summary>Click to view multi-image results on Mantis Eval, BLINK, Mathverse mv, Sciverse mv, MIRB.</summary>
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>Mantis Eval</th>
<th>BLINK val</th>
<th>Mathverse mv</th>
<th>Sciverse mv</th>
<th>MIRB</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="7" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4V</td>
<td>-</td>
<td>62.7</td>
<td>54.6</td>
<td>60.3</td>
<td>66.9</td>
<td>53.1</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-NeXT-Interleave-14B</td>
<td>14B</td>
<td>66.4</td>
<td>52.6</td>
<td>32.7</td>
<td>30.2</td>
<td>-</td>
</tr>
<tr>
<td colspan="7" align="left"><strong>Open-source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Emu2-Chat</td>
<td>37B</td>
<td>37.8</td>
<td>36.2</td>
<td>-</td>
<td>27.2</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">CogVLM</td>
<td>17B</td>
<td>45.2</td>
<td>41.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">VPG-C</td>
<td>7B</td>
<td>52.4</td>
<td>43.1</td>
<td>24.3</td>
<td>23.1</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">VILA 8B</td>
<td>8B</td>
<td>51.2</td>
<td>39.3</td>
<td>-</td>
<td>36.5</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">InternLM-XComposer-2.5</td>
<td>8B</td>
<td>53.1*</td>
<td>48.9</td>
<td>32.1*</td>
<td>-</td>
<td>42.5</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">InternVL2-8B</td>
<td>8B</td>
<td>59.0*</td>
<td>50.9</td>
<td>30.5*</td>
<td>34.4*</td>
<td><strong>56.9*</strong></td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
<td>8B</td>
<td><strong>69.1</strong></td>
<td><strong>53.0</strong></td>
<td><strong>84.9</strong></td>
<td><strong>74.9</strong></td>
<td>53.8</td>
</tr>
</tbody>
</table>
</div>
* We evaluate the officially released checkpoint by ourselves.
</details>
<details>
<summary>Click to view video results on Video-MME and Video-ChatGPT.</summary>
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th colspan="2">Video-MME</th>
<th colspan="5">Video-ChatGPT</th>
</tr>
<tr>
<th align="left"></th>
<th></th>
<th>w/o subs</th>
<th>w subs</th>
<th>Correctness</th>
<th>Detail</th>
<th>Context</th>
<th>Temporal</th>
<th>Consistency</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="9" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Claude 3.5 Sonnet</td>
<td>-</td>
<td>60.0</td>
<td>62.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4V</td>
<td>-</td>
<td>59.9</td>
<td>63.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td colspan="9" align="left"><strong>Open-source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-NeXT-7B</td>
<td>7B</td>
<td>-</td>
<td>-</td>
<td>3.39</td>
<td>3.29</td>
<td>3.92</td>
<td>2.60</td>
<td>3.12</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-NeXT-34B</td>
<td>34B</td>
<td>-</td>
<td>-</td>
<td>3.29</td>
<td>3.23</td>
<td>3.83</td>
<td>2.51</td>
<td>3.47</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">CogVLM2-Video</td>
<td>12B</td>
<td>-</td>
<td>-</td>
<td>3.49</td>
<td><strong>3.46</strong></td>
<td>3.23</td>
<td><strong>2.98</strong></td>
<td><strong>3.64</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LongVA</td>
<td>7B</td>
<td>52.4</td>
<td>54.3</td>
<td>3.05</td>
<td>3.09</td>
<td>3.77</td>
<td>2.44</td>
<td><strong>3.64</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">InternVL2-8B</td>
<td>8B</td>
<td>54.0</td>
<td>56.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">InternLM-XComposer-2.5</td>
<td>8B</td>
<td>55.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-NeXT-Video</td>
<td>32B</td>
<td>60.2</td>
<td>63.0</td>
<td>3.48</td>
<td>3.37</td>
<td><strong>3.95</strong></td>
<td>2.64</td>
<td>3.28</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
<td>8B</td>
<td><strong>60.9</strong></td>
<td><strong>63.6</strong></td>
<td><strong>3.59</strong></td>
<td>3.28</td>
<td>3.93</td>
<td>2.73</td>
<td>3.62</td>
</tr>
</tbody>
</table>
</div>
</details>
<details>
<summary>Click to view few-shot results on TextVQA, VizWiz, VQAv2, OK-VQA.</summary>
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>Shot</th>
<th>TextVQA val</th>
<th>VizWiz test-dev</th>
<th>VQAv2 test-dev</th>
<th>OK-VQA val</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td align="left" nowrap="nowrap" rowspan="3">Flamingo</td>
<td rowspan="3">80B</td>
<td>0*</td>
<td>35.0</td>
<td>31.6</td>
<td>56.3</td>
<td>40.6</td>
</tr>
<tr>
<td>4</td>
<td>36.5</td>
<td>39.6</td>
<td>63.1</td>
<td><strong>57.4</strong></td>
</tr>
<tr>
<td>8</td>
<td>37.3</td>
<td>44.8</td>
<td>65.6</td>
<td>57.5</td>
</tr>
<tr>
<td align="left" nowrap="nowrap" rowspan="3">IDEFICS</td>
<td rowspan="3">80B</td>
<td>0*</td>
<td>30.9</td>
<td>36.0</td>
<td>60.0</td>
<td>45.2</td>
</tr>
<tr>
<td>4</td>
<td>34.3</td>
<td>40.4</td>
<td>63.6</td>
<td>52.4</td>
</tr>
<tr>
<td>8</td>
<td>35.7</td>
<td>46.1</td>
<td>64.8</td>
<td>55.1</td>
</tr>
<tr>
<td align="left" nowrap="nowrap" rowspan="3">OmniCorpus</td>
<td rowspan="3">7B</td>
<td>0*</td>
<td>43.0</td>
<td>49.8</td>
<td>63.2</td>
<td>45.5</td>
</tr>
<tr>
<td>4</td>
<td>45.4</td>
<td>51.3</td>
<td>64.5</td>
<td>46.5</td>
</tr>
<tr>
<td>8</td>
<td>45.6</td>
<td>52.2</td>
<td>64.7</td>
<td>46.6</td>
</tr>
<tr>
<td align="left" nowrap="nowrap" rowspan="3">Emu2</td>
<td rowspan="3">37B</td>
<td>0</td>
<td>26.4</td>
<td>40.4</td>
<td>33.5</td>
<td>26.7</td>
</tr>
<tr>
<td>4</td>
<td>48.2</td>
<td>54.6</td>
<td>67.0</td>
<td>53.2</td>
</tr>
<tr>
<td>8</td>
<td>49.3</td>
<td>54.7</td>
<td>67.8</td>
<td>54.1</td>
</tr>
<tr>
<td align="left" nowrap="nowrap" rowspan="2">MM1</td>
<td rowspan="2">30B</td>
<td>0</td>
<td>26.2</td>
<td>40.4</td>
<td>48.9</td>
<td>26.7</td>
</tr>
<tr>
<td>8</td>
<td>49.3</td>
<td>54.7</td>
<td><strong>70.9</strong></td>
<td>54.1</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td align="left" nowrap="nowrap" rowspan="3">MiniCPM-V 2.6<sup>+</sup></td>
<td rowspan="3">8B</td>
<td>0</td>
<td>43.9</td>
<td>33.8</td>
<td>45.4</td>
<td>23.9</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td>4</td>
<td>63.6</td>
<td>60.5</td>
<td>65.5</td>
<td>50.1</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td>8</td>
<td><strong>64.6</strong></td>
<td><strong>63.4</strong></td>
<td>68.2</td>
<td>51.4</td>
</tr>
</tbody>
</table>
</div>
* denotes zero image shot and two additional text shots following Flamingo.
<sup>+</sup> We evaluate the pretraining ckpt without SFT.
</details>
### Examples <!-- omit in toc -->
<div style="display: flex; flex-direction: column; align-items: center;">
<img src="../assets/minicpmv2_6/multi_img-bike.png" alt="Bike" style="margin-bottom: 5px;">
<img src="../assets/minicpmv2_6/multi_img-menu.png" alt="Menu" style="margin-bottom: 5px;">
<img src="../assets/minicpmv2_6/multi_img-code.png" alt="Code" style="margin-bottom: 5px;">
<img src="../assets/minicpmv2_6/ICL-Mem.png" alt="Mem" style="margin-bottom: 5px;">
<img src="../assets/minicpmv2_6/multiling-medal.png" alt="medal" style="margin-bottom: 10px;">
</div>
<details>
<summary>Click to view more cases.</summary>
<div style="display: flex; flex-direction: column; align-items: center;">
<img src="../assets/minicpmv2_6/ICL-elec.png" alt="elec" style="margin-bottom: 5px;">
<img src="../assets/minicpmv2_6/multiling-olympic.png" alt="Menu" style="margin-bottom: 10px;">
</div>
</details>
We deploy MiniCPM-V 2.6 on end devices. The demo video is the raw screen recording on a iPad Pro without edition.
<table align="center">
<p align="center">
<img src="../assets/gif_cases/ai.gif" width=32%/>
&nbsp;&nbsp;&nbsp;&nbsp;
<img src="../assets/gif_cases/beer.gif" width=32%/>
</p>
</table>
<table align="center">
<p align="center">
<img src="../assets/gif_cases/ticket.gif" width=32%/>
&nbsp;&nbsp;&nbsp;&nbsp;
<img src="../assets/gif_cases/wfh.gif" width=32%/>
</p>
</table>
<table align="center">
<p align="center">
<video src="https://github.com/user-attachments/assets/21f4b818-ede1-4822-920e-91281725c830" width="360" /> </video>
<!-- <video src="https://github.com/user-attachments/assets/c835f757-206b-4d9c-8e36-70d67b453628" width="360" /> </video> -->
</p>
</table>
</details>
### Multi-turn Conversation
<div align="center">
<img src="../assets/airplane.jpeg" width="500px">
</div>
```python
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
torch.manual_seed(0)
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True,
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True)
image = Image.open('./assets/airplane.jpeg').convert('RGB')
# First round chat
question = "Tell me the model of this aircraft."
msgs = [{'role': 'user', 'content': [image, question]}]
answer = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer
)
print(answer)
# Second round chat
# pass history context of multi-turn conversation
msgs.append({"role": "assistant", "content": [answer]})
msgs.append({"role": "user", "content": ["Introduce something about Airbus A380."]})
answer = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer
)
print(answer)
```
You could get the following output:
```
"The aircraft in the image is an Airbus A380, which can be identified by its large size, double-deck structure, and the distinctive shape of its wings and engines. The A380 is a wide-body aircraft known for being the world's largest passenger airliner, designed for long-haul flights. It has four engines, which are characteristic of large commercial aircraft. The registration number on the aircraft can also provide specific information about the model if looked up in an aviation database."
"The Airbus A380 is a double-deck, wide-body, four-engine jet airliner made by Airbus. It is the world's largest passenger airliner and is known for its long-haul capabilities. The aircraft was developed to improve efficiency and comfort for passengers traveling over long distances. It has two full-length passenger decks, which can accommodate more passengers than a typical single-aisle airplane. The A380 has been operated by airlines such as Lufthansa, Singapore Airlines, and Emirates, among others. It is widely recognized for its unique design and significant impact on the aviation industry."
```
#### Multi-image Understanding
<details>
<summary> Click to view Python example of MiniCPM-V 2.6 multi-image understanding </summary>
```python
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True,
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True)
image1 = Image.open('image1.jpg').convert('RGB')
image2 = Image.open('image2.jpg').convert('RGB')
question = 'Compare image 1 and image 2, tell me about the differences between image 1 and image 2.'
msgs = [{'role': 'user', 'content': [image1, image2, question]}]
answer = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer
)
print(answer)
```
</details>
#### Few-shot In-Context-Learning
<details>
<summary> Click to view Python example of MiniCPM-V 2.6 few-shot in-context-learning example </summary>
```python
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True,
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True)
question = "production date"
image1 = Image.open('example1.jpg').convert('RGB')
answer1 = "2023.08.04"
image2 = Image.open('example2.jpg').convert('RGB')
answer2 = "2007.04.24"
image_test = Image.open('test.jpg').convert('RGB')
msgs = [
{'role': 'user', 'content': [image1, question]}, {'role': 'assistant', 'content': [answer1]},
{'role': 'user', 'content': [image2, question]}, {'role': 'assistant', 'content': [answer2]},
{'role': 'user', 'content': [image_test, question]}
]
answer = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer
)
print(answer)
```
</details>
#### Video understanding
<details>
<summary> Click to view Python example of MiniCPM-V 2.6 video understanding </summary>
```python
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
from decord import VideoReader, cpu # pip install decord
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True,
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True)
MAX_NUM_FRAMES=64 # if cuda OOM set a smaller number
def encode_video(video_path):
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
vr = VideoReader(video_path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1) # FPS
frame_idx = [i for i in range(0, len(vr), sample_fps)]
if len(frame_idx) > MAX_NUM_FRAMES:
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
frames = vr.get_batch(frame_idx).asnumpy()
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
print('num frames:', len(frames))
return frames
video_path="video_test.mp4"
frames = encode_video(video_path)
question = "Describe the video"
msgs = [
{'role': 'user', 'content': frames + [question]},
]
# Set decode params for video
params = {}
params["use_image_id"] = False
params["max_slice_nums"] = 2 # 如果cuda OOM且视频分辨率大于448*448可设为1
answer = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
**params
)
print(answer)
```
</details>

View File

@@ -1,6 +1,6 @@
## OmniLMM-12B
> OmniLMM-12B is released at early time of this project. We recommond you to use our [recently released models](./README_en.md), for better performance and efficiency.
> OmniLMM-12B is released at early time of this project. We recommond you to use our [recently released models](./README.md), for better performance and efficiency.
> Archieve at: 2024-05-19

View File

@@ -1,6 +1,6 @@
<div align="center">
<img src="../assets/minicpm-v25.png" width="60%"/>
<img src="../assets/wechat-QR.jpeg" width="60%"/>
<p> 扫码加入「MiniCPM-V 交流群」 </p>
<p> Scan the QR code to join the "MiniCPM-V Discussion Group" </p>
<p> 扫码加入「MiniCPM-o 交流群」 </p>
<p> Scan the QR code to join the "MiniCPM-o Discussion Group" </p>
</div>

View File

@@ -1,60 +1,56 @@
# Evaluation
## opencompass
## MiniCPM-o 2.6
### opencompass
First, enter the `vlmevalkit` directory and install all dependencies:
```bash
cd vlmevalkit
pip install -r requirements.txt
pip install --upgrade pip
pip install -e .
wget https://download.pytorch.org/whl/cu118/torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=4377e0a7fe8ff8ffc4f7c9c6130c1dcd3874050ae4fc28b7ff1d35234fbca423
wget https://download.pytorch.org/whl/cu118/torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=2e63d62e09d9b48b407d3e1b30eb8ae4e3abad6968e8d33093b60d0657542428
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
```
<br />
Then, run `script/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode:
Then, run `scripts/run_inference.sh`, which receives two input parameters in sequence: `MODELNAME` and `DATALIST`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference:
```bash
chmod +x ./script/run_inference.sh
./script/run_inference.sh $MODELNAME $DATALIST $MODE
chmod +x ./scripts/run_inference.sh
./scripts/run_inference.sh $MODELNAME $DATALIST
```
<br />
The three available choices for `MODELNAME` are listed in `vlmeval/config.py`:
The five available choices for `MODELNAME` are listed in `vlmeval/config.py`:
```bash
ungrouped = {
'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
minicpm_series = {
'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
'MiniCPM-V-2_6': partial(MiniCPM_V_2_6, model_path='openbmb/MiniCPM-V-2_6'),
'MiniCPM-o-2_6': partial(MiniCPM_o_2_6, model_path='openbmb/MiniCPM-o-2_6'),
}
```
<br />
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. While evaluating on a single dataset, call the dataset name directly without quotation marks; while evaluating on multiple datasets, separate the names of different datasets with spaces and add quotation marks at both ends:
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. While evaluating on multiple datasets at a time, separate the names of different datasets with spaces and add quotation marks at both ends:
```bash
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST"
$DATALIST="MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST"
```
<br />
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and RealWorldQA), you need to run the script according to the following settings:
When the benchmark requires GPT series model for scoring, please specify `OPENAI_API_BASE` and `OPENAI_API_KEY` in the `.env` file.
In order to reproduce the results on OpenCompass benchmarks together with ChartQA and MME, which are displayed in the table on the homepage (columns between OCRBench and HallusionBench), you need to run the script according to the following settings:
```bash
# run on all 7 datasets
./script/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all
# The following are instructions for running on a single dataset
# MME
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MME all
# MMBench_TEST_EN
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all
# MMBench_TEST_CN
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all
# MMMU_DEV_VAL
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all
# MathVista_MINI
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all
# LLaVABench
./script/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all
# RealWorldQA
./script/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all
# Please note that we use different prompts for the perception and reasoning sets of MME. While evaluating on the reasoning subset, CoT is required, so you need to manually modify the judgment condition of the use_cot function in vlmeval/vlm/minicpm_v.py
./scripts/run_inference.sh MiniCPM-o-2_6 "MMMU_DEV_VAL MathVista_MINI MMVet MMBench_TEST_EN_V11 MMBench_TEST_CN_V11 MMStar HallusionBench AI2D_TEST OCRBench ChartQA_TEST MME"
```
<br />
## vqadataset
### vqadataset
First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks:
```bash
cd vqaeval
@@ -112,7 +108,8 @@ chmod +x ./shell/run_inference.sh
```
<br />
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows:
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows.
For `MiniCPM-o-2_6`, set `model_name` to `minicpmo26`:
```bash
# path to images and their corresponding questions
# TextVQA
@@ -174,4 +171,373 @@ For the DocVQATest task, in order to upload the inference results to the [offici
```bash
chmod +x ./shell/run_transform.sh
./shell/run_transform.sh
```
```
<br />
## MiniCPM-V 2.6
<details>
<summary>Expand</summary>
### opencompass
First, enter the `vlmevalkit` directory and install all dependencies:
```bash
cd vlmevalkit
pip install --upgrade pip
pip install -e .
wget https://download.pytorch.org/whl/cu118/torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=4377e0a7fe8ff8ffc4f7c9c6130c1dcd3874050ae4fc28b7ff1d35234fbca423
wget https://download.pytorch.org/whl/cu118/torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=2e63d62e09d9b48b407d3e1b30eb8ae4e3abad6968e8d33093b60d0657542428
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
```
<br />
Then, run `scripts/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode:
```bash
chmod +x ./scripts/run_inference.sh
./scripts/run_inference.sh $MODELNAME $DATALIST $MODE
```
<br />
The four available choices for `MODELNAME` are listed in `vlmeval/config.py`:
```bash
minicpm_series = {
'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
'MiniCPM-V-2_6': partial(MiniCPM_V_2_6, model_path='openbmb/MiniCPM-V-2_6'),
}
```
<br />
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. Separate the names of different datasets with spaces and add quotation marks at both ends:
```bash
$DATALIST="MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST"
```
<br />
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and HallusionBench), you need to run the script according to the following settings:
```bash
# without CoT
./scripts/run_inference.sh MiniCPM-V-2_6 "MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST" all
./scripts/run_inference.sh MiniCPM-V-2_6 MME all
# with CoT
# While running the CoT version of MME, you need to modify the 'use_cot' function in vlmeval/vlm/minicpm_v.py and add MME to the branch that returns True.
./scripts/run_inference/sh MiniCPM-V-2_6 "MMMU_DEV_VAL MMVet MMStar HallusionBench OCRBench" all
./scripts/run_inference.sh MiniCPM-V-2_6 MME all
```
<br />
### vqadataset
First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks:
```bash
cd vqaeval
pip install -r requirements.txt
mkdir downloads
```
<br />
Download the datasets from the following links and place it in the specified directories:
###### TextVQA
```bash
cd downloads
mkdir TextVQA && cd TextVQA
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
unzip train_val_images.zip && rm train_val_images.zip
mv train_val_images/train_images . && rm -rf train_val_images
wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json
cd ../..
```
###### DocVQA / DocVQATest
```bash
cd downloads
mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images
# Download Images and Annotations from Task 1 - Single Page Document Visual Question Answering at https://rrc.cvc.uab.es/?ch=17&com=downloads
# Move the spdocvqa_images.tar.gz and spdocvqa_qas.zip to DocVQA directory
tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz
unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip
cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas
cd ../..
```
<br />
The `downloads` directory should be organized according to the following structure:
```bash
downloads
├── TextVQA
│ ├── train_images
│ │ ├── ...
│ ├── TextVQA_0.5.1_val.json
├── DocVQA
│ ├── spdocvqa_images
│ │ ├── ...
│ ├── val_v1.0_withQT.json
│ ├── test_v1.0.json
```
<br />
Modify the parameters in `shell/run_inference.sh` and run inference:
```bash
chmod +x ./shell/run_inference.sh
./shell/run_inference.sh
```
<br />
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows.
For `MiniCPM-V-2_6`, set `model_name` to `minicpmv26`:
```bash
# path to images and their corresponding questions
# TextVQA
--textVQA_image_dir
--textVQA_ann_path
# DocVQA
--docVQA_image_dir
--docVQA_ann_path
# DocVQATest
--docVQATest_image_dir
--docVQATest_ann_path
# whether to eval on certain task
--eval_textVQA
--eval_docVQA
--eval_docVQATest
--eval_all
# model name and model path
--model_name
--model_path
# load model from ckpt
--ckpt
# the way the model processes input data, "interleave" represents interleaved image-text form, while "old" represents non-interleaved.
--generate_method
--batchsize
# path to save the outputs
--answer_path
```
<br />
While evaluating on different tasks, parameters need to be set as follows:
###### TextVQA
```bash
--eval_textVQA
--textVQA_image_dir ./downloads/TextVQA/train_images
--textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json
```
###### DocVQA
```bash
--eval_docVQA
--docVQA_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json
```
###### DocVQATest
```bash
--eval_docVQATest
--docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json
```
<br />
For the DocVQATest task, in order to upload the inference results to the [official website](https://rrc.cvc.uab.es/?ch=17) for evaluation, run `shell/run_transform.sh` for format transformation after inference. `input_file_path` represents the path to the original output json, `output_file_path` represents the path to the transformed json:
```bash
chmod +x ./shell/run_transform.sh
./shell/run_transform.sh
```
</details>
<br />
## MiniCPM-Llama3-V-2_5
<details>
<summary>Expand</summary>
### opencompass
First, enter the `vlmevalkit` directory and install all dependencies:
```bash
cd vlmevalkit
pip install -r requirements.txt
```
<br />
Then, run `scripts/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode:
```bash
chmod +x ./scripts/run_inference.sh
./scripts/run_inference.sh $MODELNAME $DATALIST $MODE
```
<br />
The three available choices for `MODELNAME` are listed in `vlmeval/config.py`:
```bash
ungrouped = {
'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
}
```
<br />
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. While evaluating on a single dataset, call the dataset name directly without quotation marks; while evaluating on multiple datasets, separate the names of different datasets with spaces and add quotation marks at both ends:
```bash
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST"
```
<br />
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and RealWorldQA), you need to run the script according to the following settings:
```bash
# run on all 7 datasets
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all
# The following are instructions for running on a single dataset
# MME
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MME all
# MMBench_TEST_EN
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all
# MMBench_TEST_CN
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all
# MMMU_DEV_VAL
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all
# MathVista_MINI
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all
# LLaVABench
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all
# RealWorldQA
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all
```
<br />
### vqadataset
First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks:
```bash
cd vqaeval
pip install -r requirements.txt
mkdir downloads
```
<br />
Download the datasets from the following links and place it in the specified directories:
###### TextVQA
```bash
cd downloads
mkdir TextVQA && cd TextVQA
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
unzip train_val_images.zip && rm train_val_images.zip
mv train_val_images/train_images . && rm -rf train_val_images
wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json
cd ../..
```
###### DocVQA / DocVQATest
```bash
cd downloads
mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images
# Download Images and Annotations from Task 1 - Single Page Document Visual Question Answering at https://rrc.cvc.uab.es/?ch=17&com=downloads
# Move the spdocvqa_images.tar.gz and spdocvqa_qas.zip to DocVQA directory
tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz
unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip
cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas
cd ../..
```
<br />
The `downloads` directory should be organized according to the following structure:
```bash
downloads
├── TextVQA
│ ├── train_images
│ │ ├── ...
│ ├── TextVQA_0.5.1_val.json
├── DocVQA
│ ├── spdocvqa_images
│ │ ├── ...
│ ├── val_v1.0_withQT.json
│ ├── test_v1.0.json
```
<br />
Modify the parameters in `shell/run_inference.sh` and run inference:
```bash
chmod +x ./shell/run_inference.sh
./shell/run_inference.sh
```
<br />
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows.
For `MiniCPM-Llama3-V-2_5`, set `model_name` to `minicpmv`:
```bash
# path to images and their corresponding questions
# TextVQA
--textVQA_image_dir
--textVQA_ann_path
# DocVQA
--docVQA_image_dir
--docVQA_ann_path
# DocVQATest
--docVQATest_image_dir
--docVQATest_ann_path
# whether to eval on certain task
--eval_textVQA
--eval_docVQA
--eval_docVQATest
--eval_all
# model name and model path
--model_name
--model_path
# load model from ckpt
--ckpt
# the way the model processes input data, "interleave" represents interleaved image-text form, while "old" represents non-interleaved.
--generate_method
--batchsize
# path to save the outputs
--answer_path
```
<br />
While evaluating on different tasks, parameters need to be set as follows:
###### TextVQA
```bash
--eval_textVQA
--textVQA_image_dir ./downloads/TextVQA/train_images
--textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json
```
###### DocVQA
```bash
--eval_docVQA
--docVQA_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json
```
###### DocVQATest
```bash
--eval_docVQATest
--docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json
```
<br />
For the DocVQATest task, in order to upload the inference results to the [official website](https://rrc.cvc.uab.es/?ch=17) for evaluation, run `shell/run_transform.sh` for format transformation after inference. `input_file_path` represents the path to the original output json, `output_file_path` represents the path to the transformed json:
```bash
chmod +x ./shell/run_transform.sh
./shell/run_transform.sh
```
</details>

View File

@@ -1,61 +1,57 @@
# Evaluation
## opencompass
## MiniCPM-o 2.6
### opencompass
首先,进入 `vlmevalkit` 目录下,安装必要的依赖:
```bash
cd vlmevalkit
pip install -r requirements.txt
pip install --upgrade pip
pip install -e .
wget https://download.pytorch.org/whl/cu118/torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=4377e0a7fe8ff8ffc4f7c9c6130c1dcd3874050ae4fc28b7ff1d35234fbca423
wget https://download.pytorch.org/whl/cu118/torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=2e63d62e09d9b48b407d3e1b30eb8ae4e3abad6968e8d33093b60d0657542428
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
rm *.whl
```
<br />
然后,运行 `script/run_inference.sh`,该脚本依次接收个输入参数:`MODELNAME`, `DATALIST`, `MODE``MODELNAME` 为模型名称,`DATALIST` 为目标数据集`MODE` 为评测模式
然后,运行 `scripts/run_inference.sh`,该脚本依次接收个输入参数:`MODELNAME`, `DATALIST`其中,`MODELNAME` 为模型名称,`DATALIST` 为目标数据集。
```bash
chmod +x ./script/run_inference.sh
./script/run_inference.sh $MODELNAME $DATALIST $MODE
chmod +x ./scripts/run_inference.sh
./scripts/run_inference.sh $MODELNAME $DATALIST
```
<br />
`MODELNAME`种选择,位于 `vlmeval/config.py` 中:
`MODELNAME`种选择,位于 `vlmeval/config.py` 中:
```bash
ungrouped = {
'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
minicpm_series = {
'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
'MiniCPM-V-2_6': partial(MiniCPM_V_2_6, model_path='openbmb/MiniCPM-V-2_6'),
'MiniCPM-o-2_6': partial(MiniCPM_o_2_6, model_path='openbmb/MiniCPM-o-2_6'),
}
```
<br />
可选的所有 `DATALIST` 位于 `vlmeval/utils/dataset_config.py`,评测单个数据集时,直接调用数据集名称,不加引号;评测多个数据集时,将不同数据集名称以空格隔开,两端加引号:
可选的所有 `DATALIST` 位于 `vlmeval/utils/dataset_config.py`。一次评测多个数据集时,将不同数据集名称以空格隔开,两端加引号:
```bash
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST"
$DATALIST="MMMU_DEV_VAL MathVista_MINI MMVet MMBench_TEST_EN_V11 MMBench_TEST_CN_V11 MMStar HallusionBench AI2D_TEST"
```
<br />
直接对各 benchmark 进行评分时,设置 `MODE=all`。如果仅需要推理结果,则设置 `MODE=infer`
为了复现出首页展示的表格中的各项结果MME 到 RealWorldQA 之间的列),需要按照如下设置运行:
当评测的 benchmark 需要 GPT 系列模型进行评分时,请在 `.env` 文件中预先指定 `OPENAI_API_BASE``OPENAI_API_KEY`
为了复现出首页展示的表格中 OpenCompass 对应的各项数据集以及 ChartQA 和 MME 上的结果OCRBench 到 HallusionBench 之间的列),需要按照如下设置运行:
```bash
# 一次性运行 7 个数据集
./script/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all
# 以下是单独运行 1 个数据集的指令
# MME
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MME all
# MMBench_TEST_EN
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all
# MMBench_TEST_CN
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all
# MMMU_DEV_VAL
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all
# MathVista_MINI
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all
# LLaVABench
./script/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all
# RealWorldQA
./script/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all
# 请注意,对于 MME 的 perception 和 reasoning 集,我们采取了不同的 prompt 方式。评测 reasoning 子集时,需要使用 CoT因此需要手动到 vlmeval/vlm/minicpm_v.py 中修改 use_cot 函数的判断条件
./scripts/run_inference.sh MiniCPM-o-2_6 "MMMU_DEV_VAL MathVista_MINI MMVet MMBench_TEST_EN_V11 MMBench_TEST_CN_V11 MMStar HallusionBench AI2D_TEST OCRBench ChartQA_TEST MME"
```
<br />
## vqadataset
### vqadataset
首先,进入 `vqaeval` 目录下,安装必要的依赖,并创建 `downloads` 子目录,用于存储下载的数据集:
```bash
cd vqaeval
@@ -112,7 +108,8 @@ chmod +x ./shell/run_inference.sh
```
<br />
可以传入的参数位于 `eval_utils/getargs.py` 中,各主要参数的含义如下
可以传入的参数位于 `eval_utils/getargs.py` 中,各主要参数的含义如下
对于 `MiniCPM-o-2_6`,需要将 `model_name`设置为 `minicpmo26`
```bash
# 指定 TextVQA 评测所有图片和问题的路径
--textVQA_image_dir
@@ -172,4 +169,369 @@ chmod +x ./shell/run_inference.sh
```bash
chmod +x ./shell/run_transform.sh
./shell/run_transform.sh
```
```
<br />
## MiniCPM-V 2.6
<details>
<summary>展开</summary>
### opencompass
首先,进入 `vlmevalkit` 目录下,安装必要的依赖:
```bash
cd vlmevalkit
pip install --upgrade pip
pip install -e .
wget https://download.pytorch.org/whl/cu118/torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=4377e0a7fe8ff8ffc4f7c9c6130c1dcd3874050ae4fc28b7ff1d35234fbca423
wget https://download.pytorch.org/whl/cu118/torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=2e63d62e09d9b48b407d3e1b30eb8ae4e3abad6968e8d33093b60d0657542428
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl
pip install flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
rm *.whl
```
<br />
然后,运行 `scripts/run_inference.sh`,该脚本依次接收三个输入参数:`MODELNAME`, `DATALIST`, `MODE``MODELNAME` 为模型名称,`DATALIST` 为目标数据集,`MODE` 为评测模式。
```bash
chmod +x ./scripts/run_inference.sh
./scripts/run_inference.sh $MODELNAME $DATALIST $MODE
```
<br />
`MODELNAME` 有四种选择,位于 `vlmeval/config.py` 中:
```bash
minicpm_series = {
'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
'MiniCPM-V-2_6': partial(MiniCPM_V_2_6, model_path='openbmb/MiniCPM-V-2_6'),
}
```
<br />
可选的所有 `DATALIST` 位于 `vlmeval/utils/dataset_config.py` 中。将不同数据集名称以空格隔开,两端加引号:
```bash
$DATALIST="MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST"
```
<br />
直接对各 benchmark 进行评分时,设置 `MODE=all`。如果仅需要推理结果,则设置 `MODE=infer`
为了复现出首页展示的表格中的各项结果MME 到 HallusionBench 之间的列),需要按照如下设置运行:
```bash
# without CoT
./scripts/run_inference.sh MiniCPM-V-2_6 "MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST" all
./scripts/run_inference.sh MiniCPM-V-2_6 MME all
# with CoT运行 CoT 版本的 MME 时,需要改写 vlmeval/vlm/minicpm_v.py 中的 'use_cot' 函数,将 MME 添加到 return True 的分支中
./scripts/run_inference/sh MiniCPM-V-2_6 "MMMU_DEV_VAL MMVet MMStar HallusionBench OCRBench" all
./scripts/run_inference.sh MiniCPM-V-2_6 MME all
```
<br />
### vqadataset
首先,进入 `vqaeval` 目录下,安装必要的依赖,并创建 `downloads` 子目录,用于存储下载的数据集:
```bash
cd vqaeval
pip install -r requirements.txt
mkdir downloads
```
<br />
然后,从下列各地址下载数据集并置于指定目录下:
###### TextVQA
```bash
cd downloads
mkdir TextVQA && cd TextVQA
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
unzip train_val_images.zip && rm train_val_images.zip
mv train_val_images/train_images . && rm -rf train_val_images
wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json
cd ../..
```
###### DocVQA / DocVQATest
```bash
cd downloads
mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images
# 在 https://rrc.cvc.uab.es/?ch=17&com=downloads 下载 Task 1 - Single Page Document Visual Question Answering 下的 Images 和 Annotations
# 将下载得到的 spdocvqa_images.tar.gz 以及 spdocvqa_qas.zip 置于 DocVQA 目录下
tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz
unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip
cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas
cd ../..
```
<br />
`downloads` 目录应当按照下列结构组织:
```bash
downloads
├── TextVQA
│ ├── train_images
│ │ ├── ...
│ ├── TextVQA_0.5.1_val.json
├── DocVQA
│ ├── spdocvqa_images
│ │ ├── ...
│ ├── val_v1.0_withQT.json
│ ├── test_v1.0.json
```
<br />
准备好相应的数据集之后,修改 `shell/run_inference.sh` 的参数,运行推理:
```bash
chmod +x ./shell/run_inference.sh
./shell/run_inference.sh
```
<br />
可以传入的参数位于 `eval_utils/getargs.py` 中,各主要参数的含义如下。
对于 `MiniCPM-V-2_6`,需要将 `model_name`设置为 `minicpmv26`
```bash
# 指定 TextVQA 评测所有图片和问题的路径
--textVQA_image_dir
--textVQA_ann_path
# 指定 DocVQA 评测所有图片和问题的路径
--docVQA_image_dir
--docVQA_ann_path
# 指定 DocVQATest 评测所有图片和问题的路径
--docVQATest_image_dir
--docVQATest_ann_path
# 决定是否评测某个任务eval_all 设置为 True 表示所有任务都评测
--eval_textVQA
--eval_docVQA
--eval_docVQATest
--eval_all
# 模型名称、模型路径(从指定路径加载模型)
--model_name
--model_path
# 从 checkpoint 加载模型
--ckpt
# 模型处理输入数据的方式interleave 表示图文交错式old 表示非交错式
--generate_method
# 推理时的批处理规模,建议推理时设置为 1
--batchsize
# 输出内容保存的路径
--answer_path
```
<br />
评测三个任务需要设置的参数如下:
###### TextVQA
```bash
--eval_textVQA
--textVQA_image_dir ./downloads/TextVQA/train_images
--textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json
```
###### DocVQA
```bash
--eval_docVQA
--docVQA_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json
```
###### DocVQATest
```bash
--eval_docVQATest
--docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json
```
<br />
对于 DocVQATest 任务,为了将推理结果上传到[官方网站](https://rrc.cvc.uab.es/?ch=17)进行评测,还需要运行 `shell/run_transform.sh` 进行格式转换。其中,`input_file_path` 对应原始输出的 json 的路径,`output_file_path` 为自定义的转换后的 json 的路径:
```bash
chmod +x ./shell/run_transform.sh
./shell/run_transform.sh
```
</details>
<br />
## MiniCPM-Llama3-V-2_5
<details>
<summary>展开</summary>
### opencompass
首先,进入 `vlmevalkit` 目录下,安装必要的依赖:
```bash
cd vlmevalkit
pip install -r requirements.txt
```
<br />
然后,运行 `scripts/run_inference.sh`,该脚本依次接收三个输入参数:`MODELNAME`, `DATALIST`, `MODE``MODELNAME` 为模型名称,`DATALIST` 为目标数据集,`MODE` 为评测模式。
```bash
chmod +x ./scripts/run_inference.sh
./scripts/run_inference.sh $MODELNAME $DATALIST $MODE
```
<br />
`MODELNAME` 有三种选择,位于 `vlmeval/config.py` 中:
```bash
ungrouped = {
'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
}
```
<br />
可选的所有 `DATALIST` 位于 `vlmeval/utils/dataset_config.py` 中,评测单个数据集时,直接调用数据集名称,不加引号;评测多个数据集时,将不同数据集名称以空格隔开,两端加引号:
```bash
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST"
```
<br />
直接对各 benchmark 进行评分时,设置 `MODE=all`。如果仅需要推理结果,则设置 `MODE=infer`
为了复现出首页展示的表格中的各项结果MME 到 RealWorldQA 之间的列),需要按照如下设置运行:
```bash
# 一次性运行 7 个数据集
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all
# 以下是单独运行 1 个数据集的指令
# MME
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MME all
# MMBench_TEST_EN
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all
# MMBench_TEST_CN
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all
# MMMU_DEV_VAL
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all
# MathVista_MINI
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all
# LLaVABench
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all
# RealWorldQA
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all
```
<br />
### vqadataset
首先,进入 `vqaeval` 目录下,安装必要的依赖,并创建 `downloads` 子目录,用于存储下载的数据集:
```bash
cd vqaeval
pip install -r requirements.txt
mkdir downloads
```
<br />
然后,从下列各地址下载数据集并置于指定目录下:
###### TextVQA
```bash
cd downloads
mkdir TextVQA && cd TextVQA
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
unzip train_val_images.zip && rm train_val_images.zip
mv train_val_images/train_images . && rm -rf train_val_images
wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json
cd ../..
```
###### DocVQA / DocVQATest
```bash
cd downloads
mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images
# 在 https://rrc.cvc.uab.es/?ch=17&com=downloads 下载 Task 1 - Single Page Document Visual Question Answering 下的 Images 和 Annotations
# 将下载得到的 spdocvqa_images.tar.gz 以及 spdocvqa_qas.zip 置于 DocVQA 目录下
tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz
unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip
cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas
cd ../..
```
<br />
`downloads` 目录应当按照下列结构组织:
```bash
downloads
├── TextVQA
│ ├── train_images
│ │ ├── ...
│ ├── TextVQA_0.5.1_val.json
├── DocVQA
│ ├── spdocvqa_images
│ │ ├── ...
│ ├── val_v1.0_withQT.json
│ ├── test_v1.0.json
```
<br />
准备好相应的数据集之后,修改 `shell/run_inference.sh` 的参数,运行推理:
```bash
chmod +x ./shell/run_inference.sh
./shell/run_inference.sh
```
<br />
可以传入的参数位于 `eval_utils/getargs.py` 中,各主要参数的含义如下。
对于 `MiniCPM-Llama3-V-2_5`,需要将 `model_name` 设置为 `minicpmv`
```bash
# 指定 TextVQA 评测所有图片和问题的路径
--textVQA_image_dir
--textVQA_ann_path
# 指定 DocVQA 评测所有图片和问题的路径
--docVQA_image_dir
--docVQA_ann_path
# 指定 DocVQATest 评测所有图片和问题的路径
--docVQATest_image_dir
--docVQATest_ann_path
# 决定是否评测某个任务eval_all 设置为 True 表示所有任务都评测
--eval_textVQA
--eval_docVQA
--eval_docVQATest
--eval_all
# 模型名称、模型路径(从指定路径加载模型)
--model_name
--model_path
# 从 checkpoint 加载模型
--ckpt
# 模型处理输入数据的方式interleave 表示图文交错式old 表示非交错式
--generate_method
# 推理时的批处理规模,建议推理时设置为 1
--batchsize
# 输出内容保存的路径
--answer_path
```
<br />
评测三个任务需要设置的参数如下:
###### TextVQA
```bash
--eval_textVQA
--textVQA_image_dir ./downloads/TextVQA/train_images
--textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json
```
###### DocVQA
```bash
--eval_docVQA
--docVQA_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json
```
###### DocVQATest
```bash
--eval_docVQATest
--docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images
--docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json
```
<br />
对于 DocVQATest 任务,为了将推理结果上传到[官方网站](https://rrc.cvc.uab.es/?ch=17)进行评测,还需要运行 `shell/run_transform.sh` 进行格式转换。其中,`input_file_path` 对应原始输出的 json 的路径,`output_file_path` 为自定义的转换后的 json 的路径:
```bash
chmod +x ./shell/run_transform.sh
./shell/run_transform.sh
```
</details>

28
eval_mm/vlmevalkit/.env Normal file
View File

@@ -0,0 +1,28 @@
# .env 文件,将其放置在 $VLMEvalKit 下
# 专有 VLMs 的 API 密钥
# QwenVL APIs
DASHSCOPE_API_KEY=
# Gemini w. Google Cloud Backends
GOOGLE_API_KEY=
# OpenAI API
OPENAI_API_KEY=
OPENAI_API_BASE=
# StepAI API
STEPAI_API_KEY=
# REKA API
REKA_API_KEY=
# GLMV API
GLMV_API_KEY=
# CongRong API
CW_API_BASE=
CW_API_KEY=
# SenseChat-V API
SENSECHAT_AK=
SENSECHAT_SK=
# Hunyuan-Vision API
HUNYUAN_SECRET_KEY=
HUNYUAN_SECRET_ID=
# LMDeploy API
LMDEPLOY_API_BASE=
# 你可以设置一个评估时代理,评估阶段产生的 API 调用将通过这个代理进行
EVAL_PROXY=

View File

@@ -1,33 +1,30 @@
einops
gradio==4.15.0
decord; platform_machine != 'arm64'
eva-decord; platform_machine == 'arm64'
gradio
huggingface_hub
imageio
matplotlib
numpy>=1.23.4
numpy
omegaconf
openai==1.3.5
openai
opencv-python>=4.4.0.46
openpyxl
pandas>=1.5.3
pandas
pillow
portalocker
protobuf
pycocoevalcap
python-dotenv
requests
rich
seaborn
sentencepiece
setuptools
sty
tabulate
tiktoken
timeout-decorator
torch
tqdm
typing_extensions==4.7.1
transformers
typing_extensions
validators
visual_genome
xlsxwriter
Pillow==10.1.0
sentencepiece==0.1.99
transformers==4.40.0
torch==1.13.1
torchvision

View File

@@ -0,0 +1,11 @@
docutils==0.18.1
modelindex
myst-parser
-e git+https://github.com/open-compass/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
sphinx==6.1.3
sphinx-copybutton
sphinx-design
sphinx-notfound-page
sphinx-tabs
sphinxcontrib-jquery
tabulate

View File

@@ -1,147 +1,422 @@
import torch
import torch.distributed as dist
from vlmeval.smp import *
from vlmeval.evaluate import *
from vlmeval.inference import infer_data_job
from vlmeval.config import supported_VLM
from vlmeval.utils import dataset_URLs, DATASET_TYPE, abbr2full, MMMU_result_transfer
from vlmeval.dataset.video_dataset_config import supported_video_datasets
from vlmeval.dataset import build_dataset
from vlmeval.inference import infer_data_job
from vlmeval.inference_video import infer_data_job_video
from vlmeval.inference_mt import infer_data_job_mt
from vlmeval.smp import *
from vlmeval.utils.result_transfer import MMMU_result_transfer, MMTBench_result_transfer
def build_model_from_config(cfg, model_name):
import vlmeval.api
import vlmeval.vlm
config = cp.deepcopy(cfg[model_name])
if config == {}:
return supported_VLM[model_name]()
assert 'class' in config
cls_name = config.pop('class')
if hasattr(vlmeval.api, cls_name):
return getattr(vlmeval.api, cls_name)(**config)
elif hasattr(vlmeval.vlm, cls_name):
return getattr(vlmeval.vlm, cls_name)(**config)
else:
raise ValueError(f'Class {cls_name} is not supported in `vlmeval.api` or `vlmeval.vlm`')
def build_dataset_from_config(cfg, dataset_name):
import vlmeval.dataset
import inspect
config = cp.deepcopy(cfg[dataset_name])
if config == {}:
return supported_video_datasets[dataset_name]()
assert 'class' in config
cls_name = config.pop('class')
if hasattr(vlmeval.dataset, cls_name):
cls = getattr(vlmeval.dataset, cls_name)
sig = inspect.signature(cls.__init__)
valid_params = {k: v for k, v in config.items() if k in sig.parameters}
if valid_params.get('fps', 0) > 0 and valid_params.get('nframe', 0) > 0:
raise ValueError('fps and nframe should not be set at the same time')
if valid_params.get('fps', 0) <= 0 and valid_params.get('nframe', 0) <= 0:
raise ValueError('fps and nframe should be set at least one valid value')
return cls(**valid_params)
else:
raise ValueError(f'Class {cls_name} is not supported in `vlmeval.dataset`')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, nargs='+', required=True)
parser.add_argument('--model', type=str, nargs='+', required=True)
parser.add_argument('--work-dir', type=str, default='.', help='select the output directory')
help_msg = """\
You can launch the evaluation by setting either --data and --model or --config.
--data and --model:
Each Arg should be a list of strings, specifying the names of datasets and models.
To find all supported model names, please refer to the `vlmeval/config.py` of check the output of the command \
`vlmutil mlist all` in the terminal (you should first have vlmeval installed).
To find all supported dataset names, please refer to the `vlmeval/dataset/__init__.py` file. The python script \
to print all supported dataset names is as follows:
```python
from vlmeval.dataset import SUPPORTED_DATASETS
print(SUPPORTED_DATASETS)
```
or you can check the output of the command `vlmutil dlist all` in the terminal.
To find all supported video dataset default settings, please refer to the \
`vlmeval/dataset/video_dataset_config.py` file.
--config:
Launch the evaluation by specifying the path to the config json file. Sample Json Content:
```json
{
"model": {
"GPT4o_20240806_T00_HIGH": {
"class": "GPT4V",
"model": "gpt-4o-2024-08-06",
"temperature": 0,
"img_detail": "high"
},
"GPT4o_20240806_T10_Low": {
"class": "GPT4V",
"model": "gpt-4o-2024-08-06",
"temperature": 1.0,
"img_detail": "low"
},
"GPT4o_20241120": {}
},
"data": {
"MME-RealWorld-Lite": {
"class": "MMERealWorld",
"dataset": "MME-RealWorld-Lite"
},
"MMBench_DEV_EN_V11": {
"class": "ImageMCQDataset",
"dataset": "MMBench_DEV_EN_V11"
},
"MMBench_Video_8frame_nopack": {},
"Video-MME_16frame_subs": {
"class": "VideoMME",
"dataset": "Video-MME",
"nframe": 16,
"use_subtitle": true,
}
}
}
```
Currently, only `model` and `data` are supported fields. The content of each field is a dictionary.
For `model`, the key is the name of the model, and the value is a dictionary containing the following keys:
- `class`: The class name of the model, which should be a class in `vlmeval.vlm` or `vlmeval.api`.
- Other keys are specific to the model, please refer to the corresponding class.
- Tip: The defined model in the `supported_VLM` of `vlmeval/config.py` can be used as a shortcut.
For `data`, the key is the name of the dataset (should be the same as the `dataset` field in most cases, \
except for video datasets), and the value is a dictionary containing the following keys:
- `class`: The class name of the dataset, which should be a class in `vlmeval.dataset`.
- `dataset`: The name of the dataset, which should be a string that is accepted by the `dataset` argument of the \
corresponding class.
- Other keys are specific to the dataset, please refer to the corresponding class.
- Tip: The defined dataset in the `supported_video_datasets` of `vlmeval/dataset/video_dataset_config.py` \
can be used as a shortcut.
The keys in the `model` and `data` fields will be used for naming the prediction files and evaluation results.
When launching with `--config`, args for API VLMs, such as `--retry`, `--verbose`, will be ignored.
"""
parser = argparse.ArgumentParser(description=help_msg, formatter_class=argparse.RawTextHelpFormatter)
# Essential Args, Setting the Names of Datasets and Models
parser.add_argument('--data', type=str, nargs='+', help='Names of Datasets')
parser.add_argument('--model', type=str, nargs='+', help='Names of Models')
parser.add_argument('--config', type=str, help='Path to the Config Json File')
# Work Dir
parser.add_argument('--work-dir', type=str, default='./outputs', help='select the output directory')
# Infer + Eval or Infer Only
parser.add_argument('--mode', type=str, default='all', choices=['all', 'infer'])
parser.add_argument('--nproc', type=int, default=4, help='Parallel API calling')
# API Kwargs, Apply to API VLMs and Judge API LLMs
parser.add_argument('--api_nproc', type=int, default=4, help='Parallel API calling')
parser.add_argument('--retry', type=int, default=None, help='retry numbers for API VLMs')
# Explicitly Set the Judge Model
parser.add_argument('--judge', type=str, default=None)
parser.add_argument('--ignore', action='store_true', help='Ignore failed indices. ')
# Logging Utils
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--rerun', action='store_true')
# Configuration for Resume
# Ignore: will not rerun failed VLM inference
parser.add_argument('--ignore', action='store_true', help='Ignore failed indices. ')
# Reuse: will reuse the existing prediction files
parser.add_argument('--reuse', action='store_true')
args = parser.parse_args()
return args
def main():
logger = get_logger('RUN')
rank, world_size = get_rank_and_world_size()
args = parse_args()
assert len(args.data), '--data should be a list of data files'
use_config, cfg = False, None
if args.config is not None:
assert args.data is None and args.model is None, '--data and --model should not be set when using --config'
use_config, cfg = True, load(args.config)
args.model = list(cfg['model'].keys())
args.data = list(cfg['data'].keys())
else:
assert len(args.data), '--data should be a list of data files'
if args.retry is not None:
if rank == 0:
if not args.reuse:
logger.warning('--reuse is not set, will not reuse previous (before one day) temporary files')
else:
logger.warning('--reuse is set, will reuse the latest prediction & temporary pickle files')
if 'MMEVAL_ROOT' in os.environ:
args.work_dir = os.environ['MMEVAL_ROOT']
if not use_config:
for k, v in supported_VLM.items():
if hasattr(v, 'keywords') and 'retry' in v.keywords:
if hasattr(v, 'keywords') and 'retry' in v.keywords and args.retry is not None:
v.keywords['retry'] = args.retry
supported_VLM[k] = v
if hasattr(v, 'keywords') and 'verbose' in v.keywords:
if hasattr(v, 'keywords') and 'verbose' in v.keywords and args.verbose is not None:
v.keywords['verbose'] = args.verbose
supported_VLM[k] = v
rank, world_size = get_rank_and_world_size()
if world_size > 1:
local_rank = os.environ.get('LOCAL_RANK', 0)
torch.cuda.set_device(int(local_rank))
dist.init_process_group(backend='nccl', timeout=datetime.timedelta(seconds=10800))
dist.init_process_group(
backend='nccl',
timeout=datetime.timedelta(seconds=int(os.environ.get('DIST_TIMEOUT', 3600)))
)
for _, model_name in enumerate(args.model):
model = None
date, commit_id = timestr('day'), githash(digits=8)
eval_id = f"T{date}_G{commit_id}"
pred_root = osp.join(args.work_dir, model_name)
os.makedirs(pred_root, exist_ok=True)
pred_root = osp.join(args.work_dir, model_name, eval_id)
pred_root_meta = osp.join(args.work_dir, model_name)
os.makedirs(pred_root_meta, exist_ok=True)
prev_pred_roots = ls(osp.join(args.work_dir, model_name), mode='dir')
if len(prev_pred_roots) and args.reuse:
prev_pred_roots.sort()
if not osp.exists(pred_root):
os.makedirs(pred_root, exist_ok=True)
if use_config:
model = build_model_from_config(cfg['model'], model_name)
for _, dataset_name in enumerate(args.data):
custom_flag = False
try:
result_file_base = f'{model_name}_{dataset_name}.xlsx'
if dataset_name not in dataset_URLs:
dataset_name = abbr2full(dataset_name)
if dataset_name not in dataset_URLs:
logger.warning(f'Dataset {dataset_name} is not officially supported. ')
file_path = osp.join(LMUDataRoot(), f'{dataset_name}.tsv')
if not osp.exists(file_path):
logger.error(f'Cannot find the local dataset {dataset_name}. ')
continue
if use_config:
if world_size > 1:
if rank == 0:
dataset = build_dataset_from_config(cfg['data'], dataset_name)
dist.barrier()
dataset = build_dataset_from_config(cfg['data'], dataset_name)
if dataset is None:
logger.error(f'Dataset {dataset_name} is not valid, will be skipped. ')
continue
else:
custom_flag = True
dataset_kwargs = {}
if dataset_name in ['MMLongBench_DOC', 'DUDE', 'DUDE_MINI', 'SLIDEVQA', 'SLIDEVQA_MINI']:
dataset_kwargs['model'] = model_name
result_file = f'{pred_root}/{model_name}_{dataset_name}.xlsx'
if osp.exists(result_file) and args.rerun:
os.system(f'rm {pred_root}/{model_name}_{dataset_name}_*')
# If distributed, first build the dataset on the main process for doing preparation works
if world_size > 1:
if rank == 0:
dataset = build_dataset(dataset_name, **dataset_kwargs)
dist.barrier()
if model is None:
model = model_name # which is only a name
dataset = build_dataset(dataset_name, **dataset_kwargs)
if dataset is None:
logger.error(f'Dataset {dataset_name} is not valid, will be skipped. ')
continue
model = infer_data_job(
model,
work_dir=pred_root,
model_name=model_name,
dataset_name=dataset_name,
verbose=args.verbose,
api_nproc=args.nproc,
ignore_failed=args.ignore)
# Handling Multi-Turn Dataset
if dataset.TYPE == 'MT':
result_file_base = result_file_base.replace('.xlsx', '.tsv')
if rank == 0:
if dataset_name in ['MMMU_TEST']:
result_json = MMMU_result_transfer(result_file)
logger.info(f'Transfer MMMU_TEST result to json for official evaluation, json file saved in {result_json}') # noqa: E501
continue
result_file = osp.join(pred_root, result_file_base)
if dataset_name in [
'MMBench_TEST_CN', 'MMBench_TEST_EN', 'MMBench', 'MMBench_CN'
'MMBench_TEST_CN_V11', 'MMBench_TEST_EN_V11', 'MMBench_V11', 'MMBench_CN_V11'
]:
if not MMBenchOfficialServer(dataset_name):
logger.error(
f'Can not evaluate {dataset_name} on non-official servers, '
'will skip the evaluation. '
)
continue
# Reuse the previous prediction file if exists
if rank == 0 and len(prev_pred_roots):
prev_result_file = None
prev_pkl_file_list = []
for root in prev_pred_roots[::-1]:
if osp.exists(osp.join(root, result_file_base)):
prev_result_file = osp.join(root, result_file_base)
break
elif commit_id in root and len(ls(root)) and root != pred_root:
temp_files = ls(root, match=[dataset_name, '.pkl'])
if len(temp_files):
prev_pkl_file_list.extend(temp_files)
break
if not args.reuse:
prev_result_file = None
prev_pkl_file_list = []
if prev_result_file is not None:
logger.warning(
f'--reuse is set, will reuse the prediction file {prev_result_file}.')
if prev_result_file != result_file:
shutil.copy(prev_result_file, result_file)
elif len(prev_pkl_file_list):
for fname in prev_pkl_file_list:
target_path = osp.join(pred_root, osp.basename(fname))
if not osp.exists(target_path):
shutil.copy(fname, target_path)
logger.info(f'--reuse is set, will reuse the prediction pickle file {fname}.')
else:
logger.warning(f'File already exists: {target_path}')
judge_kwargs = {
'nproc': args.nproc,
'verbose': args.verbose,
}
if args.retry is not None:
judge_kwargs['retry'] = args.retry
if args.judge is not None:
judge_kwargs['model'] = args.judge
else:
if DATASET_TYPE(dataset_name) in ['multi-choice', 'Y/N']:
judge_kwargs['model'] = 'chatgpt-0613'
elif listinstr(['MMVet', 'MathVista', 'LLaVABench'], dataset_name):
judge_kwargs['model'] = 'gpt-4-turbo'
if 'OPENAI_API_KEY_JUDGE' in os.environ and len(os.environ['OPENAI_API_KEY_JUDGE']):
judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE']
if 'OPENAI_API_BASE_JUDGE' in os.environ and len(os.environ['OPENAI_API_BASE_JUDGE']):
judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE']
if world_size > 1:
dist.barrier()
if rank == 0 and args.mode == 'all':
if DATASET_TYPE(dataset_name) == 'multi-choice':
dataset_name = 'default' if custom_flag else dataset_name
multiple_choice_eval(
result_file,
dataset=dataset_name,
**judge_kwargs)
elif DATASET_TYPE(dataset_name) == 'Y/N':
YOrN_eval(
result_file,
dataset=dataset_name,
**judge_kwargs)
elif DATASET_TYPE(dataset_name) == 'Caption':
COCO_eval(result_file)
elif dataset_name == 'MMVet':
MMVet_eval(result_file, **judge_kwargs)
elif dataset_name == 'OCRBench':
OCRBench_eval(result_file)
elif listinstr(['OCRVQA', 'TextVQA', 'ChartQA', 'DocVQA', 'InfoVQA'], dataset_name):
VQAEval(result_file, dataset_name)
elif listinstr(['MathVista'], dataset_name):
MathVista_eval(result_file, **judge_kwargs)
elif listinstr(['LLaVABench'], dataset_name):
LLaVABench_eval(result_file, **judge_kwargs)
if model is None:
model = model_name # which is only a name
# Perform the Inference
if dataset.MODALITY == 'VIDEO':
model = infer_data_job_video(
model,
work_dir=pred_root,
model_name=model_name,
dataset=dataset,
result_file_name=result_file_base,
verbose=args.verbose,
api_nproc=args.api_nproc)
elif dataset.TYPE == 'MT':
model = infer_data_job_mt(
model,
work_dir=pred_root,
model_name=model_name,
dataset=dataset,
verbose=args.verbose,
api_nproc=args.api_nproc,
ignore_failed=args.ignore)
else:
logger.error(f'Dataset {dataset_name} is not handled by evaluator, will be skipped. ')
model = infer_data_job(
model,
work_dir=pred_root,
model_name=model_name,
dataset=dataset,
verbose=args.verbose,
api_nproc=args.api_nproc,
ignore_failed=args.ignore)
# Set the judge kwargs first before evaluation or dumping
judge_kwargs = {
'nproc': args.api_nproc,
'verbose': args.verbose,
'retry': args.retry if args.retry is not None else 3
}
if args.retry is not None:
judge_kwargs['retry'] = args.retry
if args.judge is not None:
judge_kwargs['model'] = args.judge
else:
if dataset.TYPE in ['MCQ', 'Y/N']:
judge_kwargs['model'] = 'chatgpt-0125'
elif listinstr(['MMVet', 'LLaVABench', 'MMBench-Video'], dataset_name):
judge_kwargs['model'] = 'gpt-4-turbo'
elif listinstr(['MathVista', 'MathVerse', 'MathVision', 'DynaMath', 'VL-RewardBench', 'WeMath', 'LogicVista'], dataset_name): # noqa: E501
judge_kwargs['model'] = 'gpt-4o-mini'
elif listinstr(['MMLongBench', 'MMDU', 'DUDE', 'SLIDEVQA', 'MIA-Bench', 'WildVision'], dataset_name): # noqa: E501
judge_kwargs['model'] = 'gpt-4o'
if rank == 0:
logger.info(judge_kwargs)
if world_size > 1:
dist.barrier()
# Only Rank 0 handles the evaluation part
if rank == 0:
# Prepare Submission Files for MMMU_TEST AND MMT-Bench_ALL
if dataset_name in ['MMMU_TEST']:
result_json = MMMU_result_transfer(result_file)
logger.info(f'Transfer MMMU_TEST result to json for official evaluation, '
f'json file saved in {result_json}')
continue
elif 'MMT-Bench_ALL' in dataset_name:
submission_file = MMTBench_result_transfer(result_file, **judge_kwargs)
logger.info(f'Extract options from prediction of MMT-Bench FULL split for official evaluation '
f'(https://eval.ai/web/challenges/challenge-page/2328/overview), '
f'submission file saved in {submission_file}')
continue
# Skip the evaluation part if only infer
if args.mode == 'infer':
continue
# Skip the evaluation part if the dataset evaluation is not supported or annotations are missing
if 'MLLMGuard_DS' in dataset_name:
logger.info('The evaluation of MLLMGuard_DS is not supported yet. ')
continue
elif 'AesBench_TEST' == dataset_name:
logger.info(f'The results are saved in {result_file}. '
f'Please send it to the AesBench Team via huangyipo@hotmail.com.')
continue
elif dataset_name in ['DocVQA_TEST', 'InfoVQA_TEST', 'Q-Bench1_TEST', 'A-Bench_TEST']:
logger.info(f'{dataset_name} is a test split without ground-truth. '
'Thus only the inference part is supported for those datasets. ')
continue
elif dataset_name in [
'MMBench_TEST_CN', 'MMBench_TEST_EN', 'MMBench', 'MMBench_CN',
'MMBench_TEST_CN_V11', 'MMBench_TEST_EN_V11', 'MMBench_V11', 'MMBench_CN_V11'
] and not MMBenchOfficialServer(dataset_name):
logger.error(
f'Can not evaluate {dataset_name} on non-official servers, will skip the evaluation.')
continue
# Setup the proxy for the evaluation
eval_proxy = os.environ.get('EVAL_PROXY', None)
old_proxy = os.environ.get('HTTP_PROXY', '')
if eval_proxy is not None:
proxy_set(eval_proxy)
# Perform the Evaluation
eval_results = dataset.evaluate(result_file, **judge_kwargs)
# Display Evaluation Results in Terminal
if eval_results is not None:
assert isinstance(eval_results, dict) or isinstance(eval_results, pd.DataFrame)
logger.info(f'The evaluation of model {model_name} x dataset {dataset_name} has finished! ')
logger.info('Evaluation Results:')
if isinstance(eval_results, dict):
logger.info('\n' + json.dumps(eval_results, indent=4))
elif isinstance(eval_results, pd.DataFrame):
if len(eval_results) < len(eval_results.columns):
eval_results = eval_results.T
logger.info('\n' + tabulate(eval_results))
# Restore the proxy
if eval_proxy is not None:
proxy_set(old_proxy)
# Create the symbolic links for the prediction files
files = os.listdir(pred_root)
files = [x for x in files if (f'{model_name}_{dataset_name}' in x or "status.json" in x)]
for f in files:
cwd = os.getcwd()
file_addr = osp.join(cwd, pred_root, f)
link_addr = osp.join(cwd, pred_root_meta, f)
if osp.exists(link_addr) or osp.islink(link_addr):
os.remove(link_addr)
os.symlink(file_addr, link_addr)
except Exception as e:
logger.exception(f'Model {model_name} x Dataset {dataset_name} combination failed: {e}, '
'skipping this combination.')
continue
if world_size > 1:
dist.barrier()
if world_size > 1:
dist.destroy_process_group()
if __name__ == '__main__':

View File

@@ -1,31 +0,0 @@
export PATH=/usr/local/cuda/bin:$PATH
export HF_ENDPOINT=https://hf-mirror.com
export OMP_NUM_THREADS=1
export timestamp=`date +"%Y%m%d%H%M%S"`
export OLD_VERSION='False'
export PYTHONPATH=$(dirname $SELF_DIR):$PYTHONPATH
# gpu consumed
# fp16 17-18G
# int4 7-8G
# model to be used
# Example: MODELNAME=MiniCPM-Llama3-V-2_5
MODELNAME=$1
# datasets to be tested
# Example: DATALIST="POPE ScienceQA_TEST ChartQA_TEST"
DATALIST=$2
# test mode, all or infer
MODE=$3
echo "Starting inference with model $MODELNAME on datasets $DATALIST"
# run on multi gpus with torchrun command
# remember to run twice, the first run may fail
torchrun --nproc_per_node=8 run.py --data $DATALIST --model $MODELNAME --mode $MODE
torchrun --nproc_per_node=8 run.py --data $DATALIST --model $MODELNAME --mode $MODE
# run on single gpu with python command
# python run.py --data $DATALIST --model $MODELNAME --verbose --mode $MODE
# python run.py --data $DATALIST --model $MODELNAME --verbose --mode $MODE
ls

View File

@@ -0,0 +1,41 @@
export PATH=/usr/local/cuda/bin:$PATH
export HF_ENDPOINT=https://hf-mirror.com
export OMP_NUM_THREADS=1
export timestamp=`date +"%Y%m%d%H%M%S"`
export OLD_VERSION='False'
export PYTHONPATH=$(dirname $SELF_DIR):$PYTHONPATH
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
# gpu consumed
# fp16 17-18G
# int4 7-8G
# model to be used
# Example: MODELNAME=MiniCPM-o-2_6
MODELNAME=$1
# datasets to be tested
# Example: DATALIST=MMMU_DEV_VAL
DATALIST=$2
# run on multi gpus with torchrun command
# remember to run twice, the first run may fail
for DATASET in $DATALIST; do
echo "Starting inference with model $MODELNAME on dataset $DATASET"
torchrun --master_port 29500 --nproc_per_node=8 run.py --data $DATASET --model $MODELNAME --mode infer --reuse
torchrun --master_port 29501 --nproc_per_node=8 run.py --data $DATASET --model $MODELNAME --mode infer --reuse
# for benchmarks which require gpt for scoring, you need to specify OPENAI_API_BASE and OPENAI_API_KEY in .env file
if [[ "$DATASET" == *"MMBench_TEST"*]]; then
echo "Skipping evaluation for dataset $DATASET"
else
echo "Starting evaluation with model $MODELNAME on datasets $DATASET"
python run.py --data $DATASET --model $MODELNAME --nproc 16 --verbose
fi
done
# run on single gpu with python command
# python run.py --data $DATALIST --model $MODELNAME --verbose --mode infer
# python run.py --data $DATALIST --model $MODELNAME --verbose --mode infer
# echo "Starting evaluation with model $MODELNAME on datasets $DATASET"
# python run.py --data $DATASET --model $MODELNAME --nproc 16 --verbose

122
eval_mm/vlmevalkit/setup.py Normal file
View File

@@ -0,0 +1,122 @@
import re
import sys
from os.path import exists
from setuptools import find_packages, setup
def parse_requirements(fname='requirements.txt', with_version=True):
"""Parse the package dependencies listed in a requirements file but strips
specific versioning information.
Args:
fname (str): path to requirements file
with_version (bool, default=False): if True include version specs
Returns:
List[str]: list of requirements items
CommandLine:
python -c "import setup; print(setup.parse_requirements())"
"""
require_fpath = fname
def parse_line(line):
"""Parse information from a line in a requirements text file."""
if line.startswith('-r '):
# Allow specifying requirements in other files
target = line.split(' ')[1]
for info in parse_require_file(target):
yield info
else:
info = {'line': line}
if line.startswith('-e '):
info['package'] = line.split('#egg=')[1]
elif '@git+' in line:
info['package'] = line
else:
# Remove versioning from the package
pat = '(' + '|'.join(['>=', '==', '>']) + ')'
parts = re.split(pat, line, maxsplit=1)
parts = [p.strip() for p in parts]
info['package'] = parts[0]
if len(parts) > 1:
op, rest = parts[1:]
if ';' in rest:
# Handle platform specific dependencies
# http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
version, platform_deps = map(str.strip,
rest.split(';'))
info['platform_deps'] = platform_deps
else:
version = rest # NOQA
info['version'] = (op, version)
yield info
def parse_require_file(fpath):
with open(fpath, 'r') as f:
for line in f.readlines():
line = line.strip()
if line and not line.startswith('#'):
for info in parse_line(line):
yield info
def gen_packages_items():
if exists(require_fpath):
for info in parse_require_file(require_fpath):
parts = [info['package']]
if with_version and 'version' in info:
parts.extend(info['version'])
if not sys.version.startswith('3.4'):
# apparently package_deps are broken in 3.4
platform_deps = info.get('platform_deps')
if platform_deps is not None:
parts.append(';' + platform_deps)
item = ''.join(parts)
yield item
packages = list(gen_packages_items())
return packages
with open('README.md') as f:
readme = f.read()
def do_setup():
setup(
name='vlmeval',
version='0.1.0',
description='OpenCompass VLM Evaluation Kit',
author='Haodong Duan',
author_email='dhd.efz@gmail.com',
maintainer='Haodong Duan',
maintainer_email='dhd.efz@gmail.com',
long_description=readme,
long_description_content_type='text/markdown',
cmdclass={},
install_requires=parse_requirements('requirements.txt'),
setup_requires=[],
python_requires='>=3.7.0',
packages=find_packages(exclude=[
'test*',
'paper_test*',
]),
keywords=['AI', 'NLP', 'in-context learning'],
entry_points={
'console_scripts': ['vlmutil = vlmeval:cli']
},
classifiers=[
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
])
if __name__ == '__main__':
do_setup()

View File

@@ -5,9 +5,12 @@ except ImportError:
from .smp import *
from .api import *
from .evaluate import *
from .dataset import *
from .utils import *
from .vlm import *
from .config import *
from .tools import cli
load_env()
__version__ = '0.2rc1'

View File

@@ -1,6 +1,5 @@
from .gpt import OpenAIWrapper, GPT4V
from .gpt_int import OpenAIWrapperInternal, GPT4V_Internal
__all__ = [
'OpenAIWrapper', 'OpenAIWrapperInternal', 'GPT4V', 'GPT4V_Internal'
'OpenAIWrapper', 'GPT4V',
]

View File

@@ -3,7 +3,7 @@ import random as rd
from abc import abstractmethod
import os.path as osp
import copy as cp
from ..smp import get_logger, parse_file
from ..smp import get_logger, parse_file, concat_images_vlmeval, LMUDataRoot, md5, decode_base64_to_image_file
class BaseAPI:
@@ -62,12 +62,22 @@ class BaseAPI:
Returns:
bool: If the API model is working, return True, else return False.
"""
retry = 3
self.old_timeout = None
if hasattr(self, 'timeout'):
self.old_timeout = self.timeout
self.timeout = 120
retry = 5
while retry > 0:
ret = self.generate('hello')
if ret is not None and ret != '' and self.fail_msg not in ret:
if self.old_timeout is not None:
self.timeout = self.old_timeout
return True
retry -= 1
if self.old_timeout is not None:
self.timeout = self.old_timeout
return False
def check_content(self, msgs):
@@ -127,6 +137,82 @@ class BaseAPI:
else:
return None
# May exceed the context windows size, so try with different turn numbers.
def chat_inner(self, inputs, **kwargs):
_ = kwargs.pop('dataset', None)
while len(inputs):
try:
return self.generate_inner(inputs, **kwargs)
except Exception as e:
if self.verbose:
self.logger.info(f'{type(e)}: {e}')
inputs = inputs[1:]
while len(inputs) and inputs[0]['role'] != 'user':
inputs = inputs[1:]
continue
return -1, self.fail_msg + ': ' + 'Failed with all possible conversation turns.', None
def chat(self, messages, **kwargs1):
"""The main function for multi-turn chatting. Will call `chat_inner` with the preprocessed input messages."""
assert hasattr(self, 'chat_inner'), 'The API model should has the `chat_inner` method. '
for msg in messages:
assert isinstance(msg, dict) and 'role' in msg and 'content' in msg, msg
assert self.check_content(msg['content']) in ['str', 'dict', 'liststr', 'listdict'], msg
msg['content'] = self.preproc_content(msg['content'])
# merge kwargs
kwargs = cp.deepcopy(self.default_kwargs)
kwargs.update(kwargs1)
answer = None
# a very small random delay [0s - 0.5s]
T = rd.random() * 0.5
time.sleep(T)
assert messages[-1]['role'] == 'user'
for i in range(self.retry):
try:
ret_code, answer, log = self.chat_inner(messages, **kwargs)
if ret_code == 0 and self.fail_msg not in answer and answer != '':
if self.verbose:
print(answer)
return answer
elif self.verbose:
if not isinstance(log, str):
try:
log = log.text
except Exception as e:
self.logger.warning(f'Failed to parse {log} as an http response: {str(e)}. ')
self.logger.info(f'RetCode: {ret_code}\nAnswer: {answer}\nLog: {log}')
except Exception as err:
if self.verbose:
self.logger.error(f'An error occured during try {i}: ')
self.logger.error(f'{type(err)}: {err}')
# delay before each retry
T = rd.random() * self.wait * 2
time.sleep(T)
return self.fail_msg if answer in ['', None] else answer
def preprocess_message_with_role(self, message):
system_prompt = ''
new_message = []
for data in message:
assert isinstance(data, dict)
role = data.pop('role', 'user')
if role == 'system':
system_prompt += data['value'] + '\n'
else:
new_message.append(data)
if system_prompt != '':
if self.system_prompt is None:
self.system_prompt = system_prompt
else:
self.system_prompt += '\n' + system_prompt
return new_message
def generate(self, message, **kwargs1):
"""The main function to generate the answer. Will call `generate_inner` with the preprocessed input messages.
@@ -136,6 +222,9 @@ class BaseAPI:
Returns:
str: The generated answer of the Failed Message if failed to obtain answer.
"""
if self.check_content(message) == 'listdict':
message = self.preprocess_message_with_role(message)
assert self.check_content(message) in ['str', 'dict', 'liststr', 'listdict'], f'Invalid input type: {message}'
message = self.preproc_content(message)
assert message is not None and self.check_content(message) == 'listdict'
@@ -162,20 +251,20 @@ class BaseAPI:
if not isinstance(log, str):
try:
log = log.text
except:
self.logger.warning(f'Failed to parse {log} as an http response. ')
except Exception as e:
self.logger.warning(f'Failed to parse {log} as an http response: {str(e)}. ')
self.logger.info(f'RetCode: {ret_code}\nAnswer: {answer}\nLog: {log}')
except Exception as err:
if self.verbose:
self.logger.error(f'An error occured during try {i}:')
self.logger.error(err)
self.logger.error(f'An error occured during try {i}: ')
self.logger.error(f'{type(err)}: {err}')
# delay before each retry
T = rd.random() * self.wait * 2
time.sleep(T)
return self.fail_msg if answer in ['', None] else answer
def message_to_promptimg(self, message):
def message_to_promptimg(self, message, dataset=None):
assert not self.INTERLEAVE
model_name = self.__class__.__name__
import warnings
@@ -191,5 +280,10 @@ class BaseAPI:
image = [x['value'] for x in message if x['type'] == 'image'][0]
else:
prompt = '\n'.join([x['value'] if x['type'] == 'text' else '<image>' for x in message])
image = [x['value'] for x in message if x['type'] == 'image'][0]
if dataset == 'BLINK':
image = concat_images_vlmeval(
[x['value'] for x in message if x['type'] == 'image'],
target_size=512)
else:
image = [x['value'] for x in message if x['type'] == 'image'][0]
return prompt, image

View File

@@ -10,18 +10,18 @@ APIBASES = {
def GPT_context_window(model):
length_map = {
'gpt-4-1106-preview': 128000,
'gpt-4-vision-preview': 128000,
'gpt-4': 8192,
'gpt-4-32k': 32768,
'gpt-4-0613': 8192,
'gpt-4-32k-0613': 32768,
'gpt-4-turbo-preview': 128000,
'gpt-4-1106-preview': 128000,
'gpt-4-0125-preview': 128000,
'gpt-4-vision-preview': 128000,
'gpt-4-turbo': 128000,
'gpt-4-turbo-2024-04-09': 128000,
'gpt-3.5-turbo': 16385,
'gpt-3.5-turbo-0125': 16385,
'gpt-3.5-turbo-1106': 16385,
'gpt-3.5-turbo': 4096,
'gpt-3.5-turbo-16k': 16385,
'gpt-3.5-turbo-instruct': 4096,
'gpt-3.5-turbo-0613': 4096,
'gpt-3.5-turbo-16k-0613': 16385,
}
if model in length_map:
return length_map[model]
@@ -38,7 +38,7 @@ class OpenAIWrapper(BaseAPI):
retry: int = 5,
wait: int = 5,
key: str = None,
verbose: bool = True,
verbose: bool = False,
system_prompt: str = None,
temperature: float = 0,
timeout: int = 60,
@@ -46,6 +46,7 @@ class OpenAIWrapper(BaseAPI):
max_tokens: int = 1024,
img_size: int = 512,
img_detail: str = 'low',
use_azure: bool = False,
**kwargs):
self.model = model
@@ -53,19 +54,43 @@ class OpenAIWrapper(BaseAPI):
self.fail_msg = 'Failed to obtain answer via API. '
self.max_tokens = max_tokens
self.temperature = temperature
self.use_azure = use_azure
if 'step-1v' in model:
if 'step' in model:
env_key = os.environ.get('STEPAI_API_KEY', '')
if key is None:
key = env_key
else:
env_key = os.environ.get('OPENAI_API_KEY', '')
elif 'yi-vision' in model:
env_key = os.environ.get('YI_API_KEY', '')
if key is None:
key = env_key
assert isinstance(key, str) and key.startswith('sk-'), (
f'Illegal openai_key {key}. '
'Please set the environment variable OPENAI_API_KEY to your openai key. '
)
elif 'internvl2-pro' in model:
env_key = os.environ.get('InternVL2_PRO_KEY', '')
if key is None:
key = env_key
elif 'abab' in model:
env_key = os.environ.get('MiniMax_API_KEY', '')
if key is None:
key = env_key
else:
if use_azure:
env_key = os.environ.get('AZURE_OPENAI_API_KEY', None)
assert env_key is not None, 'Please set the environment variable AZURE_OPENAI_API_KEY. '
if key is None:
key = env_key
assert isinstance(key, str), (
'Please set the environment variable AZURE_OPENAI_API_KEY to your openai key. '
)
else:
env_key = os.environ.get('OPENAI_API_KEY', '')
if key is None:
key = env_key
assert isinstance(key, str) and key.startswith('sk-'), (
f'Illegal openai_key {key}. '
'Please set the environment variable OPENAI_API_KEY to your openai key. '
)
self.key = key
assert img_size > 0 or img_size == -1
self.img_size = img_size
@@ -75,30 +100,46 @@ class OpenAIWrapper(BaseAPI):
super().__init__(wait=wait, retry=retry, system_prompt=system_prompt, verbose=verbose, **kwargs)
if api_base is None:
if 'OPENAI_API_BASE' in os.environ and os.environ['OPENAI_API_BASE'] != '':
self.logger.error('Environment variable OPENAI_API_BASE is set. Will use it as api_base. ')
api_base = os.environ['OPENAI_API_BASE']
else:
api_base = 'OFFICIAL'
if use_azure:
api_base_template = (
'{endpoint}openai/deployments/{deployment_name}/chat/completions?api-version={api_version}'
)
endpoint = os.getenv('AZURE_OPENAI_ENDPOINT', None)
assert endpoint is not None, 'Please set the environment variable AZURE_OPENAI_ENDPOINT. '
deployment_name = os.getenv('AZURE_OPENAI_DEPLOYMENT_NAME', None)
assert deployment_name is not None, 'Please set the environment variable AZURE_OPENAI_DEPLOYMENT_NAME. '
api_version = os.getenv('OPENAI_API_VERSION', None)
assert api_version is not None, 'Please set the environment variable OPENAI_API_VERSION. '
assert api_base is not None
if api_base in APIBASES:
self.api_base = APIBASES[api_base]
elif api_base.startswith('http'):
self.api_base = api_base
self.api_base = api_base_template.format(
endpoint=os.getenv('AZURE_OPENAI_ENDPOINT'),
deployment_name=os.getenv('AZURE_OPENAI_DEPLOYMENT_NAME'),
api_version=os.getenv('OPENAI_API_VERSION')
)
else:
self.logger.error('Unknown API Base. ')
sys.exit(-1)
if api_base is None:
if 'OPENAI_API_BASE' in os.environ and os.environ['OPENAI_API_BASE'] != '':
self.logger.info('Environment variable OPENAI_API_BASE is set. Will use it as api_base. ')
api_base = os.environ['OPENAI_API_BASE']
else:
api_base = 'OFFICIAL'
assert api_base is not None
if api_base in APIBASES:
self.api_base = APIBASES[api_base]
elif api_base.startswith('http'):
self.api_base = api_base
else:
self.logger.error('Unknown API Base. ')
raise NotImplementedError
self.logger.info(f'Using API Base: {self.api_base}; API Key: {self.key}')
# inputs can be a lvl-2 nested list: [content1, content2, content3, ...]
# content can be a string or a list of image & text
def prepare_inputs(self, inputs):
input_msgs = []
if self.system_prompt is not None:
input_msgs.append(dict(role='system', content=self.system_prompt))
def prepare_itlist(self, inputs):
assert np.all([isinstance(x, dict) for x in inputs])
has_images = np.sum([x['type'] == 'image' for x in inputs])
if has_images:
content_list = []
@@ -111,11 +152,24 @@ class OpenAIWrapper(BaseAPI):
b64 = encode_image_to_base64(img, target_size=self.img_size)
img_struct = dict(url=f'data:image/jpeg;base64,{b64}', detail=self.img_detail)
content_list.append(dict(type='image_url', image_url=img_struct))
input_msgs.append(dict(role='user', content=content_list))
else:
assert all([x['type'] == 'text' for x in inputs])
text = '\n'.join([x['value'] for x in inputs])
input_msgs.append(dict(role='user', content=text))
content_list = [dict(type='text', text=text)]
return content_list
def prepare_inputs(self, inputs):
input_msgs = []
if self.system_prompt is not None:
input_msgs.append(dict(role='system', content=self.system_prompt))
assert isinstance(inputs, list) and isinstance(inputs[0], dict)
assert np.all(['type' in x for x in inputs]) or np.all(['role' in x for x in inputs]), inputs
if 'role' in inputs[0]:
assert inputs[-1]['role'] == 'user', inputs[-1]
for item in inputs:
input_msgs.append(dict(role=item['role'], content=self.prepare_itlist(item['content'])))
else:
input_msgs.append(dict(role='user', content=self.prepare_itlist(inputs)))
return input_msgs
def generate_inner(self, inputs, **kwargs) -> str:
@@ -123,17 +177,24 @@ class OpenAIWrapper(BaseAPI):
temperature = kwargs.pop('temperature', self.temperature)
max_tokens = kwargs.pop('max_tokens', self.max_tokens)
context_window = GPT_context_window(self.model)
max_tokens = min(max_tokens, context_window - self.get_token_len(inputs))
if 0 < max_tokens <= 100:
self.logger.warning(
'Less than 100 tokens left, '
'may exceed the context window with some additional meta symbols. '
)
if max_tokens <= 0:
return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '
# context_window = GPT_context_window(self.model)
# new_max_tokens = min(max_tokens, context_window - self.get_token_len(inputs))
# if 0 < new_max_tokens <= 100 and new_max_tokens < max_tokens:
# self.logger.warning(
# 'Less than 100 tokens left, '
# 'may exceed the context window with some additional meta symbols. '
# )
# if new_max_tokens <= 0:
# return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '
# max_tokens = new_max_tokens
headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self.key}'}
# Will send request if use Azure, dk how to use openai client for it
if self.use_azure:
headers = {'Content-Type': 'application/json', 'api-key': self.key}
elif 'internvl2-pro' in self.model:
headers = {'Content-Type': 'application/json', 'Authorization': self.key}
else:
headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self.key}'}
payload = dict(
model=self.model,
messages=input_msgs,
@@ -141,38 +202,66 @@ class OpenAIWrapper(BaseAPI):
n=1,
temperature=temperature,
**kwargs)
response = requests.post(self.api_base, headers=headers, data=json.dumps(payload), timeout=self.timeout * 1.1)
response = requests.post(
self.api_base,
headers=headers, data=json.dumps(payload), timeout=self.timeout * 1.1)
ret_code = response.status_code
ret_code = 0 if (200 <= int(ret_code) < 300) else ret_code
answer = self.fail_msg
try:
resp_struct = json.loads(response.text)
answer = resp_struct['choices'][0]['message']['content'].strip()
except:
pass
except Exception as err:
if self.verbose:
self.logger.error(f'{type(err)}: {err}')
self.logger.error(response.text if hasattr(response, 'text') else response)
return ret_code, answer, response
def get_image_token_len(self, img_path, detail='low'):
import math
if detail == 'low':
return 85
im = Image.open(img_path)
height, width = im.size
if width > 1024 or height > 1024:
if width > height:
height = int(height * 1024 / width)
width = 1024
else:
width = int(width * 1024 / height)
height = 1024
h = math.ceil(height / 512)
w = math.ceil(width / 512)
total = 85 + 170 * h * w
return total
def get_token_len(self, inputs) -> int:
import tiktoken
try:
enc = tiktoken.encoding_for_model(self.model)
except:
enc = tiktoken.encoding_for_model('gpt-4')
except Exception as err:
if 'gpt' in self.model.lower():
if self.verbose:
self.logger.warning(f'{type(err)}: {err}')
enc = tiktoken.encoding_for_model('gpt-4')
else:
return 0
assert isinstance(inputs, list)
tot = 0
for item in inputs:
if item['type'] == 'text':
if 'role' in item:
tot += self.get_token_len(item['content'])
elif item['type'] == 'text':
tot += len(enc.encode(item['value']))
elif item['type'] == 'image':
tot += 85
if self.img_detail == 'high':
img = Image.open(item['value'])
npatch = np.ceil(img.size[0] / 512) * np.ceil(img.size[1] / 512)
tot += npatch * 170
tot += self.get_image_token_len(item['value'], detail=self.img_detail)
return tot
class GPT4V(OpenAIWrapper):
def generate(self, message, dataset=None):
return super(GPT4V, self).generate(message)
return super(GPT4V, self).generate(message)

View File

@@ -1,90 +0,0 @@
import json
import warnings
import requests
from ..smp import *
from .gpt import GPT_context_window, OpenAIWrapper
url = 'http://ecs.sv.us.alles-apin.openxlab.org.cn/v1/openai/v2/text/chat'
headers = {
'Content-Type': 'application/json'
}
class OpenAIWrapperInternal(OpenAIWrapper):
is_api: bool = True
def __init__(self,
model: str = 'gpt-3.5-turbo-0613',
retry: int = 5,
wait: int = 3,
verbose: bool = True,
system_prompt: str = None,
temperature: float = 0,
timeout: int = 60,
max_tokens: int = 1024,
img_size: int = 512,
img_detail: str = 'low',
**kwargs):
self.model = model
if 'KEYS' in os.environ and osp.exists(os.environ['KEYS']):
keys = load(os.environ['KEYS'])
headers['alles-apin-token'] = keys.get('alles-apin-token', '')
elif 'ALLES' in os.environ:
headers['alles-apin-token'] = os.environ['ALLES']
self.headers = headers
self.temperature = temperature
self.timeout = timeout
self.max_tokens = max_tokens
assert img_size > 0 or img_size == -1
self.img_size = img_size
assert img_detail in ['high', 'low']
self.img_detail = img_detail
super(OpenAIWrapper, self).__init__(
wait=wait, retry=retry, system_prompt=system_prompt, verbose=verbose, **kwargs)
def generate_inner(self, inputs, **kwargs) -> str:
input_msgs = self.prepare_inputs(inputs)
temperature = kwargs.pop('temperature', self.temperature)
max_tokens = kwargs.pop('max_tokens', self.max_tokens)
# Held out 100 tokens as buffer
context_window = GPT_context_window(self.model)
max_tokens = min(max_tokens, context_window - self.get_token_len(inputs))
if 0 < max_tokens <= 100:
print('Less than 100 tokens left, may exceed the context window with some additional meta symbols. ')
if max_tokens <= 0:
return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '
payload = dict(
model=self.model,
messages=input_msgs,
max_tokens=max_tokens,
n=1,
stop=None,
timeout=self.timeout,
temperature=temperature,
**kwargs)
response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=self.timeout * 1.1)
ret_code = response.status_code
ret_code = 0 if (200 <= int(ret_code) < 300) else ret_code
answer = self.fail_msg
try:
resp_struct = json.loads(response.text)
assert resp_struct['msg'] == 'ok' and resp_struct['msgCode'] == '10000', resp_struct
answer = resp_struct['data']['choices'][0]['message']['content'].strip()
except:
pass
return ret_code, answer, response
class GPT4V_Internal(OpenAIWrapperInternal):
def generate(self, message, dataset=None):
return super(GPT4V_Internal, self).generate(message)

View File

@@ -2,18 +2,19 @@ from vlmeval.vlm import *
from vlmeval.api import *
from functools import partial
ungrouped = {
'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
minicpm_series = {
'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
'MiniCPM-V-2_6': partial(MiniCPM_V_2_6, model_path='openbmb/MiniCPM-V-2_6'),
'MiniCPM-o-2_6': partial(MiniCPM_o_2_6, model_path='openbmb/MiniCPM-o-2_6'),
}
supported_VLM = {}
model_groups = [
ungrouped
minicpm_series
]
for grp in model_groups:
supported_VLM.update(grp)

View File

@@ -0,0 +1,237 @@
import warnings
from .image_base import img_root_map, ImageBaseDataset
from .image_caption import ImageCaptionDataset
from .image_yorn import ImageYORNDataset
from .image_mcq import (
ImageMCQDataset, MMMUDataset, CustomMCQDataset, MUIRDataset, GMAIMMBenchDataset, MMERealWorld, HRBenchDataset,
NaturalBenchDataset
)
from .image_mt import MMDUDataset
from .image_vqa import (
ImageVQADataset, MathVision, OCRBench, MathVista, LLaVABench, MMVet, MTVQADataset, TableVQABench,
CustomVQADataset, CRPE, MathVerse, OlympiadBench, QSpatial, VizWiz, MMNIAH, WeMath, LogicVista
)
from .image_ccocr import CCOCRDataset
from .text_mcq import CustomTextMCQDataset, TextMCQDataset
from .vcr import VCRDataset
from .mmlongbench import MMLongBench
from .dude import DUDE
from .slidevqa import SlideVQA
from .vl_rewardbench import VLRewardBench
from .mmbench_video import MMBenchVideo
from .videomme import VideoMME
from .mvbench import MVBench, MVBench_MP4
from .mlvu import MLVU, MLVU_MCQ, MLVU_OpenEnded
from .tempcompass import TempCompass, TempCompass_Captioning, TempCompass_MCQ, TempCompass_YorN
from .longvideobench import LongVideoBench
from .video_concat_dataset import ConcatVideoDataset
from .mmgenbench import MMGenBench
from .cgbench import CGBench_MCQ_Grounding_Mini, CGBench_OpenEnded_Mini, CGBench_MCQ_Grounding, CGBench_OpenEnded
from .miabench import MIABench
from .cmmmu import CMMMU
from .wildvision import WildVision
from .mmmath import MMMath
from .dynamath import Dynamath
from .utils import *
from .video_dataset_config import *
from ..smp import *
class ConcatDataset(ImageBaseDataset):
# This dataset takes multiple dataset names as input and aggregate them into a single dataset.
# Each single dataset should not have a field named `SUB_DATASET`
DATASET_SETS = {
'MMMB': ['MMMB_ar', 'MMMB_cn', 'MMMB_en', 'MMMB_pt', 'MMMB_ru', 'MMMB_tr'],
'MTL_MMBench_DEV': [
'MMBench_dev_ar', 'MMBench_dev_cn', 'MMBench_dev_en',
'MMBench_dev_pt', 'MMBench_dev_ru', 'MMBench_dev_tr'
]
}
def __init__(self, dataset):
datasets = self.DATASET_SETS[dataset]
self.dataset_map = {}
# The name of the compliation
self.dataset_name = dataset
self.datasets = datasets
for dname in datasets:
dataset = build_dataset(dname)
assert dataset is not None, dataset
self.dataset_map[dname] = dataset
TYPES = [x.TYPE for x in self.dataset_map.values()]
MODALITIES = [x.MODALITY for x in self.dataset_map.values()]
assert np.all([x == TYPES[0] for x in TYPES]), (datasets, TYPES)
assert np.all([x == MODALITIES[0] for x in MODALITIES]), (datasets, MODALITIES)
self.TYPE = TYPES[0]
self.MODALITY = MODALITIES[0]
data_all = []
for dname in datasets:
data = self.dataset_map[dname].data
data['SUB_DATASET'] = [dname] * len(data)
data_new = localize_df(data, dname, nproc=16)
data_all.append(data_new)
data = pd.concat(data_all)
data['original_index'] = data.pop('index')
data['index'] = np.arange(len(data))
self.data = data
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
idx = line['original_index']
dname = line['SUB_DATASET']
org_data = self.dataset_map[dname].data
org_line = cp.deepcopy(org_data[org_data['index'] == idx]).iloc[0]
return self.dataset_map[dname].build_prompt(org_line)
def dump_image(self, line):
# Assert all images are pre-dumped
assert 'image' not in line
assert 'image_path' in line
tgt_path = toliststr(line['image_path'])
return tgt_path
@classmethod
def supported_datasets(cls):
return list(cls.DATASET_SETS)
def evaluate(self, eval_file, **judge_kwargs):
suffix = eval_file.split('.')[-1]
# First, split the eval_file by dataset
data_all = load(eval_file)
for dname in self.datasets:
tgt = eval_file.replace(self.dataset_name, dname)
data_sub = data_all[data_all['SUB_DATASET'] == dname]
data_sub.pop('index')
data_sub['index'] = data_sub.pop('original_index')
data_sub.pop('SUB_DATASET')
dump(data_sub, tgt)
# Then, evaluate each dataset separately
results_all = []
for dname in self.datasets:
tgt = eval_file.replace(self.dataset_name, dname)
res = self.dataset_map[dname].evaluate(tgt, **judge_kwargs)
assert isinstance(res, pd.DataFrame)
res['DATASET'] = [dname] * len(res)
results_all.append(res)
result = pd.concat(results_all)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(result, score_file)
return result
# Add new supported dataset class here
IMAGE_DATASET = [
ImageCaptionDataset, ImageYORNDataset, ImageMCQDataset, ImageVQADataset, MathVision,
MMMUDataset, OCRBench, MathVista, LLaVABench, MMVet, MTVQADataset, TableVQABench,
MMLongBench, VCRDataset, MMDUDataset, DUDE, SlideVQA, MUIRDataset, CCOCRDataset,
GMAIMMBenchDataset, MMERealWorld, HRBenchDataset, CRPE, MathVerse, NaturalBenchDataset,
MIABench, OlympiadBench, WildVision, MMMath, QSpatial, Dynamath, MMGenBench, VizWiz, MMNIAH,
CMMMU, VLRewardBench, WeMath, LogicVista
]
VIDEO_DATASET = [
MMBenchVideo, VideoMME, MVBench, MVBench_MP4, LongVideoBench,
MLVU, MLVU_MCQ, MLVU_OpenEnded,
TempCompass, TempCompass_MCQ, TempCompass_Captioning, TempCompass_YorN,
CGBench_MCQ_Grounding_Mini, CGBench_OpenEnded_Mini, CGBench_MCQ_Grounding, CGBench_OpenEnded
]
TEXT_DATASET = [
TextMCQDataset
]
CUSTOM_DATASET = [
CustomMCQDataset, CustomVQADataset, CustomTextMCQDataset
]
DATASET_COLLECTION = [ConcatDataset, ConcatVideoDataset]
DATASET_CLASSES = IMAGE_DATASET + VIDEO_DATASET + TEXT_DATASET + CUSTOM_DATASET + DATASET_COLLECTION
SUPPORTED_DATASETS = []
for DATASET_CLS in DATASET_CLASSES:
SUPPORTED_DATASETS.extend(DATASET_CLS.supported_datasets())
def DATASET_TYPE(dataset, *, default: str = 'MCQ') -> str:
for cls in DATASET_CLASSES:
if dataset in cls.supported_datasets():
if hasattr(cls, 'TYPE'):
return cls.TYPE
# Have to add specific routine to handle ConcatDataset
if dataset in ConcatDataset.DATASET_SETS:
dataset_list = ConcatDataset.DATASET_SETS[dataset]
TYPES = [DATASET_TYPE(dname) for dname in dataset_list]
assert np.all([x == TYPES[0] for x in TYPES]), (dataset_list, TYPES)
return TYPES[0]
if 'openended' in dataset.lower():
return 'VQA'
warnings.warn(f'Dataset {dataset} is a custom one and not annotated as `openended`, will treat as {default}. ')
return default
def DATASET_MODALITY(dataset, *, default: str = 'IMAGE') -> str:
if dataset is None:
warnings.warn(f'Dataset is not specified, will treat modality as {default}. ')
return default
for cls in DATASET_CLASSES:
if dataset in cls.supported_datasets():
if hasattr(cls, 'MODALITY'):
return cls.MODALITY
# Have to add specific routine to handle ConcatDataset
if dataset in ConcatDataset.DATASET_SETS:
dataset_list = ConcatDataset.DATASET_SETS[dataset]
MODALITIES = [DATASET_MODALITY(dname) for dname in dataset_list]
assert np.all([x == MODALITIES[0] for x in MODALITIES]), (dataset_list, MODALITIES)
return MODALITIES[0]
if 'VIDEO' in dataset.lower():
return 'VIDEO'
elif 'IMAGE' in dataset.lower():
return 'IMAGE'
warnings.warn(f'Dataset {dataset} is a custom one, will treat modality as {default}. ')
return default
def build_dataset(dataset_name, **kwargs):
for cls in DATASET_CLASSES:
if dataset_name in supported_video_datasets:
return supported_video_datasets[dataset_name](**kwargs)
elif dataset_name in cls.supported_datasets():
return cls(dataset=dataset_name, **kwargs)
warnings.warn(f'Dataset {dataset_name} is not officially supported. ')
data_file = osp.join(LMUDataRoot(), f'{dataset_name}.tsv')
if not osp.exists(data_file):
warnings.warn(f'Data file {data_file} does not exist. Dataset building failed. ')
return None
data = load(data_file)
if 'question' not in [x.lower() for x in data.columns]:
warnings.warn(f'Data file {data_file} does not have a `question` column. Dataset building failed. ')
return None
if 'A' in data and 'B' in data:
if 'image' in data or 'image_path' in data:
warnings.warn(f'Will assume unsupported dataset {dataset_name} as a Custom MCQ dataset. ')
return CustomMCQDataset(dataset=dataset_name, **kwargs)
else:
warnings.warn(f'Will assume unsupported dataset {dataset_name} as a Custom Text MCQ dataset. ')
return CustomTextMCQDataset(dataset=dataset_name, **kwargs)
else:
warnings.warn(f'Will assume unsupported dataset {dataset_name} as a Custom VQA dataset. ')
return CustomVQADataset(dataset=dataset_name, **kwargs)
__all__ = [
'build_dataset', 'img_root_map', 'build_judge', 'extract_answer_from_item', 'prefetch_answer', 'DEBUG_MESSAGE'
] + [cls.__name__ for cls in DATASET_CLASSES]

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,354 @@
from .image_base import ImageBaseDataset
import random
from collections import Counter
import os
import re
import tempfile
from ..smp import *
def get_multi_choice_prediction(response, all_choices, index2ans):
for char in [',', '.', '!', '?', ';', ':', "'"]:
response = response.strip(char)
response = " " + response + " " # add space to avoid partial match
candidates = []
for choice in all_choices: # (A) (B) (C) (D)
# Add the choice to candidates each time it appears in the response
candidates.extend([choice for _ in range(response.count(f'({choice})'))])
if len(candidates) == 0:
for choice in all_choices: # A B C D
# Similarly, add the choice for each occurrence
candidates.extend([choice for _ in range(response.count(f'{choice}'))])
if len(candidates) == 0 and len(response.split()) >= 1:
for index, ans in index2ans.items():
# Add index for each occurrence of ans in response
candidates.extend([index for _ in range(response.count(ans))])
# if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example
if len(candidates) == 0 and len(response.split()) >= 1:
for index, ans in index2ans.items():
if ans in response:
candidates.append(index)
# index_ans = False # it's content ans.
if len(candidates) == 0: # still not get answer, randomly choose one.
return random.choice(all_choices)
# return ''
else:
# Count the occurrence of each candidate
candidate_counts = Counter(candidates)
# Select the most frequent candidates
max_count = max(candidate_counts.values())
most_frequent_candidates = [c for c in all_choices if candidate_counts.get(c, 0) == max_count]
# Combine the most frequent candidates in ABCD order
return ''.join(most_frequent_candidates)
def extract_numbers(string):
# Pattern for numbers with Chinese commas
pattern_commas = r'-?\d{1,3}(?:\d{3})+'
# Pattern for scientific notation
pattern_scientific = r'-?\d+(?:\.\d+)?[eE][+-]?\d+'
# Pattern for simple numbers without Chinese commas
pattern_simple = r'-?(?:\d+\.\d+|\.\d+|\d+)(?![eE][+-]?\d+)(?!\d)'
# Extract numbers with Chinese commas
numbers_with_commas = re.findall(pattern_commas, string)
# Extract numbers in scientific notation
numbers_scientific = re.findall(pattern_scientific, string)
# Extract simple numbers without Chinese commas
numbers_simple = re.findall(pattern_simple, string)
# Combine all extracted numbers
all_numbers = numbers_with_commas + numbers_scientific + numbers_simple
return all_numbers
def check_is_number(string):
try:
float(string.replace(',', ''))
return True
except ValueError:
# check if there's comma inside
return False
def count_letters(string):
return sum(c.isalpha() and 'a' <= c <= 'z' or 'A' <= c <= 'Z' for c in string)
def normalize_str(string, answer):
# check if characters in the string
# if number, numerize it.
if string is None:
return [string]
string = string.strip()
is_number = check_is_number(string)
if is_number:
string = string.replace(',', '')
string = float(string)
# leave 2 decimal
string = round(string, 2)
return [string]
else: # it's likely to be a string
if len(string) > len(answer) + 20 or count_letters(string) > count_letters(answer) + 2:
return []
return [string]
def get_fill_blank_prediction(response, answer):
"""get the prediction from the generated response,
return a list of predicted strings or numbers"""
def get_key_subresponses(response):
response = response.strip("").strip()
sub_responses = re.split(r'。|\n', response)
indicators_of_keys = ['', '', '所以', '等于', '方案', '选择',
'正确答案', '因此', '最后', '答案', '结果']
key_responses = []
for index, resp in enumerate(sub_responses):
# if last one, accept it's an equation (the entire response can be just one sentence with equation)
if index == len(sub_responses) - 1:
indicators_of_keys.extend(['='])
shortest_key_response = None
# the shortest response that may contain the answer (tail part of the response)
for indicator in indicators_of_keys:
if indicator in resp:
if not shortest_key_response:
shortest_key_response = resp.split(indicator)[-1].strip()
else:
if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response):
shortest_key_response = resp.split(indicator)[-1].strip()
if shortest_key_response:
# and it's not trivial
if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]:
key_responses.append(shortest_key_response)
if len(key_responses) == 0: # did not found any
return [response]
return key_responses
key_responses = get_key_subresponses(response)
pred_list = key_responses.copy() # keep the original string response
for resp in key_responses:
pred_list.extend(extract_numbers(resp))
tmp_pred_list = []
for i in range(len(pred_list)):
tmp_pred_list.extend(normalize_str(pred_list[i], answer))
pred_list = tmp_pred_list
# remove duplicates
pred_list = list(set(pred_list))
return pred_list
def get_TF_prediction(response):
"""get the prediction from the generated response,
return a list of predicted strings or numbers"""
def get_key_subresponses(response):
response = response.strip("").strip()
sub_responses = re.split(r'。|\n', response)
indicators_of_keys = ['', '', '所以', '判断',
'陈述', '说法', '表达', '答案', '结果']
key_responses = []
for index, resp in enumerate(sub_responses):
shortest_key_response = None
# the shortest response that may contain the answer (tail part of the response)
for indicator in indicators_of_keys:
if indicator in resp:
if not shortest_key_response:
shortest_key_response = resp.split(indicator)[-1].strip()
else:
if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response):
shortest_key_response = resp.split(indicator)[-1].strip()
if shortest_key_response:
# and it's not trivial
if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]:
key_responses.append(shortest_key_response)
if len(key_responses) == 0: # did not found any
return [response]
return key_responses
key_responses = get_key_subresponses(response)
pred_list = key_responses.copy() # keep the original string response
# remove duplicates
pred_list = list(set(pred_list))
return pred_list
class CMMMU(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'CMMMU_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/CMMMU_VAL.tsv'
}
DATASET_MD5 = {
'CMMMU_VAL': 'b4727e2fce2415bf646379e60c11a726'
}
def dump_image(self, line):
os.makedirs(self.img_root, exist_ok=True)
tgt_path_z = []
if isinstance(line['image'], list):
for i in range(len(line['image'])):
tgt_path = osp.join(self.img_root, f"{line['index']}--{i + 1}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'][i], tgt_path)
tgt_path_z.append(tgt_path)
else:
tgt_path = osp.join(self.img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
tgt_path_z.append(tgt_path)
return tgt_path_z
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
suffix = eval_file.split('.')[-1]
result_file = eval_file.replace(f'.{suffix}', '_acc.csv')
if not osp.exists(result_file):
data = load(eval_file)
assert 'answer' in data and 'prediction' in data
data['prediction'] = [str(x) for x in data['prediction']]
data['answer'] = [str(x) for x in data['answer']]
correct_count = 0
correct_category = {
'技术与工程': [0, 0],
'科学': [0, 0],
'健康与医学': [0, 0],
'商业': [0, 0],
'艺术与设计': [0, 0],
'人文社会科学': [0, 0],
}
for i in tqdm(data.iterrows()):
line = i[1]
correct_category[line['category']][0] += 1
# Options
if line['type'] == '选择':
index2ans = {
'A': line['option1'],
'B': line['option2'],
'C': line['option3'],
'D': line['option4']
}
fact_option = get_multi_choice_prediction(line['prediction'], ['A', 'B', 'C', 'D'], index2ans)
if fact_option == line['answer']:
correct_count += 1
correct_category[line['category']][1] += 1
# Binary
elif line['type'] == '判断':
positive_keywords = ['正确', '', '准确', '肯定', '对的']
negative_keywords = ['不对', '错误', '不正确', '不准确', '不合适', '否定', '错的', '']
ambiguous_keywords = ['对错', '是否正确', '否正确', '或者', '是否', '正确性', '对不']
def judge_similarity(pred_list, positive_keywords, negative_keywords):
positive_count = 0
negative_count = 0
for pred in pred_list:
if any(pos_word in pred for pos_word in positive_keywords):
positive_count += 1
elif any(neg_word in pred for neg_word in negative_keywords):
negative_count += 1
if positive_count > negative_count:
return ""
elif negative_count > positive_count:
return ""
else:
return random.choice(['', ''])
answer = get_TF_prediction(line['prediction'])
answer = [word for word in answer if not any(ambiguous in word for ambiguous in ambiguous_keywords)]
fact_answer = judge_similarity(answer, positive_keywords, negative_keywords)
if fact_answer == line['answer']:
correct_count += 1
correct_category[line['category']][1] += 1
# Fill the Blank
else:
norm_answers = normalize_str(line['answer'], line['answer'])
predicted_answer = get_fill_blank_prediction(line['prediction'], line['answer'])
for pred in predicted_answer:
# already normalized
if isinstance(pred, str): # if it's a string, then find if ans in the pred_i
for norm_ans in norm_answers:
# only see if the string answer in the string pred
# print(norm_ans, pred)
if isinstance(norm_ans, str) and norm_ans in pred:
correct_count += 1
correct_category[line['category']][1] += 1
else: # it's a number
if pred in norm_answers:
correct_count += 1
correct_category[line['category']][1] += 1
accuracyz = {}
accuracyz['总准确率'] = correct_count / len(data)
for i in correct_category.keys():
accuracyz[i] = correct_category[i][1] / correct_category[i][0]
accuracyz = d2df(accuracyz)
accuracyz.round(10)
dump(accuracyz, result_file)
result = pd.read_csv(result_file)
return result
def build_prompt(self, line):
if line['type'] == '选择':
tgt_path = self.dump_image(line)
question = line['question']
options_prompt = 'Options:\n'
for i in [['A', '1'], ['B', '2'], ['C', '3'], ['D', '4']]:
options_prompt += i[0] + '. ' + line['option' + i[1]] + '\n'
prompt = (f'问题: {question}\n' + options_prompt
+ '请回答上述多项选择题,并选出正确选项。这些题目可能包括单选和多选题型。如果所提供的信息不足以确定一个明确的答案,那么请根据可用的数据和你的判断来选择最可能正确的选项。')
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
elif line['type'] == '判断':
msgs = super().build_prompt(line)
assert msgs[-1]['type'] == 'text'
msgs[-1]['value'] += '\n请回答上述判断题,并根据题目描述和所给的信息来判断问题中陈述的对错。如果信息不完整或不足以作出绝对判断,请运用你的逻辑推理和现有信息来做出最可能的判断。'
return msgs
else:
msgs = super().build_prompt(line)
assert msgs[-1]['type'] == 'text'
msgs[-1]['value'] += '\n请回答上述填空题,并根据题目的要求和所提供的信息来给出最恰当的答案。如果信息不足以确切回答,那么请依据现有的数据和你的推理能力来填写最合理的答案。'
return msgs

View File

@@ -0,0 +1,211 @@
import math
from typing import List
from .utils.judge_util import build_judge
from .image_base import ImageBaseDataset
from .mmlongbench import concat_images, MMLongBench_auxeval, anls_compute
from ..smp import *
FAIL_MSG = 'Failed to obtain answer via API.'
def DUDE_acc(result_file):
data = load(result_file)
overall_score = 0.0
score_list = list()
for i in range(len(data)):
item = data.iloc[i]
if isinstance(item['answer'], float) and math.isnan(item['answer']):
item['answer'] = 'Not answerable'
item['answer'] = item['answer'].lower()
item['pred'] = item['pred'].lower()
score = anls_compute(item['answer'], item['pred'])
score_list.append(score)
overall_score += score
data['score'] = score_list
dump(data, result_file)
res = dict()
res['category'], res['num'], res['avg_score'] = ['anls'], [len(data)], [overall_score / len(data)]
res = pd.DataFrame(res)
return res
class DUDE(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'DUDE': 'https://opencompass.openxlab.space/utils/VLMEval/DUDE.tsv',
'DUDE_MINI': 'https://opencompass.openxlab.space/utils/VLMEval/DUDE_MINI.tsv',
}
DATASET_MD5 = {
'DUDE': '130d860d08206e1e407cd77150c10d88',
'DUDE_MINI': 'e0c0d998114f0cca7516d12039d2b538',
}
SUPPORTED_MODELS = {
'GPT4': (1, 1),
'GPT4V': (1, 1),
'GPT4V_HIGH': (1, 1),
'GPT4o': (1, 1),
'GPT4o_HIGH': (1, 1),
'GPT4o_MINI': (1, 1),
'XComposer2d5': (1, -1),
'XComposer2_4KHD': (1, -1),
'MiniCPM-Llama3-V-2_5': (1, 5),
'InternVL-Chat-V1-5': (5, 2),
}
def __init__(self, dataset, **kwargs):
self.model_list = list(self.SUPPORTED_MODELS.keys())
model_name = kwargs['model']
if not listinstr(self.model_list, model_name):
raise AssertionError("{} doesn't support the evaluation on DUDE.".format(model_name))
super(DUDE, self).__init__(dataset)
self.is_api = True if listinstr(['GPT4'], model_name) else False
self.max_pages = 120
concat_num, column_num = self.SUPPORTED_MODELS.get(model_name)
self.concat_num = concat_num
self.column_num = column_num
def prepare_tsv(self, url, file_md5=None):
data_root = LMUDataRoot()
os.makedirs(data_root, exist_ok=True)
file_name = url.split('/')[-1]
data_path = osp.join(data_root, file_name)
if osp.exists(data_path) and (file_md5 is None or md5(data_path) == file_md5):
pass
else:
warnings.warn('The dataset tsv is not downloaded')
download_file(url, data_path)
return load(data_path)
def dump_image(self, origin_line):
os.makedirs(self.img_root, exist_ok=True)
try:
import fitz
except Exception as e:
logging.critical(f'{type(e)}: {e}')
logging.critical('Please use `pip install pymupdf` to parse PDF files.')
line = origin_line.copy()
if not isinstance(line['image_path'], List):
line['image_path'] = [line['image_path']]
line['image_path'] = line['image_path'][:self.max_pages]
skip_pdf_parse = True
for im_name in line['image_path']:
path = osp.join(self.img_root, im_name)
if not read_ok(path):
skip_pdf_parse = False
break
# Just for being compatible with the zooped loop: zip(line['image'], line['image_path'])
if skip_pdf_parse:
line['image'] = line['image_path']
else:
pdf_data = base64.b64decode(line['image'])
pdf_file = io.BytesIO(pdf_data)
encoded_images = []
with fitz.open(stream=pdf_file, filetype='pdf') as doc:
doc = doc[:self.max_pages]
for page in doc:
image = page.get_pixmap(dpi=144)
image_file = io.BytesIO(image.tobytes(output='png'))
image = Image.open(image_file)
encoded_image = encode_image_to_base64(image)
encoded_images.append(encoded_image)
line['image'] = encoded_images
print('process {}'.format(line['doc_id']))
if 'image' in line:
if isinstance(line['image'], list):
tgt_path = []
assert 'image_path' in line
for img, im_name in zip(line['image'], line['image_path']):
path = osp.join(self.img_root, im_name)
if not read_ok(path):
decode_base64_to_image_file(img, path)
tgt_path.append(path)
else:
tgt_path = osp.join(self.img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
tgt_path = [tgt_path]
else:
assert 'image_path' in line
tgt_path = toliststr(line['image_path'])
if self.concat_num > 0 and not self.is_api:
concatenated_images = concat_images(tgt_path, max_concat=self.concat_num, column_num=self.column_num)
old_tgt_path = tgt_path
assert isinstance(old_tgt_path, list)
if self.column_num != -1:
tgt_path = [
'_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat{}_{}.jpg'.format(self.concat_num, i)
for i in range(len(concatenated_images))
]
else:
tgt_path = ['_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat_all.jpg']
for path, concatenated_image in zip(tgt_path, concatenated_images):
if not read_ok(path):
decode_base64_to_image_file(encode_image_to_base64(concatenated_image), path)
num_images, image_size = len(old_tgt_path), concatenated_image.size
print('concat {} images to a new one with size {}. save at {}'.format(num_images, image_size, path))
return tgt_path
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
logger = get_logger('Evaluation')
model = judge_kwargs['model']
suffix = eval_file.split('.')[-1]
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
if osp.exists(storage):
logger.warning(f'GPT scoring file {storage} already exists, will reuse it in DUDE_eval. ')
else:
data = load(eval_file)
model = build_judge(max_tokens=128, **judge_kwargs)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
new_results = list()
for model, line in tqdm(tups):
res = MMLongBench_auxeval(model, line)
new_results.append(res)
log_map, res_map, pred_map = {}, {}, {}
all_inds = [line['index'] for line in lines]
for k, v in zip(all_inds, new_results):
log_map[k] = v['log']
res_map[k] = v['res']
pred_map[k] = v['pred']
data['res'] = [res_map[idx] for idx in data['index']]
data['log'] = [log_map[idx] for idx in data['index']]
data['pred'] = [pred_map[idx] for idx in data['index']]
dump(data, storage)
score = DUDE_acc(storage)
score_pth = storage.replace('.xlsx', '_score.csv')
dump(score, score_pth)
logger.info(f'DUDE successfully finished evaluating {eval_file}, results saved in {score_pth}')
logger.info('Score: ')
logger.info(score)

View File

@@ -0,0 +1,240 @@
import re
import json
import sympy as sp
import numpy as np
import pandas as pd
from sympy import simplify, Eq, sympify, Pow, pi
from sympy.parsing.latex import parse_latex
import sys
import math
import os
import os.path as osp
import argparse
from .image_base import ImageBaseDataset
from .utils import build_judge
from ..utils import track_progress_rich
from ..smp import load, dump, d2df, toliststr
def preprocess(str1):
if 0 <= str1.find("{") < str1.rfind("}"):
str1 = str1[str1.find("{"): str1.rfind("}") + 1]
str2 = str1.replace("\\", "")
str2 = str2.replace("\\n", "\n")
return str2
def transfer(str1):
if "\u03c0" in str1:
strs = str1.split('\u03c0')
str1 = strs[0]
return float(str1) * np.pi
else:
return float(str1)
def parse_answer(answer, answer_type="multiple choice"):
if answer_type == "float":
if answer.isdigit():
return True, float(answer)
else:
parts = answer.split(' ')
answer = parts[0]
try:
answer = transfer(answer)
return True, answer
except:
return False, None
elif answer_type == "multiple choice":
if len(answer) == 1:
return True, answer.upper()
else:
in_flag = [ch in answer.upper() for ch in 'ABCDE']
if sum(in_flag) == 1:
for ch in 'ABCDE':
if ch in answer.upper():
return True, ch
return False, None
else:
return True, answer
def DynaMath_auxeval(model, line):
pred = line['prediction']
pred = preprocess(pred)
succeed, short_answer = None, None
try:
dj = json.loads(pred, strict=False)
short_answer = dj.get("short answer")
assert short_answer is not None
succeed, short_answer = parse_answer(short_answer, answer_type=line['anwser_type'])
assert succeed
except:
# Failed to parse the JSON, use an auxiliary LLM to get the short answer
if line['answer_type'] == 'multiple choice':
inst = "Output the corresponing choice option, such as 'A', 'B', 'C', 'D', in a single line."
elif line['answer_type'] == 'float':
inst = "Output a three-digit floating-point number in a single line."
else:
inst = (
"Output a short answer in a single line. Any float numbers in the answer "
"should be formatted as three-digit floating-point numbers."
)
prompt = f"Free-form answer: {pred}\nInstruction: {inst}"
response = pred
succeed, short_answer = parse_answer(response, line['answer_type'])
if not succeed:
response = model.generate(prompt)
succeed, short_answer = parse_answer(response, line['answer_type'])
if line['answer_type'] == 'float':
if succeed:
diff = float(short_answer) - float(line['answer'])
if abs(diff) <= 0.001:
return dict(parse=True, extracted=short_answer, correct=True)
else:
return dict(parse=True, extracted=short_answer, correct=False)
else:
return dict(parse=False, extracted=None, correct=False)
elif line['answer_type'] == 'multiple choice':
if succeed:
return dict(parse=True, extracted=short_answer, correct=(short_answer == line['answer']))
else:
if line['answer'] in pred[:3].upper():
return dict(parse=False, extracted=None, correct=True)
else:
return dict(parse=False, extracted=None, correct=False)
else:
if succeed:
return dict(parse=True, extracted=short_answer, correct=(short_answer.lower() in line['answer'].lower()))
else:
return dict(parse=False, extracted=None, correct=(short_answer.lower() in line['answer'].lower()))
class Dynamath(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {'DynaMath': 'https://opencompass.openxlab.space/utils/VLMEval/DynaMath.tsv'}
DATASET_MD5 = {'DynaMath': 'b8425ad9a7114571fc9366e013699494'}
GUIDE = """
## Answer Instruction Please provide an answer to the question outlined above. Your response should adhere \
to the following JSON format, which includes two keys: 'solution' and 'short answer'. The 'solution' key can contain \
detailed steps needed to solve the question, and the 'short answer' key should provide a concise response. {INST}
Example of expected JSON response format:
"""
EXAMPLE = {
"solution": "[Detailed step-by-step explanation]",
"short answer": "[Concise Answer]"
}
TEXT_EXAMPLE = json.dumps(EXAMPLE, indent=4)
# Given one data record, return the built prompt (a multi-modal message), can override
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
prompt = f"## Question\n {line['question']}"
if line['answer_type'] == 'multiple choice':
inst = "Provide the corresponing choice option in the 'short answer' key, such as 'A', 'B', 'C', or 'D'."
elif line['answer_type'] == 'float':
inst = "Format the answer as a three-digit floating-point number and provide it in the 'short answer' key."
else:
inst = "Float numbers in the answer should be formatted as three-digit floating-point numbers."
prompt = prompt + self.GUIDE.format(INST=inst) + self.TEXT_EXAMPLE
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def evaluate(self, eval_file, **judge_kwargs):
judge_name = judge_kwargs.pop('model', 'gpt-4o-mini')
model = build_judge(model=judge_name, **judge_kwargs)
suffix = eval_file.split('.')[-1]
storage = eval_file.replace(f'.{suffix}', f'_{judge_name}.xlsx') # noqa: F841
score_file = eval_file.replace(f'.{suffix}', f'_{judge_name}_score.csv') # noqa: F841
tmp_file = eval_file.replace(f'.{suffix}', f'_{judge_name}.pkl') # noqa: F841
nproc = judge_kwargs.pop('nproc', 6) # noqa: F841
res = load(tmp_file) if os.path.exists(tmp_file) else {}
res = {k: v for k, v in res.items() if v is not None}
model.system_prompt = """\
You are a helpful assistant that helps me to format free-form answers into a short answer according to the instruction.
"""
if not osp.exists(storage):
data = load(eval_file)
lt = len(data)
payloads = [dict(model=model, line=data.iloc[i]) for i in range(lt) if data.iloc[i]['index'] not in res]
keys = [idx for idx in data['index'] if idx not in res]
if len(keys):
results = track_progress_rich(DynaMath_auxeval, payloads, nproc=nproc, save=tmp_file, keys=keys)
for k, r in zip(keys, results):
res[k] = r
data['parse'] = [res[idx]['parse'] for idx in data['index']]
data['extracted'] = [res[idx]['extracted'] for idx in data['index']]
data['correct'] = [res[idx]['correct'] for idx in data['index']]
dump(data, storage)
data = load(storage)
# Calculate Average Accuracy
score_avg = {}
score_avg['Overall'] = np.mean(data['correct'])
subs = set(data['subject'])
for sub in subs:
data_sub = data[data['subject'] == sub]
score_avg[f'Subject-{sub}'] = np.mean(data_sub['correct'])
lvls = set(data['knowledge_level'])
for lvl in lvls:
data_lvl = data[data['knowledge_level'] == lvl]
score_avg[f'Level-{lvl}'] = np.mean(data_lvl['correct'])
# Calculate the Worst Case Accuracy
score_worst = {}
data_worst = data[data['varid'] == 1]
qid2corr = {idx: True for idx in data_worst['index']}
lt = len(data)
for i in range(lt):
item = data.iloc[i]
qid2corr[item['qid']] *= item['correct']
data_worst['correct'] = [qid2corr[idx] for idx in data_worst['qid']]
score_worst['Overall'] = np.mean(data_worst['correct'])
subs = set(data_worst['subject'])
for sub in subs:
data_sub = data_worst[data_worst['subject'] == sub]
score_worst[f'Subject-{sub}'] = np.mean(data_sub['correct'])
lvls = set(data_worst['knowledge_level'])
for lvl in lvls:
data_lvl = data_worst[data_worst['knowledge_level'] == lvl]
score_worst[f'Level-{lvl}'] = np.mean(data_lvl['correct'])
d1 = {'Setting': 'Average'}
d1.update(score_avg)
d2 = {'Setting': 'Worst Case'}
d2.update(score_worst)
score = pd.concat([d2df(d1), d2df(d2)], ignore_index=True)
dump(score, score_file)
return score

View File

@@ -0,0 +1,172 @@
import pandas as pd
from abc import abstractmethod
from ..smp import *
def img_root_map(dataset):
if 'MM_NIAH' in dataset:
return 'MMNIAH'
if 'CRPE' in dataset:
return 'CRPE'
if 'OCRVQA' in dataset:
return 'OCRVQA'
if 'COCO_VAL' == dataset:
return 'COCO'
if 'MMMU' in dataset:
return 'MMMU'
if "QSpatial" in dataset:
return "QSpatial"
mmbench_root_map = {
'MMBench_DEV_EN': 'MMBench', 'MMBench_TEST_EN': 'MMBench',
'MMBench_DEV_CN': 'MMBench', 'MMBench_TEST_CN': 'MMBench',
'MMBench': 'MMBench', 'MMBench_CN': 'MMBench',
'MMBench_DEV_EN_V11': 'MMBench_V11', 'MMBench_TEST_EN_V11': 'MMBench_V11',
'MMBench_DEV_CN_V11': 'MMBench_V11', 'MMBench_TEST_CN_V11': 'MMBench_V11',
'MMBench_V11': 'MMBench', 'MMBench_CN_V11': 'MMBench',
}
if dataset in mmbench_root_map:
return mmbench_root_map[dataset]
return dataset
class ImageBaseDataset:
MODALITY = 'IMAGE'
DATASET_URL = {}
DATASET_MD5 = {}
def __init__(self, dataset='MMBench', skip_noimg=True):
ROOT = LMUDataRoot()
# You can override this variable to save image files to a different directory
self.dataset_name = dataset
self.img_root = osp.join(ROOT, 'images', img_root_map(dataset))
data = self.load_data(dataset)
self.skip_noimg = skip_noimg
if skip_noimg and 'image' in data:
data = data[~pd.isna(data['image'])]
data['index'] = [str(x) for x in data['index']]
self.meta_only = True
# The image field can store the base64 encoded image or another question index (for saving space)
if 'image' in data:
data['image'] = [str(x) for x in data['image']]
image_map = {x: y for x, y in zip(data['index'], data['image'])}
for k in image_map:
if len(image_map[k]) <= 64:
idx = image_map[k]
assert idx in image_map and len(image_map[idx]) > 64
image_map[k] = image_map[idx]
images = [toliststr(image_map[k]) for k in data['index']]
data['image'] = [x[0] if len(x) == 1 else x for x in images]
self.meta_only = False
if 'image_path' in data:
paths = [toliststr(x) for x in data['image_path']]
data['image_path'] = [x[0] if len(x) == 1 else x for x in paths]
if np.all([istype(x, int) for x in data['index']]):
data['index'] = [int(x) for x in data['index']]
self.data = data
self.post_build(dataset)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return dict(self.data.iloc[idx])
def prepare_tsv(self, url, file_md5=None):
data_root = LMUDataRoot()
os.makedirs(data_root, exist_ok=True)
update_flag = False
file_name = url.split('/')[-1]
data_path = osp.join(data_root, file_name)
if osp.exists(data_path) and (file_md5 is None or md5(data_path) == file_md5):
pass
else:
warnings.warn('The dataset tsv is not downloaded')
download_file(url, data_path)
update_flag = True
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None) or update_flag:
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
def dump_image(self, line):
os.makedirs(self.img_root, exist_ok=True)
if 'image' in line:
if isinstance(line['image'], list):
tgt_path = []
assert 'image_path' in line
for img, im_name in zip(line['image'], line['image_path']):
path = osp.join(self.img_root, im_name)
if not read_ok(path):
decode_base64_to_image_file(img, path)
tgt_path.append(path)
else:
tgt_path = osp.join(self.img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
tgt_path = [tgt_path]
else:
assert 'image_path' in line
tgt_path = toliststr(line['image_path'])
return tgt_path
def display(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
assert isinstance(line, pd.Series) or isinstance(line, dict)
mmqa_display(line)
# Return a list of dataset names that are supported by this class, can override
@classmethod
def supported_datasets(cls):
return list(cls.DATASET_URL)
# Given the dataset name, return the dataset as a pandas dataframe, can override
def load_data(self, dataset):
url = self.DATASET_URL[dataset]
file_md5 = self.DATASET_MD5[dataset] if dataset in self.DATASET_MD5 else None
return self.prepare_tsv(url, file_md5)
# Post built hook, will be called after the dataset is built, can override
def post_build(self, dataset):
pass
# Given one data record, return the built prompt (a multi-modal message), can override
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=question))
return msgs
# Given the prediction file, return the evaluation results in the format of a dictionary or pandas dataframe
@abstractmethod
def evaluate(self, eval_file, **judge_kwargs):
pass

View File

@@ -0,0 +1,75 @@
from .image_base import ImageBaseDataset
from ..smp import *
class COCO_Caption_Scorer():
def __init__(self, ref, gt):
from pycocoevalcap.bleu.bleu import Bleu
from pycocoevalcap.rouge.rouge import Rouge
from pycocoevalcap.cider.cider import Cider
self.ref = ref
self.gt = gt
print('setting up scorers...')
self.scorers = [
(Bleu(4), ['Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4']),
(Rouge(), 'ROUGE_L'),
(Cider(), 'CIDEr'),
]
def compute_scores(self):
total_scores = {}
for scorer, method in self.scorers:
print('computing %s score...' % (scorer.method()))
score, scores = scorer.compute_score(self.gt, self.ref)
if isinstance(method, list):
for sc, scs, m in zip(score, scores, method):
print('%s: %0.3f' % (m, sc * 100))
total_scores['Bleu'] = [x * 100 for x in score]
else:
print('%s: %0.3f' % (method, score * 100))
total_scores[method] = score * 100
print('*****DONE*****')
for key, value in total_scores.items():
print('{}:{}'.format(key, value))
return total_scores
class ImageCaptionDataset(ImageBaseDataset):
TYPE = 'Caption'
DATASET_URL = {
'COCO_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/COCO_VAL.tsv',
}
DATASET_MD5 = {
'COCO_VAL': '72a5079dead060269ac222c5aa5128af',
}
def load_data(self, dataset):
data = super().load_data(dataset)
if 'question' not in data:
data['question'] = [(
'Please describe this image in general. Directly provide the description, '
'do not include prefix like "This image depicts". '
)] * len(data)
return data
# It returns a dictionary of scores
@classmethod
def evaluate(self, eval_file, **kwargs):
data = load(eval_file)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
ref, gt = {}, {}
for i, line in enumerate(lines):
ref[str(i)] = [str(line['prediction'])]
gt[str(i)] = eval(line['answer'])
scorer = COCO_Caption_Scorer(ref, gt)
coco_caption_score_dict = scorer.compute_scores()
score_pth = eval_file.replace('.xlsx', '_score.json')
dump(coco_caption_score_dict, score_pth)
return coco_caption_score_dict

View File

@@ -0,0 +1,197 @@
# flake8: noqa
import os
import re
import tempfile
from functools import partial
import pandas as pd
from .image_base import ImageBaseDataset
from ..smp import *
# should be the same as FAIL_MSG definded in vlmeval/inference.py
FAIL_MSG = 'Failed to obtain answer via API.'
class CCOCRDataset(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL_MODELSCOPE = {
"CCOCR_DocParsing_DocPhotoChn": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/doc_parsing/doc/doc_photo_chn_75.tsv",
"CCOCR_DocParsing_DocPhotoEng": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/doc_parsing/doc/doc_photo_eng_75.tsv",
"CCOCR_DocParsing_DocScanChn": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/doc_parsing/doc/doc_scan_chn_75.tsv",
"CCOCR_DocParsing_DocScanEng": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/doc_parsing/doc/doc_scan_eng_75.tsv",
"CCOCR_DocParsing_TablePhotoChn": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/doc_parsing/table/table_photo_chn_75.tsv",
"CCOCR_DocParsing_TablePhotoEng": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/doc_parsing/table/table_photo_eng_75.tsv",
"CCOCR_DocParsing_TableScanChn": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/doc_parsing/table/table_scan_chn_75.tsv",
"CCOCR_DocParsing_TableScanEng": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/doc_parsing/table/table_scan_eng_75.tsv",
"CCOCR_DocParsing_MolecularHandwriting": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/doc_parsing/molecular/molecular_handwriting_100.tsv",
"CCOCR_DocParsing_FormulaHandwriting": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/doc_parsing/formula/formula_handwriting_100.tsv",
"CCOCR_Kie_Sroie2019Word": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/kie/constrained_category/sroie2019_word_347.tsv",
"CCOCR_Kie_Cord": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/kie/constrained_category/CORD_100.tsv",
"CCOCR_Kie_EphoieScut": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/kie/constrained_category/EPHOIE_SCUT_311.tsv",
"CCOCR_Kie_Poie": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/kie/constrained_category/POIE_250.tsv",
"CCOCR_Kie_ColdSibr": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/kie/open_category/COLD_SIBR_400.tsv",
"CCOCR_Kie_ColdCell": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/kie/open_category/COLD_CELL_600.tsv",
"CCOCR_MultiLanOcr_Arabic": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_lan_ocr/Arabic/Arabic_150.tsv",
"CCOCR_MultiLanOcr_French": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_lan_ocr/French/French_150.tsv",
"CCOCR_MultiLanOcr_German": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_lan_ocr/German/German_150.tsv",
"CCOCR_MultiLanOcr_Italian": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_lan_ocr/Italian/Italian_150.tsv",
"CCOCR_MultiLanOcr_Japanese": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_lan_ocr/Japanese/Japanese_150.tsv",
"CCOCR_MultiLanOcr_Korean": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_lan_ocr/Korean/Korean_150.tsv",
"CCOCR_MultiLanOcr_Portuguese": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_lan_ocr/Portuguese/Portuguese_150.tsv",
"CCOCR_MultiLanOcr_Russian": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_lan_ocr/Russian/Russian_150.tsv",
"CCOCR_MultiLanOcr_Spanish": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_lan_ocr/Spanish/Spanish_150.tsv",
"CCOCR_MultiLanOcr_Vietnamese": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_lan_ocr/Vietnamese/Vietnamese_150.tsv",
"CCOCR_MultiSceneOcr_Cord": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/document_text/CORD_100.tsv",
"CCOCR_MultiSceneOcr_Funsd": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/document_text/FUNSD_50.tsv",
"CCOCR_MultiSceneOcr_Iam": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/document_text/IAM_50.tsv",
"CCOCR_MultiSceneOcr_ZhDoc": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/document_text/zh_doc_100.tsv",
"CCOCR_MultiSceneOcr_ZhHandwriting": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/document_text/zh_handwriting_50.tsv",
"CCOCR_MultiSceneOcr_Hieragent": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/scene_text/Hieragent_100.tsv",
"CCOCR_MultiSceneOcr_Ic15": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/scene_text/IC15_500.tsv",
"CCOCR_MultiSceneOcr_Inversetext": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/scene_text/InverseText_500.tsv",
"CCOCR_MultiSceneOcr_Totaltext": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/scene_text/TotalText_300.tsv",
"CCOCR_MultiSceneOcr_ZhScene": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/scene_text/zh_scene_450.tsv",
"CCOCR_MultiSceneOcr_UgcLaion": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/ugc_text/ugc_laion_400.tsv",
"CCOCR_MultiSceneOcr_ZhDense": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/ugc_text/zh_dense_50.tsv",
"CCOCR_MultiSceneOcr_ZhVertical": "https://www.modelscope.cn/datasets/Qwen/CC-OCR/resolve/master/multi_scene_ocr/ugc_text/zh_vertical_100.tsv"
}
DATASET_URL_HUGGINGFACE = {
"CCOCR_DocParsing_DocPhotoChn": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/doc_parsing/doc/doc_photo_chn_75.tsv",
"CCOCR_DocParsing_DocPhotoEng": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/doc_parsing/doc/doc_photo_eng_75.tsv",
"CCOCR_DocParsing_DocScanChn": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/doc_parsing/doc/doc_scan_chn_75.tsv",
"CCOCR_DocParsing_DocScanEng": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/doc_parsing/doc/doc_scan_eng_75.tsv",
"CCOCR_DocParsing_TablePhotoChn": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/doc_parsing/table/table_photo_chn_75.tsv",
"CCOCR_DocParsing_TablePhotoEng": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/doc_parsing/table/table_photo_eng_75.tsv",
"CCOCR_DocParsing_TableScanChn": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/doc_parsing/table/table_scan_chn_75.tsv",
"CCOCR_DocParsing_TableScanEng": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/doc_parsing/table/table_scan_eng_75.tsv",
"CCOCR_DocParsing_MolecularHandwriting": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/doc_parsing/molecular/molecular_handwriting_100.tsv",
"CCOCR_DocParsing_FormulaHandwriting": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/doc_parsing/formula/formula_handwriting_100.tsv",
"CCOCR_Kie_Sroie2019Word": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/kie/constrained_category/sroie2019_word_347.tsv",
"CCOCR_Kie_Cord": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/kie/constrained_category/CORD_100.tsv",
"CCOCR_Kie_EphoieScut": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/kie/constrained_category/EPHOIE_SCUT_311.tsv",
"CCOCR_Kie_Poie": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/kie/constrained_category/POIE_250.tsv",
"CCOCR_Kie_ColdSibr": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/kie/open_category/COLD_SIBR_400.tsv",
"CCOCR_Kie_ColdCell": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/kie/open_category/COLD_CELL_600.tsv",
"CCOCR_MultiLanOcr_Arabic": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_lan_ocr/Arabic/Arabic_150.tsv",
"CCOCR_MultiLanOcr_French": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_lan_ocr/French/French_150.tsv",
"CCOCR_MultiLanOcr_German": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_lan_ocr/German/German_150.tsv",
"CCOCR_MultiLanOcr_Italian": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_lan_ocr/Italian/Italian_150.tsv",
"CCOCR_MultiLanOcr_Japanese": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_lan_ocr/Japanese/Japanese_150.tsv",
"CCOCR_MultiLanOcr_Korean": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_lan_ocr/Korean/Korean_150.tsv",
"CCOCR_MultiLanOcr_Portuguese": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_lan_ocr/Portuguese/Portuguese_150.tsv",
"CCOCR_MultiLanOcr_Russian": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_lan_ocr/Russian/Russian_150.tsv",
"CCOCR_MultiLanOcr_Spanish": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_lan_ocr/Spanish/Spanish_150.tsv",
"CCOCR_MultiLanOcr_Vietnamese": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_lan_ocr/Vietnamese/Vietnamese_150.tsv",
"CCOCR_MultiSceneOcr_Cord": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/document_text/CORD_100.tsv",
"CCOCR_MultiSceneOcr_Funsd": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/document_text/FUNSD_50.tsv",
"CCOCR_MultiSceneOcr_Iam": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/document_text/IAM_50.tsv",
"CCOCR_MultiSceneOcr_ZhDoc": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/document_text/zh_doc_100.tsv",
"CCOCR_MultiSceneOcr_ZhHandwriting": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/document_text/zh_handwriting_50.tsv",
"CCOCR_MultiSceneOcr_Hieragent": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/scene_text/Hieragent_100.tsv",
"CCOCR_MultiSceneOcr_Ic15": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/scene_text/IC15_500.tsv",
"CCOCR_MultiSceneOcr_Inversetext": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/scene_text/InverseText_500.tsv",
"CCOCR_MultiSceneOcr_Totaltext": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/scene_text/TotalText_300.tsv",
"CCOCR_MultiSceneOcr_ZhScene": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/scene_text/zh_scene_450.tsv",
"CCOCR_MultiSceneOcr_UgcLaion": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/ugc_text/ugc_laion_400.tsv",
"CCOCR_MultiSceneOcr_ZhDense": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/ugc_text/zh_dense_50.tsv",
"CCOCR_MultiSceneOcr_ZhVertical": "https://huggingface.co/datasets/wulipc/CC-OCR/resolve/main/multi_scene_ocr/ugc_text/zh_vertical_100.tsv"
}
# define data path
DATASET_URL = DATASET_URL_MODELSCOPE
DATASET_MD5 = {
"CCOCR_DocParsing_DocPhotoChn": "9039dcbb31830d413261a95cfa29d97f",
"CCOCR_DocParsing_DocPhotoEng": "2ca0824881e1d7317626f2a19d902989",
"CCOCR_DocParsing_DocScanChn": "9e265c8aa760ebdf5c3bf9e892d55492",
"CCOCR_DocParsing_DocScanEng": "77d04637be3def86dbc2ce37ba64a704",
"CCOCR_DocParsing_TablePhotoChn": "c4dc85252ddad2b43a03a67b1d1ae983",
"CCOCR_DocParsing_TablePhotoEng": "02ab75d6169da0cd2ece9ce0ae14a479",
"CCOCR_DocParsing_TableScanChn": "f1f79959fdd01127df7377c9d46722f2",
"CCOCR_DocParsing_TableScanEng": "794903c7acf52bfe956eefba2166d14b",
"CCOCR_DocParsing_MolecularHandwriting": "30b7f7679b713ce000a939eca7b4078f",
"CCOCR_DocParsing_FormulaHandwriting": "e03047776ce5e79a61ae1c057e2a348e",
"CCOCR_Kie_Sroie2019Word": "3287d99a8e86a99b74171fa5a70f9acb",
"CCOCR_Kie_Cord": "ab297cadcbc7158884a301c366f3330a",
"CCOCR_Kie_EphoieScut": "bb8fa3ba7ea91cbf17be0904956ad3f3",
"CCOCR_Kie_Poie": "882b64317989ecbfed6518051cdffb14",
"CCOCR_Kie_ColdSibr": "109d5dad8b7081fb6a2f088e963196d4",
"CCOCR_Kie_ColdCell": "7b44c45b4d7d768d1dbdc08872fe7d3a",
"CCOCR_MultiLanOcr_Arabic": "e9a3f2bb9298d0b882ebc7a98980c3f3",
"CCOCR_MultiLanOcr_French": "729407ed2036c22e602eff645eddd40c",
"CCOCR_MultiLanOcr_German": "96fc2edae747f0ec95b0a6f9bf723022",
"CCOCR_MultiLanOcr_Italian": "29a508fa5d5a5e767497dd69e2430ebb",
"CCOCR_MultiLanOcr_Japanese": "bbcca96ccf25fff63597c2ab4f3ebb1f",
"CCOCR_MultiLanOcr_Korean": "0f55dbd24eba5edc189c91e124411641",
"CCOCR_MultiLanOcr_Portuguese": "a6fcf8831775a61aa631c0cf1c422ae7",
"CCOCR_MultiLanOcr_Russian": "19d2f84062a1699d3e9333912bd6b303",
"CCOCR_MultiLanOcr_Spanish": "f5a0cfa9f2ae4115c91c7b362034e591",
"CCOCR_MultiLanOcr_Vietnamese": "bf1cd4e83d91767f4906f81550cec8b9",
"CCOCR_MultiSceneOcr_Cord": "92943f0ccb4c5a196c574222e76759a0",
"CCOCR_MultiSceneOcr_Funsd": "229cc38d193edd00f4383610e98ee873",
"CCOCR_MultiSceneOcr_Iam": "d897a6d6c3880c65e752ec11b211204c",
"CCOCR_MultiSceneOcr_ZhDoc": "303682cc16c8bb51b2b896f8ceb8bd38",
"CCOCR_MultiSceneOcr_ZhHandwriting": "faa298d366bc05e5cfb39e334afb8eff",
"CCOCR_MultiSceneOcr_Hieragent": "6f132cdd0473d7cc145c3e3a08957dd6",
"CCOCR_MultiSceneOcr_Ic15": "3d94869f312a41d53d0578a06a2fb1f2",
"CCOCR_MultiSceneOcr_Inversetext": "e141d424a0c4cf9579064428a270f13d",
"CCOCR_MultiSceneOcr_Totaltext": "ca1daf81d49eeb57ef844b72a23c2e62",
"CCOCR_MultiSceneOcr_ZhScene": "9295152a66e6f117db8bfbb20a9013e6",
"CCOCR_MultiSceneOcr_UgcLaion": "8e9ea1fbf9d56532157e807eabf39b21",
"CCOCR_MultiSceneOcr_ZhDense": "de8f48ee0c8a2cf8ed7f2b3a81e6322d",
"CCOCR_MultiSceneOcr_ZhVertical": "4892b4aec6e7fd11e39aaea23712709b"
}
# It returns a DataFrame
def evaluate(self, eval_file, **judge_kwargs):
"""
"""
df = load(eval_file)
dict_list = df.to_dict(orient='records')
required_colume_list = ['answer', 'prediction', "category", "image_name", "l2-category", "split"]
for required_colume in required_colume_list:
assert required_colume in df, "required_colume: {} NOT found".format(required_colume)
gt_info, ptd_info = {}, {}
for data_info in dict_list:
image_name = data_info['image_name']
gt_info[image_name] = data_info['answer']
# warning the FAIL samples
if data_info['prediction'] != FAIL_MSG:
ptd_info[image_name] = data_info['prediction']
# assert eval_file is a single dataset
group_name = set([str(x) for x in df['category']]).pop()
op_name = set([str(x) for x in df['l2-category']]).pop()
data_name = set([str(x) for x in df['split']]).pop()
data_info = {"op": op_name, "group": group_name, "dataset": data_name, "num": len(gt_info)}
try:
from .utils.ccocr_evaluator import evaluator_map_info as ccocr_evaluator_map
except ImportError as err:
import warnings
warnings.warn('The dependency of CCOCR evaluator is not properly installed')
warnings.warn(f'{type(err)}: {err}')
eval_func = ccocr_evaluator_map.get(group_name, None)
if eval_func is None:
raise ValueError("error: evaluator not defined for: {}".format(group_name))
meta_info, eval_info = eval_func(ptd_info, gt_info, **data_info)
output_info = {"meta": meta_info, "evaluation": eval_info, "config": data_info}
result_file = os.path.splitext(os.path.abspath(eval_file))[0] + "_eval.json"
dump(output_info, result_file)
# update global status for summary
# warning: the evaluate function should NOT run in parallel
all_status_info = {}
global_status_path = os.path.join(os.path.dirname(eval_file), "status.json")
if os.path.exists(global_status_path):
with open(global_status_path, "r") as f:
all_status_info = json.load(f)
all_status_info[data_name] = output_info
with open(global_status_path, "w") as f:
json.dump(all_status_info, f, ensure_ascii=False, indent=4)
return eval_info.get("summary")

View File

@@ -0,0 +1,904 @@
import warnings
from .image_base import ImageBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..smp import *
import pandas as pd
MMMB_URLS = {
'MMMB_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ar.tsv',
'MMMB_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_cn.tsv',
'MMMB_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_en.tsv',
'MMMB_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_pt.tsv',
'MMMB_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ru.tsv',
'MMMB_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_tr.tsv',
}
MTL_MMBench_URLS = {
'MMBench_dev_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ar.tsv',
'MMBench_dev_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_cn.tsv',
'MMBench_dev_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_en.tsv',
'MMBench_dev_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_pt.tsv',
'MMBench_dev_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_tr.tsv',
'MMBench_dev_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ru.tsv',
}
MMMB_MD5 = {
'MMMB_ar': 'f3a18b6385f1d9701840aa42de27aead', 'MMMB_cn': '13ed82fa89730037292fcaa27f08f430',
'MMMB_en': '1cd781a71ec5a2983c090b84105d6a01', 'MMMB_pt': '548ea2b3bb2da991790386f0015d30d1',
'MMMB_ru': 'ce1cc8a0533425ab0d86b326ebfc2984', 'MMMB_tr': '0733739d43090327975294292bc5cd67'
}
MTL_MMBench_MD5 = {
'MMBench_dev_ar': '4271b4a0d0200e1a86380a878e0d64a4', 'MMBench_dev_cn': '2ed5135326fed02c8e51ea50dda8222f',
'MMBench_dev_en': 'd9ab776fc018b3d45785e9a5c23431c2', 'MMBench_dev_pt': '4ddfbcd27ef12444b908c03831cd0295',
'MMBench_dev_tr': '4fab39d501389d3d6cc90264bb708f11', 'MMBench_dev_ru': '5ba1171ff2e68f80637bf78349e402a5'
}
class ImageMCQDataset(ImageBaseDataset):
TYPE = 'MCQ'
DATASET_URL = {
# MMBench v1.0
'MMBench_DEV_EN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_EN.tsv',
'MMBench_TEST_EN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_EN.tsv',
'MMBench_DEV_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_CN.tsv',
'MMBench_TEST_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_CN.tsv',
'MMBench': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench.tsv', # Internal
'MMBench_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_CN.tsv', # Internal
# MMBench v1.1
'MMBench_DEV_EN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_EN_V11.tsv',
'MMBench_TEST_EN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_EN_V11.tsv',
'MMBench_DEV_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_CN_V11.tsv',
'MMBench_TEST_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_CN_V11.tsv',
'MMBench_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_V11.tsv', # Internal
'MMBench_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_CN_V11.tsv', # Internal
# SEEDBench Series
'SEEDBench_IMG': 'https://opencompass.openxlab.space/utils/benchmarks/SEEDBench/SEEDBench_IMG.tsv',
'SEEDBench2': 'https://huggingface.co/datasets/VLMEval/SEEDBench2/resolve/main/SEEDBench2.tsv',
'SEEDBench2_Plus': 'https://opencompass.openxlab.space/utils/benchmarks/SEEDBench/SEEDBench2_Plus.tsv',
# ScienceQA Series
'ScienceQA_VAL': 'https://opencompass.openxlab.space/utils/benchmarks/ScienceQA/ScienceQA_VAL.tsv',
'ScienceQA_TEST': 'https://opencompass.openxlab.space/utils/benchmarks/ScienceQA/ScienceQA_TEST.tsv',
# MMT-Bench
'MMT-Bench_ALL_MI': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_ALL_MI.tsv',
'MMT-Bench_ALL': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_ALL.tsv',
'MMT-Bench_VAL_MI': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_VAL_MI.tsv',
'MMT-Bench_VAL': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_VAL.tsv',
# AesBench
'AesBench_VAL': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_VAL.tsv',
'AesBench_TEST': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_TEST.tsv',
# Q-Bench1
'Q-Bench1_VAL': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_VAL.tsv',
'Q-Bench1_TEST': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_TEST.tsv',
# A-Bench
'A-Bench_VAL': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_VAL.tsv',
'A-Bench_TEST': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_TEST.tsv',
# R-Bench
'R-Bench-Dis': 'https://huggingface.co/datasets/lcysyzxdxc/R-Bench/blob/main/R-bench-dis.tsv',
'R-Bench-Ref': 'https://huggingface.co/datasets/lcysyzxdxc/R-Bench/blob/main/R-bench-ref.tsv',
# Other Benchmarks
'CCBench': 'https://opencompass.openxlab.space/utils/VLMEval/CCBench.tsv',
'AI2D_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST.tsv',
'AI2D_TEST_NO_MASK': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST_NO_MASK.tsv',
'MMStar': 'https://opencompass.openxlab.space/utils/VLMEval/MMStar.tsv',
'RealWorldQA': 'https://opencompass.openxlab.space/utils/VLMEval/RealWorldQA.tsv',
'MLLMGuard_DS': 'https://opencompass.openxlab.space/utils/VLMEval/MLLMGuard_DS.tsv',
'BLINK': 'https://opencompass.openxlab.space/utils/VLMEval/BLINK.tsv',
'TaskMeAnything_v1_imageqa_random': (
'https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-imageqa-random/'
'resolve/main/TaskMeAnything-v1-imageqa-random.tsv'
),
'A-OKVQA': 'https://huggingface.co/datasets/Allen8/A-OKVQA/resolve/main/a-okvqa.tsv',
'WorldMedQA-V': 'https://opencompass.openxlab.space/utils/VLMEval/WorldMedQA-V.tsv',
'VisOnlyQA-VLMEvalKit': (
'https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real/'
'resolve/main/visonlyqa_vlmevalkit.tsv'
),
'3DSRBench': (
'https://huggingface.co/datasets/ccvl/3DSRBench/'
'resolve/main/3dsrbench_v1_vlmevalkit_circular.tsv'
),
}
DATASET_MD5 = {
# MMBench v1.0
'MMBench_DEV_EN': 'b6caf1133a01c6bb705cf753bb527ed8',
'MMBench_TEST_EN': '6939fadb0ce626fefc0bdc9c64efc528',
'MMBench_DEV_CN': '08b8fc3324a5ed74155350f57be69fbd',
'MMBench_TEST_CN': '7e1239baf0ee4c8b513e19705a0f317e',
'MMBench': '4115aea3383f3dd0083be6a633e0f820', # Internal Only
'MMBench_CN': '2e053ffc90ea598b1feae13c36dc13ee', # Internal Only
# MMBench v1.1
'MMBench_DEV_EN_V11': '30c05be8f2f347a50be25aa067248184',
'MMBench_TEST_EN_V11': '26f0f15381a21720255091d3e0316ce6',
'MMBench_DEV_CN_V11': '593f9b5f6bea453d870a798b34ae4f37',
'MMBench_TEST_CN_V11': '74bbe4556dac745613c7cbe5ad787050',
'MMBench_V11': 'b9276414f57af1308dcc4d0cd9b42e7c', # Internal Only
'MMBench_CN_V11': '95f6980dd1b4de38e3cbffe0305a3f25', # Internal Only
# SEEDBench
'SEEDBench_IMG': '68017231464752261a2526d6ca3a10c0',
'SEEDBench2': '4ec15cf864c4f16274112284f531813e',
'SEEDBench2_Plus': 'e32d3216dc4f452b0fe497a52015d1fd',
# ScienceQA
'ScienceQA_VAL': '96320d05e142e585e7204e72affd29f3',
'ScienceQA_TEST': 'e42e9e00f9c59a80d8a5db35bc32b71f',
# MMT-Bench
'MMT-Bench_ALL_MI': '5272157097e19cdd7cb41e412ab3b7c7',
'MMT-Bench_ALL': 'b273a2f4c596fe4f2605de0494cd632f',
'MMT-Bench_VAL_MI': 'c7d7b998eb5cd9aa36c7d4f721472462',
'MMT-Bench_VAL': '8dd4b730f53dbf9c3aed90ca31c928e0',
# AesBench
'AesBench_VAL': '3edb0c319e9187aa0b97fe7a11700a8c',
'AesBench_TEST': '58b1f7ba2cc32e1d68896d6ee716bbf8',
# Q-Bench1
'Q-Bench1_VAL': '837bdb6cd2da571713543462815187b7',
'Q-Bench1_TEST': '15e759bfd58c9d5f30b23a317d347153',
# A-Bench
'A-Bench_VAL': '218563ec50d34bb336c814143a5bb9c1',
'A-Bench_TEST': '567013fb033a20cf23f51d8e865bd16c',
# R-Bench
'R-Bench-Dis': 'd6e961dbfc43350688af2560226830b4',
'R-Bench-Ref': '270c1cb555acb523f3fdb178ed57021d',
# Other Benchmarks
'CCBench': 'f5dde47f24dc5a6fb6e595b409b466ac',
'AI2D_TEST': '0f593e0d1c7df9a3d69bf1f947e71975',
'AI2D_TEST_NO_MASK': 'fd8f463634d4fe9fbd23b876e8eea5be',
'MMStar': 'e1ecd2140806c1b1bbf54b43372efb9e',
'RealWorldQA': '4de008f55dc4fd008ca9e15321dc44b7',
'MLLMGuard_DS': '975fc0dd7119386e198c37d71e274b3f',
'BLINK': '3b6649b6a662184ea046908e5506260e',
'TaskMeAnything_v1_imageqa_random': '023fef69e2ca21827afb77c5ec3bc889',
'WorldMedQA-V': '441e63875e30c87f5750528b57b41285',
"VisOnlyQA-VLMEvalKit": 'cf460a31d2acb8d3a7cecd0e69298bfa',
'3DSRBench': '13a99f33164dc1b9faf0e8b8b01fd6f2',
}
DATASET_URL.update(MMMB_URLS)
DATASET_URL.update(MTL_MMBench_URLS)
DATASET_MD5.update(MMMB_MD5)
DATASET_MD5.update(MTL_MMBench_MD5)
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
prompt += 'Please select the correct answer from the options above. \n'
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import report_acc, report_acc_MMT, mcq_circular_eval, mcq_vanilla_eval
# assert dataset is not None
dataset_map = {
'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_EN_V11': 'MMBench_V11',
'MMBench_TEST_CN': 'MMBench_CN', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11'
}
dataset = self.dataset_name
if dataset in dataset_map:
dataset = dataset_map[dataset]
nproc = judge_kwargs.pop('nproc', 4)
circular = False
if listinstr(['mmbench', 'ccbench'], dataset.lower()):
data = load(eval_file)
data['index'] = [int(x) for x in data['index']]
dump(data, eval_file)
circular = True
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
if circular:
data = mcq_circular_eval(model, data, meta, nproc, result_file, self.dataset_name)
else:
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
# load split
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
# May have different report acc functions for different datasets
if 'MMT' in dataset:
acc = report_acc_MMT(data)
else:
acc = report_acc(data)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(acc, score_file)
if dataset == 'AesBench_VAL':
warnings.warn('Note that AesBench VAL is just a toy version of AesBench TEST. For full results, \
please evaluate on AesBench TEST. The AesBench TEST dataset is more than 20 times \
larger than the VAL dataset and the leaderboard results are based on AesBench TEST.')
if dataset == 'VisOnlyQA-VLMEvalKit':
warnings.warn('Note that the results on VisOnlyQA-VLMEvalKit are different from the results on \
the original VisOnlyQA. VisOnlyQA-VLMEvalKit does not include the \
chemistry__shape_multi split and uses a different evaluation prompt. Please \
explicitly specify the version of the dataset when you report results.')
return acc
class MMMUDataset(ImageMCQDataset):
DATASET_URL = {
'MMMU_DEV_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_DEV_VAL.tsv',
'MMMU_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_TEST.tsv',
}
DATASET_MD5 = {
'MMMU_DEV_VAL': '585e8ad75e73f75dcad265dfd0417d64',
'MMMU_TEST': 'c19875d11a2d348d07e5eb4bdf33166d',
}
@staticmethod
def split_MMMU(msgs):
text, images = None, []
for s in msgs:
if s['type'] == 'image':
images.append(s['value'])
elif s['type'] == 'text':
assert text is None
text = s['value']
text_segs = text.split('<image ')
if len(text_segs) == 1:
return msgs
segs = [dict(type='text', value=text_segs[0])]
for i, seg in enumerate(text_segs):
if i == 0:
continue
assert istype(seg[0], int) and seg[1] == '>'
image_idx = int(seg[0]) - 1
segs.append(dict(type='image', value=images[image_idx]))
segs.append(dict(type='text', value=seg[2:]))
return segs
def build_prompt(self, line):
msgs = super().build_prompt(line)
msgs = self.split_MMMU(msgs)
return msgs
class MUIRDataset(ImageMCQDataset):
DATASET_URL = {
'MUIRBench': 'http://opencompass.openxxlab.com/utils/VLMEval/MUIRBench.tsv'
}
DATASET_MD5 = {
'MUIRBench': '2e5e6fd7699761b08a7cb3ab8c0c2ec8'
}
@staticmethod
def split_MUIR(msgs):
text, images = None, []
# Separate images and text from msgs
for s in msgs:
if s['type'] == 'image':
images.append(s['value'])
elif s['type'] == 'text':
assert text is None # Ensure only one text entry is expected
text = s['value']
# Split text by <image> tags
text_segs = text.split('<image>')
# Initialize the segments list
segs = []
# Iterate through the text segments and images
for i, seg in enumerate(text_segs):
# Append the image if this is not the first segment and there are still images left
if i > 0 and i - 1 < len(images):
segs.append(dict(type='image', value=images[i - 1]))
# Append the text segment (if it's non-empty)
if len(seg) > 0:
segs.append(dict(type='text', value=seg))
return segs
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
# options_prompt = ''
options_prompt = '\n'.join([f'{key}. {item}' for key, item in options.items()])
# for key, item in options.items():
# options_prompt += f'{key}. {item}\n'
prompt = ''
prompt += f'{question}\n'
if len(options):
prompt += options_prompt
prompt += "\nAnswer with the option's letter from the given choices directly."
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
msgs = self.split_MUIR(msgs)
return msgs
class GMAIMMBenchDataset(ImageMCQDataset):
DATASET_URL = {
'GMAI-MMBench_VAL': 'https://huggingface.co/datasets/VLMEval/GMAI-MMBench/resolve/main/GMAI-MMBench_VAL.tsv',
'GMAI_mm_bench_TEST_part_1': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_1.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_2': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_2.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_3': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_3.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_4': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_4.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_5': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_5.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_6': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_6.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_7': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_7.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_8': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_8.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_9': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_9.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_10': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_10.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_11': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_11.tsv', # noqa: E501
}
DATASET_MD5 = {
'GMAI-MMBench_VAL': '254bd581627866f1c499d3d6b4422324',
'GMAI_mm_bench_TEST_part_1': '900d735231230a63f4ed45665c078ef4',
'GMAI_mm_bench_TEST_part_2': '1b27ab621386945d7e4a765ad2d22b0e',
'GMAI_mm_bench_TEST_part_3': '44bdc2b6267dd505d529b8cad06f0fb2',
'GMAI_mm_bench_TEST_part_4': '5a04a04fcac9f1466709f242fdb80acb',
'GMAI_mm_bench_TEST_part_5': 'c70baf8909eda9af0ddeab275c721336',
'GMAI_mm_bench_TEST_part_6': '825abc39596b644dead9350d0cfa3b96',
'GMAI_mm_bench_TEST_part_7': 'defb8aed2fb77365a76b6b9abd6a2701',
'GMAI_mm_bench_TEST_part_8': 'ff490d60b85f2bb0abb67a435b298c65',
'GMAI_mm_bench_TEST_part_9': 'ff67c86f40da93b09139ac1d1ba5dc6b',
'GMAI_mm_bench_TEST_part_10': '3dae94627b9ac0fe00180d4780fbf6dc',
'GMAI_mm_bench_TEST_part_11': 'd08dc813f0eb6bbab63cae2a9d113c4b',
}
@classmethod
def supported_datasets(cls):
return ['GMAI-MMBench_VAL', 'GMAI-MMBench_TEST']
def load_data(self, dataset):
if dataset == 'GMAI-MMBench_VAL':
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL'):
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
elif dataset == 'GMAI-MMBench_TEST':
dfs = []
for part_num in range(1, 12):
part_name = f'GMAI_mm_bench_TEST_part_{part_num}'
url = self.DATASET_URL[part_name]
file_md5 = self.DATASET_MD5.get(part_name)
tsv_path = osp.join(LMUDataRoot(), f'{part_name}.tsv')
if not osp.exists(tsv_path) or (file_md5 and md5(tsv_path) != file_md5):
download_file(url, filename=tsv_path)
local_path = tsv_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL'):
from ..tools import LOCALIZE
LOCALIZE(tsv_path, local_path)
tsv_path = local_path
# 加载数据
df = load(tsv_path)
dfs.append(df)
# 合并所有数据
data = pd.concat(dfs, ignore_index=True)
return data
else:
raise ValueError(f"未知的数据集:{dataset}")
def report_acc_by_groups(self, df, group_column):
res = defaultdict(list)
# Check for the 'split' column
if 'split' in df:
splits = list(set(df['split']))
res['split'] = splits
else:
df['split'] = ['none'] * len(df)
res['split'] = ['none']
res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]
if group_column not in df:
raise ValueError(f"Column '{group_column}' not found in dataframe.") # noqa: E713
abilities = list(set(df[group_column]))
abilities = ['None' if isinstance(ab, float) and pd.isna(ab) else ab for ab in abilities]
abilities.sort()
for ab in abilities:
ab_name = ab
sub_df = df[df[group_column] == ab]
res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]
return pd.DataFrame(res)
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import report_acc, mcq_vanilla_eval
nproc = judge_kwargs.pop('nproc', 4)
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
# load split
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
acc = report_acc(data)
for group_col in ['clinical vqa task', 'department', 'perceptual granularity']:
acc_grouped = self.report_acc_by_groups(data, group_col)
score_file_grouped = eval_file.replace(f'.{suffix}', f'_{group_col}_acc.csv')
dump(acc_grouped, score_file_grouped)
return acc
class MMERealWorld(ImageMCQDataset):
TYPE = 'MMERealWorld'
DATASET_MD5 = {
'MME-RealWorld': '271c33ec814c39533c467ec6fb8a6f36',
'MME-RealWorld-Lite': '4c17057d7d3b6c4a0d4397c3dae0881c',
'MME-RealWorld-CN': 'daaa763d52a760a38606d5dedb3fe444',
}
SYS = {
'MME-RealWorld': (
'Select the best answer to the above multiple-choice question based on the image. '
'Respond with only the letter (A, B, C, D, or E) of the correct option. \n'
'The best answer is:'
),
'MME-RealWorld-Lite': (
'Select the best answer to the above multiple-choice question based on the image. '
'Respond with only the letter (A, B, C, D, or E) of the correct option. \n'
'The best answer is:'
),
'MME-RealWorld-CN': (
'根据图像选择上述多项选择题的最佳答案。只需回答正确选项的字母A, B, C, D 或 E\n'
'最佳答案为:'
),
}
@classmethod
def supported_datasets(cls):
return ['MME-RealWorld', 'MME-RealWorld-CN', 'MME-RealWorld-Lite',]
def load_data(
self, dataset="MME-RealWorld", repo_id="yifanzhang114/MME-RealWorld-Base64"
):
def check_integrity(pth):
data_file = osp.join(pth, f"{dataset}.tsv")
if not os.path.exists(data_file):
return False
if md5(data_file) != self.DATASET_MD5[dataset]:
return False
return True
def generate_tsv(pth):
tsv_file = os.path.join(pth, f"{dataset}.tsv")
if os.path.exists(tsv_file):
print(f"{tsv_file} already exists.")
return
json_dir = os.path.join(pth, dataset)
json_files = [f for f in os.listdir(json_dir) if f.endswith(".json")]
data_list = []
for json_file in json_files:
with open(os.path.join(json_dir, json_file), "r") as f:
data = json.load(f)
for item in tqdm(data):
choice_prompt = (
"The choices are listed below:\n"
if dataset in ["MME-RealWorld", "MME-RealWorld-Lite"]
else "选项如下所示:\n"
)
data_list.append(
{
"index": item["index"],
"image": item["image"],
"question": item["question"],
"multi-choice options": choice_prompt
+ "\n".join(item["multi-choice options"]),
"A": item["multi-choice options"][0][4:],
"B": item["multi-choice options"][1][4:],
"C": item["multi-choice options"][2][4:],
"D": item["multi-choice options"][3][4:],
"E": item["multi-choice options"][4][4:],
"answer": item["answer"],
"category": item["category"],
"l2-category": item["l2-category"],
}
)
df = pd.DataFrame(data_list)
df.to_csv(tsv_file, sep="\t", index=False)
print(f"TSV file saved to {tsv_file}")
# Check if dataset is cached and has integrity
if dataset == "MME-RealWorld-Lite":
url = 'https://huggingface.co/datasets/yifanzhang114/MME-RealWorld-Base64/resolve/main/mme_realworld_lite.tsv' # noqa: E501
file_md5 = (
self.DATASET_MD5[dataset] if dataset in self.DATASET_MD5 else None
)
datas = self.prepare_tsv(url, file_md5)
choice_prompt = "The choices are listed below:\n"
for index, item in datas.iterrows():
options = eval(item["multi-choice options"])
datas.loc[index, "multi-choice options"] = choice_prompt + "\n".join(
options
)
datas.loc[index, "A"] = options[0][4:]
datas.loc[index, "B"] = options[1][4:]
datas.loc[index, "C"] = options[2][4:]
datas.loc[index, "D"] = options[3][4:]
datas.loc[index, "E"] = options[4][4:]
return datas
update_flag = False
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
print(f"Using cached dataset from {cache_path}")
else:
from huggingface_hub import snapshot_download
# Download or find the dataset path
dataset_path = snapshot_download(repo_id=repo_id, repo_type="dataset")
generate_tsv(dataset_path)
update_flag = True
data_path = os.path.join(dataset_path, f"{dataset}.tsv")
if file_size(data_path, "GB") > 1:
local_path = data_path.replace(".tsv", "_local.tsv")
if (
not osp.exists(local_path)
or os.environ.get("FORCE_LOCAL", None)
or update_flag
):
from vlmeval.tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
def post_build(self, dataset):
self.TYPE = 'MMERealWorld'
# Given one data record, return the built prompt (a multi-modal message), can override
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
choice_prompt = line['multi-choice options'] + '\n'
question += ' ' + choice_prompt + self.SYS[self.dataset_name]
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=question))
return msgs
# It returns a dictionary
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import extract_characters_regex, get_dimension_rating
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
FAIL_MSG = 'Failed to obtain answer via API.'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
cnt_rejected = 0
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
extract_pred = extract_characters_regex(pred)
if extract_pred == '':
cnt_rejected += 1
data.loc[data['index'] == idx, 'score'] = 0
else:
data.loc[data['index'] == idx, 'score'] = int(extract_pred == ans)
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {cnt_rejected} questions. '
f'Those questions will be counted as 0 score in ALL rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating
class HRBenchDataset(ImageMCQDataset):
DATASET_URL = {
'HRBench4K': 'https://huggingface.co/datasets/DreamMr/HR-Bench/resolve/main/hr_bench_4k.tsv',
'HRBench8K': 'https://huggingface.co/datasets/DreamMr/HR-Bench/resolve/main/hr_bench_8k.tsv',
}
DATASET_MD5 = {
'HRBench4K': 'f6b041b03d49543494b8a56d2e35be65',
'HRBench8K': '274c9c7f89329b804a4723178a00219c',
}
def evaluate(self, eval_file, **judge_kwargs):
assert os.path.exists(eval_file), '{} does not exist!'.format(eval_file)
from .utils.multiple_choice import mcq_vanilla_eval
from .utils.hrbench import report_acc_hrbench
nproc = judge_kwargs.pop('nproc', 4)
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'extract_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
if osp.exists(score_file):
acc = load(score_file)
return acc
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
acc = report_acc_hrbench(data)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(acc, score_file)
return acc
class CustomMCQDataset(ImageMCQDataset):
def load_data(self, dataset):
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None):
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
class NaturalBenchDataset(ImageMCQDataset):
DATASET_URL = {
'NaturalBenchDataset': (
'https://huggingface.co/datasets/BaiqiL/'
'NaturalBench/resolve/main/NaturalBenchDataset.tsv'
),
}
DATASET_MD5 = {
'NaturalBenchDataset':'dbe25b044bc35696426381e9ba4fe930',
}
def build_prompt(self, line):
SUFFIX_FOR_VQA = {
"yes_no": "Please answer Yes or No.",
"multiple_choice": "Please output the letter corresponding to the correct option."
}
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
prompt = f'{question} {SUFFIX_FOR_VQA[line["type"]]}'
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def evaluate(self, eval_file, **judge_kwargs):
from .utils.naturalbench import extract_answer, get_scores
data = load(eval_file)
data = data.sort_values(by='index')
predictions = [str(x) for x in data['prediction']]
answers = [str(x) for x in data['answer']]
indexs = [str(x) for x in data['index']]
meta = self.data
types = [str(x) for x in meta['type']]
results = {}
assert len(predictions) == len(answers) == len(indexs) == len(types) == (1900 * 4)
number_answered_samples = len(predictions) // 4
for i in range(number_answered_samples):
results[i] = {
"q0_i0": extract_answer(predictions[i * 4], types[i * 4]),
"q0_i1": extract_answer(predictions[i * 4 + 1], types[i * 4 + 1]),
"q1_i0": extract_answer(predictions[i * 4 + 2], types[i * 4 + 2]),
"q1_i1": extract_answer(predictions[i * 4 + 3], types[i * 4 + 3])
}
scores = get_scores(results)
print(scores)
score_file = 'NaturalBench_acc.csv'
df = pd.DataFrame(list(scores.items()), columns=['Metric', 'Score'])
dump(df, score_file)
return scores

View File

@@ -0,0 +1,128 @@
from .image_base import ImageBaseDataset
from .utils.judge_util import build_judge
from ..smp import *
from ..utils import track_progress_rich
class ImageMTDataset(ImageBaseDataset):
TYPE = 'MT'
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
questions = toliststr(line['question'])
if 'answer' in line:
answers = toliststr(line['answer'])
else:
answers = [''] * len(questions)
assert len(questions) == len(answers)
dlgs, pics_number = [], 0
for i in range(len(questions)):
q, a = questions[i], answers[i]
if '<ImageHere>' in q:
content = []
tag_number = q.count('<ImageHere>')
images = tgt_path[pics_number: pics_number + tag_number]
pics_number += tag_number
q_split = q.split('<ImageHere>')
for i in range(tag_number):
qsp, im = q_split[i], images[i]
if qsp != '':
content.append(dict(type='text', value=qsp))
content.append(dict(type='image', value=im))
if q_split[-1] != '':
content.append(dict(type='text', value=q_split[-1]))
else:
content = [dict(type='text', value=q)]
dlgs.append(dict(role='user', content=content))
assert '<ImageHere>' not in a, 'We currently do not support images in the answer. '
content = [dict(type='text', value=a)]
dlgs.append(dict(role='assistant', content=content))
return dlgs
class MMDUDataset(ImageMTDataset):
DATASET_URL = {'MMDU': 'https://opencompass.openxlab.space/utils/VLMEval/MMDU.tsv'}
DATASET_MD5 = {'MMDU': '848b635a88a078f49aebcc6e39792061'}
DIMS = [
'Creativity', 'Richness', 'Visual Perception', 'Logical Coherence',
'Answer Accuracy', 'Image Relationship Understanding', 'Overall Score'
]
def calculat_metric(self, ans):
all = defaultdict(lambda: 0)
tot = defaultdict(lambda: 0)
valid = defaultdict(lambda: 0)
for k in ans:
res = ans[k]['res']
assert isinstance(res, pd.DataFrame)
lt = len(res)
for i in range(lt):
line = res.iloc[i]
for k in self.DIMS:
tot[k] += 1
if k in line and line[k] is not None:
try:
score = int(line[k])
score = np.clip(score, 0, 10)
all[k] += score
valid[k] += 1
except Exception as e:
print(f'Failed to parse the score: {str(e)}')
sp1 = {'set': 'all'}
sp1.update({k: all[k] / tot[k] * 10 for k in self.DIMS})
sp2 = {'set': 'valid'}
sp2.update({k: all[k] / valid[k] * 10 for k in self.DIMS})
return pd.DataFrame([sp1, sp2])
def evaluate(self, eval_file, **judge_kwargs):
suffix = eval_file.split('.')[-1]
model = judge_kwargs['model']
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.csv')
nproc = judge_kwargs.pop('nproc', 4)
data = load(eval_file)
model = judge_kwargs.pop('model', 'gpt-4o')
judge_model = build_judge(model=model, **judge_kwargs)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(judge_model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
from .utils.mmdu import mmdu_score
if len(indices):
new_results = track_progress_rich(
mmdu_score,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,)
ans = load(tmp_file)
for k, v in zip(indices, new_results):
assert k in ans
metric = self.calculat_metric(ans)
dump(metric, score_file)
return metric

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,95 @@
from ..smp import *
from ..utils import *
from .image_base import ImageBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
class ImageYORNDataset(ImageBaseDataset):
TYPE = 'Y/N'
DATASET_URL = {
'MME': 'https://opencompass.openxlab.space/utils/VLMEval/MME.tsv',
'HallusionBench': 'https://opencompass.openxlab.space/utils/VLMEval/HallusionBench.tsv',
'POPE': 'https://opencompass.openxlab.space/utils/VLMEval/POPE.tsv',
'AMBER': 'https://huggingface.co/datasets/yifanzhang114/AMBER_base64/resolve/main/AMBER.tsv',
}
DATASET_MD5 = {
'MME': 'b36b43c3f09801f5d368627fb92187c3',
'HallusionBench': '0c23ac0dc9ef46832d7a24504f2a0c7c',
'POPE': 'c12f5acb142f2ef1f85a26ba2fbe41d5',
'AMBER': '970d94c0410916166e0a76ba75da7934',
}
# It returns a dataframe
def evaluate(self, eval_file, **judge_kwargs):
from .utils.yorn import YOrN_Extraction, YOrN_auxeval
from .utils.yorn import default_rating, MME_rating, Hallusion_rating, POPE_rating, AMBER_rating
dataset = self.dataset_name
data = load(eval_file)
data['prediction'] = [str(x) for x in data['prediction']]
storage = eval_file.replace('.xlsx', '_auxmatch.xlsx')
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(storage):
ans_map = {k: YOrN_Extraction(v) for k, v in zip(data['index'], data['prediction'])}
if osp.exists(tmp_file):
tmp = load(tmp_file)
for k in tmp:
if ans_map[k] == 'Unknown' and tmp[k] != 'Unknown':
ans_map[k] = tmp[k]
data['extracted'] = [ans_map[x] for x in data['index']]
unknown = data[data['extracted'] == 'Unknown']
model = judge_kwargs.get('model', 'exact_matching')
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
model = None
warnings.warn('OPENAI_API_KEY is not working properly, will use exact matching for evaluation')
if model is not None:
lt = len(unknown)
lines = [unknown.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = list(unknown['index'])
if len(tups):
res = track_progress_rich(
YOrN_auxeval, tups, nproc=nproc, chunksize=nproc, keys=indices, save=tmp_file)
for k, v in zip(indices, res):
ans_map[k] = v
data['extracted'] = [ans_map[x] for x in data['index']]
dump(data, storage)
data = load(storage)
if listinstr(['AMBER'], dataset):
data['score'] = (data['answer'].str.lower() == data['extracted'].str.lower())
else:
data['score'] = (data['answer'] == data['extracted'])
dump(data, storage)
if dataset is not None and listinstr(['MME'], dataset):
score = MME_rating(storage)
elif dataset is not None and listinstr(['Hallusion'], dataset):
score = Hallusion_rating(storage)
elif dataset is not None and listinstr(['POPE'], dataset):
score = POPE_rating(storage)
elif dataset is not None and listinstr(['AMBER'], dataset):
score = AMBER_rating(storage)
else:
score = default_rating(storage)
score_tgt = eval_file.replace('.xlsx', '_score.csv')
dump(score, score_tgt)
return score

View File

@@ -0,0 +1,328 @@
from huggingface_hub import snapshot_download
from ..smp import *
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from glob import glob
FAIL_MSG = 'Failed to obtain answer via API.'
def timestamp_to_seconds(timestamp):
# Split the timestamp into hours, minutes, and seconds
h, m, s = timestamp.split(":")
# Convert hours, minutes, and total seconds (including fractions) to float and compute total seconds
total_seconds = int(h) * 3600 + int(m) * 60 + float(s)
return total_seconds
def uniformly_subsample(lst, K):
n = len(lst)
if K >= n:
return lst
step = n / K
return [lst[int(i * step)] for i in range(K)]
def insert_subtitles_into_frames(
frames,
frame_timestamps,
subtitles,
starting_timestamp_for_subtitles,
duration,
):
interleaved_list = []
cur_i = 0
for subtitle in subtitles:
if "timestamp" in subtitle:
start, end = subtitle["timestamp"]
if not isinstance(end, float):
end = duration
start -= starting_timestamp_for_subtitles
end -= starting_timestamp_for_subtitles
subtitle_timestamp = (start + end) / 2
subtitle_text = subtitle["text"]
else:
start, end = subtitle["start"], subtitle["end"]
start = timestamp_to_seconds(start)
end = timestamp_to_seconds(end)
start -= starting_timestamp_for_subtitles
end -= starting_timestamp_for_subtitles
subtitle_timestamp = (start + end) / 2
subtitle_text = subtitle["line"]
for i, (frame, frame_timestamp) in enumerate(
zip(frames[cur_i:], frame_timestamps[cur_i:])
):
if frame_timestamp <= subtitle_timestamp:
# print("frame:", frame_timestamp)
interleaved_list.append({"type": "image", "value": frame})
cur_i += 1
else:
break
if end - start < 1:
end = subtitle_timestamp + 0.5
start = subtitle_timestamp - 0.5
covering_frames = False
for frame, frame_timestamp in zip(frames, frame_timestamps):
if frame_timestamp < end and frame_timestamp > start:
covering_frames = True
break
if covering_frames:
interleaved_list.append({"type": "text", "value": subtitle_text + "\n"})
else:
pass
for i, (frame, frame_timestamp) in enumerate(
zip(frames[cur_i:], frame_timestamps[cur_i:])
):
interleaved_list.append({"type": "image", "value": frame})
return interleaved_list
class LongVideoBench(VideoBaseDataset):
MD5 = '82905eae3a5ae7383c5a8ee9655e1ab9'
SYS = ''
TYPE = 'Video-MCQ'
def __init__(self, dataset='LongVideoBench', use_subtitle=False, nframe=0, fps=-1):
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
self.use_subtitle = use_subtitle
self.dataset_name = dataset
@classmethod
def supported_datasets(cls):
return ['LongVideoBench']
def prepare_dataset(self, dataset_name='LongVideoBench', repo_id='longvideobench/LongVideoBench'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not osp.exists(data_file):
return False
if md5(data_file) != self.MD5:
print("md5 mismatch", md5(data_file), self.MD5)
return False
data = load(data_file)
for video_pth in data['video_path']:
if not osp.exists(osp.join(pth, video_pth)):
print(video_pth, "is not found")
return False
return True
if modelscope_flag_set():
repo_id = "AI-ModelScope/LongVideoBench"
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if osp.exists(data_file) and md5(data_file) == self.MD5:
return
data_file = pd.read_json(osp.join(pth, 'lvb_val.json'))
data_file = data_file.assign(index=range(len(data_file)))
data_file['video'] = data_file['video_id']
data_file['video_path'] = data_file['video_path'].apply(lambda x: f'./videos/{x}')
data_file.to_csv(osp.join(pth, f'{dataset_name}.tsv'), sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_snapshot_download(dataset_id=repo_id)
else:
snapshot_download(repo_id=repo_id, repo_type='dataset')
print("All videos are downloaded for LongVideoBench")
if not glob(osp.join(cache_path, "videos")):
tar_files = glob(osp.join(cache_path, "**/*.tar*"), recursive=True)
def untar_video_data(tar_file, cache_dir):
import tarfile
with tarfile.open(tar_file, "r") as tar_ref:
tar_ref.extractall(cache_dir)
print(f"Extracted all files from {tar_file} to {cache_dir}")
def concat_tar_parts(tar_parts, output_tar):
with open(output_tar, "wb") as out_tar:
from tqdm import tqdm
for part in tqdm(sorted(tar_parts)):
with open(part, "rb") as part_file:
out_tar.write(part_file.read())
print(f"Concatenated parts {tar_parts} into {output_tar}")
tar_parts_dict = {}
# Group tar parts together
for tar_file in tar_files:
base_name = tar_file.split(".tar")[0]
if base_name not in tar_parts_dict:
tar_parts_dict[base_name] = []
tar_parts_dict[base_name].append(tar_file)
# Concatenate and untar split parts
for base_name, parts in tar_parts_dict.items():
print(f"Extracting following tar files: {parts}")
output_tar = base_name + ".tar"
if not osp.exists(output_tar):
print('Start concatenating tar files')
concat_tar_parts(parts, output_tar)
print('Finish concatenating tar files')
if not osp.exists(osp.join(cache_path, osp.basename(base_name))):
untar_video_data(output_tar, cache_path)
print('All videos are extracted for LongVideoBench')
dataset_path = cache_path
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(data_file=data_file, root=dataset_path)
def save_video_frames(self, video_path, video_llm=False):
vid_path = osp.join(self.data_root, video_path)
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if self.nframe > 0 and self.fps < 0:
step_size = len(vid) / (self.nframe + 1)
indices = [int(i * step_size) for i in range(1, self.nframe + 1)]
frame_paths = self.frame_paths(video_path[:-4])
elif self.fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * self.fps)
step_size = video_info['fps'] / self.fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(video_path[:-4], len(indices))
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth) and not video_llm:
im.save(pth)
return frame_paths, indices, video_info
# def save_video_into_images(self, line, num_frames=8):
# frame_paths, indices, video_info = self.save_video_frames(line['video_path'], num_frames)
# return frame_paths
def build_prompt(self, line, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
frames, indices, video_info = self.save_video_frames(line['video_path'], video_llm)
fps = video_info["fps"]
message = [dict(type='text', value=self.SYS)]
if video_llm:
message.append(dict(type='video', value=osp.join(self.data_root, line['video_path'])))
else:
if not self.use_subtitle:
with open(osp.join(self.data_root, "subtitles", line["subtitle_path"])) as f:
subtitles = json.load(f)
frame_message = insert_subtitles_into_frames(
frames,
[ind_ / fps for ind_ in indices],
subtitles,
line["starting_timestamp_for_subtitles"],
line["duration"]
)
message += frame_message
else:
for im in frames:
message.append(dict(type='image', value=im))
line['question'] += '\n' + '\n'.join(
["{}. {}".format(chr(ord("A") + i), cand) for i, cand in enumerate(eval(line['candidates']))]
)
prompt = line["question"] + "\nAnswer with the option's letter from the given choices directly."
message.append(dict(type='text', value=prompt))
return message
# It returns a dictionary
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.longvideobench import get_dimension_rating, extract_characters_regex, extract_option
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'correct_choice'].values[0]
ans = chr(ord("A") + ans)
pred = str(data.loc[data['index'] == idx, 'prediction'].values[0])
if extract_characters_regex(pred) == '':
extract_pred = extract_option(
model,
data.loc[data['index'] == idx].to_dict(orient='records')[0],
'LongVideoBench'
)
data.loc[idx, 'score'] = int(extract_pred == ans)
else:
data.loc[idx, 'score'] = int(extract_characters_regex(pred) == ans)
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating

View File

@@ -0,0 +1,167 @@
import json
import os
import pandas as pd
from .image_base import ImageBaseDataset
from ..smp import *
from .utils import build_judge, DEBUG_MESSAGE
from ..utils import track_progress_rich
def generate_prompt(d):
question = d['question']
weights = eval(d['component_weight'])
components = eval(d['components'])
num_of_component = int(d['num_of_component'])
response = d['prediction']
if num_of_component == 1:
components = f"The first component is: '{components[0]}'. "
score = f"The first component is worth: {weights[0]} scores. "
elif num_of_component == 2:
components = f"The first component is: '{components[0]}', and the second component is '{components[1]}'. "
score = f"The first and second component is each worth {weights[0]} and {weights[1]} scores. "
elif num_of_component == 3:
components = (
f"The first component is: '{components[0]}', and the second component is '{components[1]}', "
f"and the third component is '{components[2]}'. "
)
score = (
"The first, second, and third component is each worth "
f"{weights[0]}, {weights[1]}, and {weights[2]} scores."
)
elif num_of_component == 4:
components = (
f"The first component is: '{components[0]}', and the second component is '{components[1]}', "
f"and the third component is '{components[2]}', and the fourth component is '{components[3]}'. "
)
score = (
"The first, second, third, and fourth component is each worth "
f"{weights[0]}, {weights[1]}, {weights[2]}, and {weights[3]} scores."
)
elif num_of_component == 5:
components = (
f"The first component is: '{components[0]}', and the second component is '{components[1]}', "
f"and the third component is '{components[2]}', and the fourth component is '{components[3]}', "
f"and the fifth component is '{components[4]}'. "
)
score = (
"The first, second, third, fourth, and fifth component is each worth "
f"{weights[0]}, {weights[1]}, {weights[2]}, {weights[3]}, and {weights[4]} scores."
)
return (
"Here is an instruction for a multimodal LLM: '"
f"{question}"
"'. You need to grade if the response from the model follows each component of the instruction. "
f"{components}"
"The response is: '"
f"{response}"
"'. You need to score the response and be strict. The total score ranges from 0 to 10, "
"depending on if the response follows the instruction. "
f"{score}"
"List scores of each component, and the total score in one sentence in this format: "
"score of component 1: x/2, score of component 2: y/8, total score: z/10. Then explain your reasons."
)
def process_rawscore(component_type, raw_score):
first_sentence = raw_score.split('.')[0].split(',')
score_dict = {}
for i in range(len(first_sentence) - 1):
score_ = first_sentence[i].split(':')[1][1:].split('/')
score = int(score_[0]) / int(score_[1])
score_dict[component_type[i]] = score
total_score_ = first_sentence[i + 1].split(':')[1][1:].split('/')
total_score = int(total_score_[0]) / int(total_score_[1])
score_dict['total_score'] = total_score
return score_dict
def get_score_dict(data, score_raw):
cat_score_dict = {}
for i in range(len(data)):
try:
cmp = data['component_type'][i][2:-2]
cmp_list = cmp.split('\', \'')
score_dict = process_rawscore(cmp_list, score_raw[i])
for key, val in score_dict.items():
if key not in cat_score_dict.keys():
cat_score_dict[key] = [val]
else:
cat_score_dict[key].append(val)
except:
pass
cat_score_dict_average = {}
for key, val in cat_score_dict.items():
cat_score_dict_average[key] = sum(val) / len(val)
return cat_score_dict_average
class MIABench(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'MIA-Bench': 'https://opencompass.openxlab.space/utils/VLMEval/Mia-Bench.tsv',
}
DATASET_MD5 = {
'MIA-Bench': '0b9de595f4dd40af18a69b94d89aba82',
}
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
judge_name = judge_kwargs.pop('model', 'gpt-4o')
model = build_judge(model=judge_name, **judge_kwargs)
suffix = eval_file.split('.')[-1]
storage = eval_file.replace(f'.{suffix}', f'_{judge_name}.xlsx') # noqa: F841
tmp_file = eval_file.replace(f'.{suffix}', f'_{judge_name}.pkl') # noqa: F841
nproc = judge_kwargs.pop('nproc', 4) # noqa: F841
if not osp.exists(storage):
data = load(eval_file)
num_samples = len(data)
lines = [data.loc[i] for i in range(num_samples)]
prompts = [generate_prompt(line) for line in lines]
org_data = MIABench('MIA-Bench').data
img_map = {x: y for x, y in zip(org_data['index'], org_data['image'])}
image_b64 = [img_map[idx] for idx in data['index']]
indices = list(data['index'])
mm_messages = [
dict(message=[
dict(type='text', value=prompt),
dict(type='image', value=f'data:image/jpeg;base64,{b64}')
])
for prompt, b64 in zip(prompts, image_b64)
]
res = {}
if osp.exists(tmp_file):
res = load(tmp_file)
jobs = {k: v for k, v in zip(indices, mm_messages) if k not in res}
job_keys = list(jobs.keys())
job_vals = [jobs[k] for k in job_keys]
resps = track_progress_rich(
model.generate,
job_vals,
nproc=nproc,
chunksize=nproc,
keys=job_keys,
save=tmp_file,
)
for k, resp in zip(job_keys, resps):
res[k] = resp
data['score_raw'] = [res[idx] for idx in indices]
dump(data, storage)
goresult = load(storage)
results = get_score_dict(goresult, goresult['score_raw'])
result_pth = storage.replace('.xlsx', '_score.csv')
results_pd = pd.DataFrame.from_dict(list(results.items()))
dump(results_pd, result_pth)
return results

View File

@@ -0,0 +1,455 @@
import huggingface_hub
from huggingface_hub import snapshot_download
from ..smp import *
from .video_concat_dataset import ConcatVideoDataset
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..utils import track_progress_rich
import torchvision.transforms as T
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from decord import VideoReader, cpu
import pandas as pd
import imageio
import cv2
import zipfile
import os
import glob
from .utils.mlvu import *
FAIL_MSG = 'Failed to obtain answer via API.'
class MLVU(ConcatVideoDataset):
def __init__(self, dataset='MLVU', nframe=0, fps=-1):
self.DATASET_SETS[dataset] = ['MLVU_MCQ', 'MLVU_OpenEnded']
self.type_data_dict = {
'M-Avg':['plotQA', 'needle', 'ego', 'count', 'anomaly_reco', 'topic_reasoning'],
'G-Avg':['sub_scene', 'summary']
}
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
@classmethod
def supported_datasets(cls):
return ['MLVU']
def evaluate(self, eval_file, **judge_kwargs):
result = super().evaluate(eval_file=eval_file, **judge_kwargs)
suffix = eval_file.split('.')[-1]
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
for key in self.type_data_dict:
result.loc[key] = 0.0
for name, item in result.iterrows():
if name in self.type_data_dict[key]:
result.loc[key, 'success'] += item['success']
result.loc[key, 'overall'] += item['overall']
if key == 'G-Avg':
result.loc[key, 'acc'] = round(
result.loc[key, 'success'] / result.loc[key, 'overall'], 2
)
else:
result.loc[key, 'acc'] = round(
result.loc[key, 'success'] / result.loc[key, 'overall'] * 100, 1
)
result = result.reset_index().rename(columns={'index': 'task'})
dump(result, score_file)
return result
class MLVU_MCQ(VideoBaseDataset):
MD5 = 'bb5c37e7cf8d43fc9a25c23d2b4633f5'
BASE_SYS = 'Carefully watch this video and pay attention to every detail. '
SYS = BASE_SYS + 'Based on your observations, select the best option that accurately addresses the question.'
TYPE = 'Video-MCQ'
def __init__(self, dataset='MLVU_MCQ', nframe=0, fps=-1):
self.type_data_list = {
'plotQA': ('1_plotQA.json', './MLVU/video/1_plotQA', 'MCQ'),
'needle': ('2_needle.json', './MLVU/video/2_needle', 'MCQ'),
'ego': ('3_ego.json', './MLVU/video/3_ego', 'MCQ'),
'count': ('4_count.json', './MLVU/video/4_count', 'MCQ'),
'order': ('5_order.json', './MLVU/video/5_order', 'MCQ'),
'anomaly_reco': ('6_anomaly_reco.json', './MLVU/video/6_anomaly_reco', 'MCQ'),
'topic_reasoning': ('7_topic_reasoning.json', './MLVU/video/7_topic_reasoning', 'MCQ'),
}
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
@classmethod
def supported_datasets(cls):
return ['MLVU_MCQ']
def prepare_dataset(self, dataset_name='MLVU_MCQ', repo_id='MLVU/MVLU'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'])):
return False
return True
if modelscope_flag_set():
repo_id = "AI-ModelScope/MLVU"
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MD5:
return
json_data_dir = os.path.join(dataset_path, 'MLVU', 'json')
self.data_list = []
for k, v in self.type_data_list.items():
with open(os.path.join(json_data_dir, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1],
'duration': data['duration'],
'video': data['video'],
'question': data['question'],
'answer': data['answer'],
'candidates': data['candidates'],
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
huggingface_hub.login(hf_token)
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = f"Question: {data['question']}\n"
question += 'Options:\n'
answer = data['answer']
answer_idx = -1
for idx, c in enumerate(eval(data['candidates'])):
question += f"({chr(ord('A') + idx)}) {c}\n"
if c == answer:
answer_idx = idx
question = question.rstrip()
answer = f"({chr(ord('A') + answer_idx)}) {answer}"
return question, answer
def save_video_frames(self, line):
suffix = line['video'].split('.')[-1]
video = line['video'].replace(f'.{suffix}','')
vid_path = osp.join(self.data_root, line['prefix'], line['video'])
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if self.nframe > 0 and self.fps < 0:
step_size = len(vid) / (self.nframe + 1)
indices = [int(i * step_size) for i in range(1, self.nframe + 1)]
frame_paths = self.frame_paths(video)
elif self.fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * self.fps)
step_size = video_info['fps'] / self.fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(video, len(indices))
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def save_video_into_images(self, line):
frame_paths = self.save_video_frames(line)
return frame_paths
def build_prompt(self, line, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = [dict(type='text', value=self.SYS, role='system')]
message.append(dict(type='text', value=question))
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
img_frame_paths = self.save_video_into_images(line)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nOnly give the best option.'))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
model = judge_kwargs.setdefault('model', 'chatgpt-0125')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
options = eval(data.loc[data['index'] == idx, 'candidates'].values[0])
answer_idx = -1
for id, c in enumerate(options):
if c == ans:
answer_idx = id
ans = f"({chr(ord('A') + answer_idx)}) {ans}"
input_item = data.loc[data['index'] == idx].to_dict(orient='records')[0]
for id, option_content in enumerate(eval(input_item['candidates'])):
input_item[chr(ord('A') + id)] = option_content
if option_content == input_item['answer']:
input_item['answer'] = chr(ord('A') + id)
if FAIL_MSG in pred:
data.loc[idx, 'score'] = -1
else:
data.loc[idx, 'score'] = int(check_ans_with_model(
pred, ans, model,
input_item,
'MLVU_MCQ'
))
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
return rating
class MLVU_OpenEnded(VideoBaseDataset):
MD5 = 'cee573a3627c6ac434ded704c60511ba'
BASE_SYS = 'Carefully watch this video and pay attention to every detail. '
SYS = BASE_SYS + 'Based on your observations, answer the given questions.'
TYPE = 'Video-VQA'
def __init__(self, dataset='MLVU_OpenEnded', nframe=0, fps=-1):
self.type_data_list = {
'sub_scene': ('8_sub_scene.json', './MLVU/video/8_sub_scene', 'VQA'),
'summary': ('9_summary.json', './MLVU/video/9_summary', 'VQA')
}
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
@classmethod
def supported_datasets(cls):
return ['MLVU_OpenEnded']
def prepare_dataset(self, dataset_name='MLVU_OpenEnded', repo_id='MLVU/MVLU'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'])):
return False
return True
if modelscope_flag_set():
repo_id = "AI-ModelScope/MLVU"
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MD5:
return
json_data_dir = os.path.join(dataset_path, 'MLVU', 'json')
self.data_list = []
for k, v in self.type_data_list.items():
with open(os.path.join(json_data_dir, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1],
'duration': data['duration'],
'video': data['video'],
'question': data['question'],
'answer': data['answer'],
'scoring_points': data['scoring_points'] if 'scoring_points' in data else ''
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
huggingface_hub.login(hf_token)
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = f"{data['question']}"
answer = data['answer']
return question, answer
def save_video_frames(self, line):
suffix = line['video'].split('.')[-1]
video = line['video'].replace(f'.{suffix}','')
vid_path = osp.join(self.data_root, line['prefix'], line['video'])
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if self.nframe > 0 and self.fps < 0:
step_size = len(vid) / (self.nframe + 1)
indices = [int(i * step_size) for i in range(1, self.nframe + 1)]
frame_paths = self.frame_paths(video)
elif self.fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * self.fps)
step_size = video_info['fps'] / self.fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(video, len(indices))
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def save_video_into_images(self, line):
frame_paths = self.save_video_frames(line)
return frame_paths
def build_prompt(self, line, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = [dict(type='text', value=self.SYS, role='system')]
message.append(dict(type='text', value=question))
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
img_frame_paths = self.save_video_into_images(line)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
model = judge_kwargs['model'] if 'model' in judge_kwargs else judge_kwargs.setdefault('model', 'gpt-4-0125')
if model != 'gpt-4-0125':
print('MLVU Open Ended default using gpt-4-0125! So judge model is changed to gpt-4-0125')
judge_kwargs['model'] = 'gpt-4-0125'
suffix = eval_file.split('.')[-1]
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(score_file):
data = load(eval_file)
model_dict = {
'sub_scene': build_judge(system_prompt=system_prompt_sub_scene, **judge_kwargs),
'summary': build_judge(system_prompt=system_prompt_summary, **judge_kwargs)
}
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model_dict[line['task_type']], line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
_ = track_progress_rich(
MLVU_OpenEnded_generate,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,
)
ans = load(tmp_file)
data = MLVU_OpenEnded_extract(ans, data)
dump(data, score_file)
rating = get_dimension_rating(score_file)
return rating

View File

@@ -0,0 +1,256 @@
from huggingface_hub import snapshot_download
from ..smp import *
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..utils import track_progress_rich
FAIL_MSG = 'Failed to obtain answer via API.'
def unwrap_hf_pkl(pth, suffix='.mp4'):
base_dir = os.path.join(pth, 'video_pkl/')
target_dir = os.path.join(pth, 'video/')
pickle_files = [os.path.join(base_dir, file) for file in os.listdir(base_dir)]
pickle_files.sort()
if not os.path.exists(target_dir):
os.makedirs(target_dir, exist_ok=True)
for pickle_file in pickle_files:
with open(pickle_file, 'rb') as file:
video_data = pickle.load(file)
# For each video file in the pickle file, write its contents to a new mp4 file
for video_name, video_content in video_data.items():
output_path = os.path.join(target_dir, f'{video_name}{suffix}')
with open(output_path, 'wb') as output_file:
output_file.write(video_content)
print('The video file has been restored and stored from the pickle file.')
else:
print('The video file already exists.')
class MMBenchVideo(VideoBaseDataset):
MD5 = '98f7df3eb1007fc375ea6fe88a98e2ff'
SYS = 'You are an AI assistant responsible for answering questions about videos.'
FRAMES_TMPL_PACK = """
You will be provided with {} separate frames uniformly sampled from a video, \
the frames are provided in chronological order of the video.
Please analyze these images and provide the answer / answers to the \
following question / questions about the video content.
If multiple questions are provided (with indices I1, I2, I3, ...), \
you should organize your answers in the following json format:
{{
'I1': 'Answer to Question I1',
'I2': 'Answer to Question I2',
...
}}
Otherwise, please directly reply with your response to the only question.
Even if the information in these separate frames is not enough to give an answer,
PLEASE GIVE A RESPONSE TO EACH OF THE QUESTIONS IN THE FORMAT DESCRIBED ABOVE.
"""
FRAMES_TMPL_NOPACK = """
You will be provided with {} separate frames uniformly sampled from a video, \
the frames are provided in chronological order of the video.
Please analyze these images and provide the answer to the question about the video content.
Please directly reply with your response to the only question.
"""
TYPE = 'Video-VQA'
def __init__(self, dataset='MMBench-Video', pack=False, nframe=0, fps=-1):
super().__init__(dataset=dataset, pack=pack, nframe=nframe, fps=fps)
@classmethod
def supported_datasets(cls):
return ['MMBench-Video']
def prepare_dataset(self, dataset_name='MMBench-Video', repo_id='opencompass/MMBench-Video'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for video_pth in data['video_path']:
if not osp.exists(osp.join(pth, video_pth)):
return False
return True
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
unwrap_hf_pkl(dataset_path)
self.video_path = osp.join(dataset_path, 'video/')
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(data_file=data_file, root=osp.join(dataset_path, 'video'))
def build_prompt_pack(self, line):
if isinstance(line, int):
assert line < len(self)
video = self.videos[line]
elif isinstance(line, pd.Series):
video = line['video']
elif isinstance(line, str):
video = line
frames = self.save_video_frames(video)
sub = self.data[self.data['video'] == video]
sys_prompt = self.SYS + self.FRAMES_TMPL_PACK.format(len(frames))
message = [dict(type='text', value=sys_prompt)]
for im in frames:
message.append(dict(type='image', value=im))
nq = len(sub)
prompt = 'Questions: \n{}\nAnswers: \n'
qs = {int(sub.iloc[i]['index']): sub.iloc[i]['question'] for i in range(nq)}
prompt = prompt.format(json.dumps(qs))
message.append(dict(type='text', value=prompt))
return message
def build_prompt_nopack(self, line, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
if video_llm:
question = line['question']
prefix, video_idx_path = os.path.split(line['video_path'])
message = [dict(type='text', value=question)]
message.append(dict(type='video', value=os.path.join(self.video_path, video_idx_path)))
return message
else:
frames = self.save_video_frames(line['video'])
sys_prompt = self.FRAMES_TMPL_NOPACK.format(len(frames))
message = [dict(type='text', value=sys_prompt)]
for im in frames:
message.append(dict(type='image', value=im))
prompt = 'Question: {}\nAnswer: '.format(line['question'])
message.append(dict(type='text', value=prompt))
return message
def build_prompt(self, line, video_llm):
if self.pack and not video_llm:
return self.build_prompt_pack(line)
else:
return self.build_prompt_nopack(line, video_llm)
@staticmethod
def remove_side_quote(s, syms=[',', '"', "'"]):
if np.all([x in syms for x in s]):
return ''
while s[0] in syms:
s = s[1:]
while s[-1] in syms:
s = s[:-1]
return s
@staticmethod
def robust_json_load(s):
try:
jsons = list(extract_json_objects(s))
assert len(jsons) == 1
return jsons[0]
except:
if '{' in s and s.find('{') == s.rfind('{'):
sub_str = s[s.find('{') + 1:].strip()
lines = sub_str.split('\n')
res = {}
for l in lines:
l = l.strip()
if ': ' in l:
key = l.split(': ')[0].strip()
val = l.split(': ')[1].strip()
key = MMBenchVideo.remove_side_quote(key)
val = MMBenchVideo.remove_side_quote(val)
if len(key) and len(val):
res[key] = val
return res
return None
def load_pack_answers(self, data_raw):
vstats = defaultdict(lambda: 0)
data = defaultdict(lambda: {})
for k in data_raw:
ans = data_raw[k].strip()
if FAIL_MSG in ans:
vstats['GEN_FAIL'] += 1
continue
res = self.robust_json_load(ans)
if res is not None:
data[k] = res
vstats['PARSE_OK'] += 1
else:
vstats['PARSE_FAIL'] += 1
# return data
meta = cp.deepcopy(self.data)
lt = len(meta)
prediction = []
for i in range(lt):
line = meta.iloc[i]
vid = line['video']
idx = str(line['index'])
prediction.append(data[vid][idx] if idx in data[vid] else None)
meta['prediction'] = prediction
vstats['VALIDQ'] = len([x for x in prediction if x is not None])
vstats['INVALIDQ'] = len([x for x in prediction if x is None])
return meta, vstats
# It returns a dictionary
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.mmbench_video import get_dimension_rating, system_prompt, build_prompt
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
judge = judge_kwargs['model']
nproc = judge_kwargs.pop('nproc', 4)
tmp_file = eval_file.replace('.xlsx', f'_{judge}_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', f'_{judge}_rating.json')
score_file = eval_file.replace('.xlsx', f'_{judge}_score.xlsx')
model = build_judge(system_prompt=system_prompt, **judge_kwargs)
assert model.working(), 'MMBench-Video evaluation requires a working OPENAI API\n' + DEBUG_MESSAGE
if not osp.exists(score_file):
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if model.fail_msg not in v}
data = load(eval_file)
data_un = data[~data['index'].isin(res)]
data_un = data_un[~pd.isna(data_un['prediction'])]
lt = len(data_un)
prompts = [build_prompt(data_un.iloc[i]) for i in range(lt)]
indices = [data_un.iloc[i]['index'] for i in range(lt)]
if len(prompts):
_ = track_progress_rich(
model.generate,
prompts,
keys=indices,
save=tmp_file,
nproc=nproc,
chunksize=nproc
)
score_map = load(tmp_file)
data['score'] = [score_map[idx] if idx in score_map else -1 for idx in data['index']]
rejected = [x for x in score_map.values() if FAIL_MSG in x]
data['score'] = [int(x) if istype(x, int) else -1 for x in data['score']]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(score_map)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as 0 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating

View File

@@ -0,0 +1,69 @@
import warnings
import pandas as pd
from abc import abstractmethod
from ..smp import *
from .image_base import ImageBaseDataset
class MMGenBench(ImageBaseDataset):
prompt_list = [
"""
# Role
You are an expert in the field of image understanding, focusing on the \
understanding of images and generating the image caption-prompt.
# Definition Explanation
image caption-prompt: Refers to the caption or description of an image, \
used to provide to a Text-to-Image model to generate a new image.
Text-to-Image model: Can generate a new image based on the provided image \
caption-prompt, such as stable diffusion 3, flux, and other image generation models.
# Task Description
Generate an image caption-prompt based on the input image.
# Key Points and Requirements
1. Accurately understand the input image and precisely generate an image caption-prompt.
2. The generated image caption-prompt, when provided to the Text-to-Image model, requires the \
Text-to-Image model to generate a new image that is as consistent as possible with the input image.
3. The generated image caption-prompt must conform to the preferences of the Text-to-Image model.
4. The generated image caption-prompt should describe the input image in as much \
detail as possible, and it should be between 20 to 60 words.
# Output Format
A string, that is the image caption-prompt. No extra output needed.
"""
]
TYPE = 'GenerateImgPrompt'
DATASET_URL = {
'MMGenBench-Test': 'https://huggingface.co/datasets/lerogo/MMGenBench/resolve/main/MMGenBench-Test.tsv',
'MMGenBench-Domain': 'https://huggingface.co/datasets/lerogo/MMGenBench/resolve/main/MMGenBench-Domain.tsv',
}
PROMPT_MAP = {
'MMGenBench-Test': prompt_list[0],
'MMGenBench-Domain': prompt_list[0],
}
DATASET_MD5 = {
'MMGenBench-Test': "94f8dac6bbf7c20be403f99adeaa73da",
'MMGenBench-Domain': "5c10daf6e2c5f08bdfb0701aa6db86bb",
}
def __init__(self, dataset='MMGenBench', **kwargs):
super().__init__(dataset, **kwargs)
warnings.warn('This dataset is for inference only and does not support direct output of evaluation results.\n')
warnings.warn('Please refer to "https://github.com/lerogo/MMGenBench" for more evaluation information.\n')
def load_data(self, dataset):
data = super().load_data(dataset)
if 'question' not in data:
data['question'] = [(
self.PROMPT_MAP[dataset]
)] * len(data)
return data
# Given the prediction file, return the evaluation results in the format of a dictionary or pandas dataframe
@abstractmethod
def evaluate(self, eval_file, **judge_kwargs):
warnings.warn('This evaluation method is not supported.\n')
warnings.warn('Please refer to "https://github.com/lerogo/MMGenBench" for more evaluation information.\n')
return None

View File

@@ -0,0 +1,584 @@
import re
import math
from urllib.request import urlopen
from PIL import Image, ImageDraw, ImageFont
import torchvision.transforms as transforms
from vlmeval.dataset.utils import build_judge, levenshtein_distance
from vlmeval.smp import *
from .image_base import ImageBaseDataset
FAIL_MSG = 'Failed to obtain answer via API.'
def get_gpt4_ICE():
example_1 = """
---
Question: List the primary questions asked about the services in this report.
Analysis: The primary questions asked about the services in the report for The Limes Residential Home are:\n\n
1. Is the service safe?\n
2. Is the service effective?\n
3. Is the service caring?\n
4. Is the service responsive?\n
5. Is the service well-led?
Extracted answer: [
'Is the servife safe?',
'Is the service effective',
'Is the serve caring?',
'Is the service responsive?',
'Is the service well-led?'
]
Answer format: List\n
"""
example_2 = """
---
Question: How many regulations of the HSCA 2008 are breached in all according to this report?
Analysis: According to the report, the provider breached 10 Health and Social Care Act 2008 (Regulated Activities)
Regulations in total. Here are the specifics:\n\n1. Regulation 13: Safeguarding service users from abuse and
improper treatment\n2. Regulation 12: Safe care and treatment\n3. Regulation 18: Staffing\n4. Regulation 11:
Need for consent\n5. Regulation 10: Dignity and respect\n6. Regulation 9: Person-centred care\n7. Regulation 17:
Good governance\n8. Regulation 18 (CQC Registration Regulations 2009): Notification of other incidents\n9.
Regulation 18: Failure to maintain an accurate and up-to-date care plan\n10. Regulation 11: Failure to implement
the Mental Capacity Act 2005 code of practice effectively\n\nThese breaches involve issues concerning staffing,
safeguarding, medicines management, dignity and respect, consent, care planning, governance, and failure to
notify the CQC of incidents.
Extracted answer: 10
Answer format: Integer\n
"""
example_3 = """
---
Question: According to the survey that is the percentage of Chinese who are paying more or
about the same attention to politics after Trump's election?
Analysis: The survey provided does not specify the percentage of Chinese individuals specifically who are paying
more or about the same attention to politics after Trump's election. The report focuses primarily on American
demographics and does not include specific details about the Chinese population in relation to this question. If
you need information about a different demographic or a summary of the findings from the American demographic,
I can certainly help with that!
Extracted answer: Not answerable
Answer format: String\n
"""
example_4 = """
---
Question: How many quotations from male respondent over 50 years old are included in this report?
Analysis: The image you've provided appears to be a screenshot of a document with multiple charts. However, the
text is too small and blurry to read accurately. If you can provide a clearer image or more context, I might be
able to help you with your question.
Extracted answer: Fail to answer
Answer format: String\n
"""
return [example_1, example_2, example_3, example_4]
def build_mmlongbench_gpt4_prompt(line):
task_description = """
Given the question and analysis, you are tasked to extract answers with required formats from the free-form analysis.
- Your extracted answers should be one of the following formats: (1) Integer, (2) Float, (3) String and (4) List.
If you find the analysis the question can not be answered from the given documents, type "Not answerable".
Exception: If the analysis only tells you that it can not read/understand the images or documents,
type "Fail to answer".
- Please make your response as concise as possible. Also note that your response should be formatted as below:
```
Extracted answer: [answer]
Answer format: [answer format]
```
Please read the following example, then extract the answer from the model response
and type it at the end of the prompt.\n
"""
question = line['question']
prediction = str(line['prediction'])
prompt = task_description
examples = get_gpt4_ICE()
for example in examples:
prompt += example
prompt += '---\nQuestion:' + question + '\n'
prompt += 'Analysis: ' + prediction
return prompt
def anls_compute(groundtruth, prediction, threshold=0.5):
dist = levenshtein_distance(groundtruth, prediction)
length = max(len(groundtruth.upper()), len(prediction.upper()))
value = 0.0 if length == 0 else float(dist) / float(length)
anls = 1.0 - value
if anls <= threshold:
anls = 0.0
return anls
def is_float_equal(reference, prediction, include_percentage: bool = False, is_close: float = False) -> bool:
def get_precision(gt_ans: float) -> int:
precision = 3
if '.' in str(gt_ans):
precision = len(str(gt_ans).split('.')[-1])
return precision
reference = float(str(reference).strip().rstrip('%').strip())
try:
prediction = float(str(prediction).strip().rstrip('%').strip())
except:
return False
if include_percentage:
gt_result = [reference / 100, reference, reference * 100]
else:
gt_result = [reference]
for item in gt_result:
try:
if is_close:
if math.isclose(item, prediction, rel_tol=0.01):
return True
precision = max(min(get_precision(prediction), get_precision(item)), 2)
if round(prediction, precision) == round(item, precision):
return True
except Exception:
continue
return False
def get_clean_string(s):
s = str(s).lower().strip()
if s.endswith('mile'):
s.rstrip('mile').strip()
if s.endswith('miles'):
s.rstrip('miles').strip()
if s.endswith('million'):
s.rstrip('million').strip()
# remove parenthesis
s = re.sub(r'\s*\([^)]*\)', '', s).strip()
# remove quotes
s = re.sub(r"^['\"]|['\"]$", '', s).strip()
s = s.strip().lstrip('$').strip()
s = s.strip().rstrip('%').strip()
return s
def is_exact_match(s):
flag = False
# Website
if 'https://' in s:
flag = True
# code file
if s.endswith('.py') or s.endswith('ipynb'):
flag = True
if s.startswith('page'):
flag = True
# telephone number
if re.fullmatch(r'\b\d+(-\d+|\s\d+)?\b', s):
flag = True
# time
if 'a.m.' in s or 'p.m.' in s:
flag = True
# YYYY-MM-DD
if re.fullmatch(r'\b\d{4}[-\s]\d{2}[-\s]\d{2}\b', s):
flag = True
# YYYY-MM
if re.fullmatch(r'\b\d{4}[-\s]\d{2}\b', s):
flag = True
# Email address
if re.fullmatch(r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}', s):
flag = True
return flag
def isfloat(num):
try:
float(num)
return True
except ValueError:
return False
def get_font():
try:
truetype_url = "http://opencompass.openxlab.space/utils/Fonts/SimHei.ttf"
ff = urlopen(truetype_url)
font = ImageFont.truetype(ff, size=40)
except Exception as e:
logging.warning(f'{type(e)}: {e}')
logging.warning("Fail to download the font. Use the default one.")
font = ImageFont.load_default(size=40)
return font
def frame2img(img_path_list, font, save_path=None, idx_start=0):
imgs = [Image.open(img_path) for img_path in img_path_list]
new_imgs = []
for img in imgs:
w, h = img.size
scale = w / h
if w > h:
new_w = 560 * 2
new_h = int(560 * 2 / scale)
else:
new_w = int(560 * 2 * scale)
new_h = 560 * 2
img = transforms.functional.resize(img, [new_h, new_w],)
new_imgs.append(img)
imgs = new_imgs
new_w = 0
new_h = 0
pad = 40
if w > h:
for im in imgs:
w, h = im.size
new_w = max(new_w, w)
new_h += h + 10 + pad
new_img = Image.new("RGB", (new_w, new_h), "white")
draw = ImageDraw.Draw(new_img)
curr_h = 0
for idx, im in enumerate(imgs):
w, h = im.size
new_img.paste(im, (0, pad + curr_h))
draw.text((0, curr_h), f"<IMAGE {idx+idx_start}>", font=font, fill="black")
if idx + 1 < len(imgs):
draw.line([(0, pad + curr_h + h + 5), (new_w, pad + curr_h + h + 5)], fill='black', width=2)
curr_h += h + 10 + pad
else:
for im in imgs:
w, h = im.size
new_w += w + 10
new_h = max(new_h, h)
new_h += pad
new_img = Image.new('RGB', (new_w, new_h), 'white')
draw = ImageDraw.Draw(new_img)
curr_w = 0
for idx, im in enumerate(imgs):
w, h = im.size
new_img.paste(im, (curr_w, pad))
draw.text((curr_w, 0), f"<IMAGE {idx+idx_start}>", font=font, fill='black')
if idx + 1 < len(imgs):
draw.line([(curr_w + w + 5, 0), (curr_w + w + 5, new_h)], fill='black', width=2)
curr_w += w + 10
if save_path is not None:
new_img.save(save_path)
return new_img
def concat_images(image_list, max_concat=1, column_num=1):
concatenated_images = []
if column_num == -1:
MAX_COLUMN_NUM = 20
max_concat = 1
while len(image_list) / max_concat > MAX_COLUMN_NUM:
max_concat += 1
interval = max(math.ceil(len(image_list) / max_concat), 1)
for i in range(0, len(image_list), interval):
batch_images = image_list[i:i + interval]
concatenated_image = frame2img(batch_images, font=get_font(), idx_start=i)
concatenated_images.append(concatenated_image)
else:
interval = max(math.ceil(len(image_list) / max_concat), 1)
for i in range(0, len(image_list), interval):
batch_images = [Image.open(filename) for filename in image_list[i:i + interval]]
if column_num == 1:
total_height = batch_images[0].height * len(batch_images)
else:
total_height = batch_images[0].height * ((len(batch_images) - 1) // column_num + 1)
concatenated_image = Image.new('RGB', (batch_images[0].width * column_num, total_height), 'white')
x_offset, y_offset = 0, 0
for count, image in enumerate(batch_images):
concatenated_image.paste(image, (x_offset, y_offset))
x_offset += image.width
if (count + 1) % column_num == 0:
y_offset += image.height
x_offset = 0
concatenated_images.append(concatenated_image)
return concatenated_images
def eval_score(gt, pred, answer_type):
if answer_type == 'Int':
try:
gt, pred = int(gt), int(float(pred))
except:
pred = ''
score = (gt == pred)
elif answer_type == 'Float':
try:
gt = float(get_clean_string(str(gt)))
pred = float(get_clean_string(str(pred)))
except:
pred = ''
score = is_float_equal(gt, pred, include_percentage=True, is_close=True)
elif answer_type == 'Str':
gt = get_clean_string(gt)
pred = get_clean_string(pred)
if is_exact_match(gt):
score = (gt == pred)
else:
score = anls_compute(gt, pred)
else:
if isinstance(gt, str) and gt.startswith('['):
gt = eval(gt)
if not isinstance(gt, list):
gt = [gt]
if isinstance(pred, str) and pred.startswith('['):
pred = eval(pred)
if not isinstance(pred, list):
pred = [pred]
print(len(gt), len(pred))
if len(gt) != len(pred):
score = 0.0
else:
gt = sorted([get_clean_string(a) for a in gt])
pred = sorted([get_clean_string(a) for a in pred])
print(gt, pred)
if isfloat(gt[0]) or is_exact_match(gt[0]):
score = ('-'.join(gt) == '-'.join(pred))
else:
score = min([anls_compute(gt_v, pred_v) for gt_v, pred_v in zip(gt, pred)])
return float(score)
def MMLongBench_auxeval(model, line):
prompt = build_mmlongbench_gpt4_prompt(line)
log = ''
retry = 5
for i in range(retry):
prediction = line['prediction']
res = model.generate(prompt, temperature=i * 0.5)
if FAIL_MSG in res:
log += f'Try {i}: output is {prediction}, failed to parse.\n'
else:
log += 'Succeed'
try:
pred = res.split('Answer format:')[0].split('Extracted answer:')[1].strip()
except:
pred = ''
return dict(log=log, res=res, pred=pred)
log += 'All 5 retries failed.\n'
return dict(log=log, res='', pred='')
def get_f1(data):
gt_pos_data = data[data.apply(lambda k: k['answer'] != 'Not answerable', axis=1)]
pred_pos_data = data[data.apply(lambda k: k['pred'] != 'Not answerable', axis=1)]
recall = sum(gt_pos_data['score'].tolist()) / len(gt_pos_data)
precision = sum(pred_pos_data['score'].tolist()) / len(pred_pos_data)
return 2 * recall * precision / (recall + precision)
def MMLongBench_acc(result_file):
data = load(result_file)
overall_score = 0.0
score_list = list()
for i in range(len(data)):
item = data.iloc[i]
try:
score = eval_score(item['answer'], item['pred'], item['answer_format'])
except:
score = 0.0
score_list.append(score)
overall_score += score
data['score'] = score_list
dump(data, result_file)
data_chart = data[data.apply(lambda k: 'Chart' in eval(k['evidence_sources']), axis=1)]
data_table = data[data.apply(lambda k: 'Table' in eval(k['evidence_sources']), axis=1)]
data_image = data[data.apply(lambda k: 'Figure' in eval(k['evidence_sources']), axis=1)]
data_text = data[data.apply(lambda k: 'Pure-text (Plain-text)' in eval(k['evidence_sources']), axis=1)]
data_layout = data[data.apply(lambda k: 'Generalized-text (Layout)' in eval(k['evidence_sources']), axis=1)]
data_single = data[data.apply(lambda k: len(eval(k['evidence_pages'])) == 1, axis=1)]
data_multi = data[data.apply(lambda k: len(eval(k['evidence_pages'])) > 1, axis=1)]
data_unans = data[data.apply(lambda k: len(eval(k['evidence_pages'])) == 0, axis=1)]
res = dict()
res['category'] = [
'overall_f1', 'overall_acc', 'text', 'layout', 'table', 'chart',
'image', 'single-page', 'multi-page', 'unanswerable'
]
res['num'] = [
len(data), len(data), len(data_text), len(data_layout), len(data_table),
len(data_chart), len(data_image), len(data_single), len(data_multi), len(data_unans)
]
res['avg_score'] = [
get_f1(data),
overall_score / len(data),
sum(data_text['score'].tolist()) / len(data_text) if len(data_text) > 0 else 0.0,
sum(data_layout['score'].tolist()) / len(data_layout) if len(data_layout) > 0 else 0.0,
sum(data_table['score'].tolist()) / len(data_table) if len(data_table) > 0 else 0.0,
sum(data_chart['score'].tolist()) / len(data_chart) if len(data_chart) > 0 else 0.0,
sum(data_image['score'].tolist()) / len(data_image) if len(data_image) > 0 else 0.0,
sum(data_single['score'].tolist()) / len(data_single) if len(data_single) > 0 else 0.0,
sum(data_multi['score'].tolist()) / len(data_multi) if len(data_multi) > 0 else 0.0,
sum(data_unans['score'].tolist()) / len(data_unans) if len(data_unans) > 0 else 0.0,
]
res = pd.DataFrame(res)
return res
class MMLongBench(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'MMLongBench_DOC': 'https://opencompass.openxlab.space/utils/VLMEval/MMLongBench_DOC.tsv',
}
DATASET_MD5 = {
'MMLongBench_DOC': '9b393e1f4c52718380d50586197eac9b',
}
SUPPORTED_MODELS = {
'GPT4': (1, 1),
'GPT4V': (1, 1),
'GPT4V_HIGH': (1, 1),
'GPT4o': (1, 1),
'GPT4o_HIGH': (1, 1),
'GPT4o_MINI': (1, 1),
'MiniCPM-Llama3-V-2_5': (1, 5),
'InternVL-Chat-V1-5': (5, 2),
'XComposer2_4KHD': (1, 5),
'XComposer2d5': (1, -1),
}
def __init__(self, dataset, **kwargs):
self.model_list = list(self.SUPPORTED_MODELS.keys())
model_name = kwargs['model']
if not listinstr(self.model_list, model_name):
raise AssertionError("{} doesn't support the evaluation on MMLongBench_DOC.".format(model_name))
super(MMLongBench, self).__init__(dataset)
self.is_api = True if listinstr(['GPT4'], model_name) else False
self.max_pages = 120
concat_num, column_num = self.SUPPORTED_MODELS.get(model_name)
self.concat_num = concat_num
self.column_num = column_num
def dump_image(self, origin_line):
os.makedirs(self.img_root, exist_ok=True)
try:
import fitz
except Exception as e:
logging.critical(f'{type(e)}: {e}')
logging.critical('Please use `pip install pymupdf` to parse PDF files.')
line = origin_line.copy()
line['image_path'] = line['image_path'][:self.max_pages]
skip_pdf_parse = True
for im_name in line['image_path']:
path = osp.join(self.img_root, im_name)
if not read_ok(path):
skip_pdf_parse = False
break
# Just for being compatible with the zooped loop: zip(line['image'], line['image_path'])
if skip_pdf_parse:
line['image'] = line['image_path']
else:
pdf_data = base64.b64decode(line['image'])
pdf_file = io.BytesIO(pdf_data)
encoded_images = []
with fitz.open(stream=pdf_file, filetype='pdf') as doc:
doc = doc[:self.max_pages]
for page in doc:
image = page.get_pixmap(dpi=144)
image_file = io.BytesIO(image.tobytes(output='png'))
image = Image.open(image_file)
encoded_image = encode_image_to_base64(image)
encoded_images.append(encoded_image)
line['image'] = encoded_images
print('process {}'.format(line['doc_id']))
if 'image' in line:
if isinstance(line['image'], list):
tgt_path = []
assert 'image_path' in line
for img, im_name in zip(line['image'], line['image_path']):
path = osp.join(self.img_root, im_name)
if not read_ok(path):
decode_base64_to_image_file(img, path)
tgt_path.append(path)
else:
tgt_path = osp.join(self.img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
tgt_path = [tgt_path]
else:
assert 'image_path' in line
tgt_path = toliststr(line['image_path'])
if self.concat_num > 0 and not self.is_api:
concatenated_images = concat_images(tgt_path, max_concat=self.concat_num, column_num=self.column_num)
old_tgt_path = tgt_path
assert isinstance(old_tgt_path, list)
if self.column_num != -1:
tgt_path = [
'_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat{}_{}.jpg'.format(self.concat_num, i)
for i in range(len(concatenated_images))
]
else:
tgt_path = [
'_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat_all_{}.jpg'.format(i)
for i in range(len(concatenated_images))
]
for path, concatenated_image in zip(tgt_path, concatenated_images):
if not read_ok(path):
decode_base64_to_image_file(encode_image_to_base64(concatenated_image), path)
num_images, image_size = len(old_tgt_path), concatenated_image.size
print('concat {} images to a new one with size {}. save at {}'.format(num_images, image_size, path))
return tgt_path
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
logger = get_logger('Evaluation')
model = judge_kwargs['model']
suffix = eval_file.split('.')[-1]
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
if osp.exists(storage):
logger.warning(f'GPT scoring file {storage} already exists, will reuse it in MMLongBench_eval. ')
else:
data = load(eval_file)
model = build_judge(max_tokens=128, **judge_kwargs)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
new_results = list()
for model, line in tqdm(tups):
res = MMLongBench_auxeval(model, line)
new_results.append(res)
log_map, res_map, pred_map = {}, {}, {}
all_inds = [line['index'] for line in lines]
for k, v in zip(all_inds, new_results):
log_map[k] = v['log']
res_map[k] = v['res']
pred_map[k] = v['pred']
data['res'] = [res_map[idx] for idx in data['index']]
data['log'] = [log_map[idx] for idx in data['index']]
data['pred'] = [pred_map[idx] for idx in data['index']]
dump(data, storage)
score = MMLongBench_acc(storage)
score_pth = storage.replace('.xlsx', '_score.csv')
dump(score, score_pth)
logger.info(f'MMLongBench_eval successfully finished evaluating {eval_file}, results saved in {score_pth}')
logger.info('Score: ')
logger.info(score)

View File

@@ -0,0 +1,446 @@
import re
import json
import sympy as sp
import numpy as np
from sympy import simplify, Eq, sympify, Pow, pi
from sympy.parsing.latex import parse_latex
import sys
import math
import os
import argparse
from .image_base import ImageBaseDataset
from ..utils import track_progress_rich
from ..smp import load, dump
class AutoScoringJudge:
def __init__(self):
# Map of special symbols to their replacements
self.special_signal_map = {
"\\left": "",
"\\right": "",
"厘米":"",
# "": ":",
"": ",",
"$": "",
"":"(",
"":")",
"\\infty":"oo",
"\\colon ":":",
# "\\approx": "=",
# "\\simeq": "=",
# "\\sim": "=",
# "^\\prime": "'",
# "^{\\prime}": "'",
"":"+",
"\\, ": "",
"\\,":"",
"^\\circ": "",
"^{\\circ}": "",
# "%": "",
}
self.pi = parse_latex("\\pi")
# MM-Math default precision
self.precision = 1e-2
def trans_greater_sign_to_interval(self, expr:str):
expr_tmp = expr.split("<")
return "(" + expr_tmp[0] + ", " + expr_tmp[-1] + ")"
def split_by_comma(self, expr: str):
# Splits expressions by commas outside of brackets
in_bracket_num = 0
splitted_expr = []
start_idx = 0
for i, char in enumerate(expr):
if char in ["(", "["]:
in_bracket_num += 1
elif char in [")", "]"]:
in_bracket_num -= 1
elif char == "," and in_bracket_num == 0:
splitted_expr.append(expr[start_idx:i].strip())
start_idx = i + 1
if start_idx < len(expr):
splitted_expr.append(expr[start_idx:].strip())
return splitted_expr
def trans_plus_minus_sign(self, expr_list: list):
# Translates plus-minus signs into separate expressions
new_expr_list = []
for expr in expr_list:
if "\\pm" in expr:
new_expr_list.append(expr.replace("\\pm", "+"))
new_expr_list.append(expr.replace("\\pm", "-"))
else:
new_expr_list.append(expr)
return new_expr_list
def judge(self, expression1, expression2, precision=1e-2):
# Judge if two expressions are equal (expression1 is considered as the Ground Truth)
# Default precision is a list for supporting multiple expressions
precision = precision if isinstance(precision, list) else [precision]
try:
expression1, expression2 = self.preprocess(expression1, expression2)
except:
return False
if expression1 == expression2:
# print("Exactly equal")
return True
# Remove Chinese characters from the string, as answers like "yes" or "no" in Chinese have been considered
expression1 = expression1 if re.fullmatch(r"[\u4e00-\u9fff]+", expression1) else re.sub(r'[\u4e00-\u9fff]+', '', expression1) # noqa: E501
expression2 = expression2 if re.fullmatch(r'[\u4e00-\u9fff]+', expression2) else re.sub(r'[\u4e00-\u9fff]+', '', expression2) # noqa: E501
# Check if two < or > in expression
if self.is_two_greater_sign(expression1):
expression1 = self.trans_greater_sign_to_interval(expression1)
if self.is_two_greater_sign(expression2):
expression2 = self.trans_greater_sign_to_interval(expression2)
expression1 = self.split_by_comma(expression1)
expression2 = self.split_by_comma(expression2)
temp_list1 = self.trans_plus_minus_sign(expression1)
temp_list2 = self.trans_plus_minus_sign(expression2)
# Set up a list for allowed errors
if len(precision) <= 1:
precision = precision * len(temp_list1)
if len(temp_list1) != len(temp_list2):
return False
# Check if elements in both lists can be paired and are equal
idx = -1
while len(temp_list1) != 0:
idx = (idx + 1) % len(temp_list1)
item1 = temp_list1[idx]
self.precision = precision[idx]
for item2 in temp_list2:
if self.is_equal(item1, item2):
temp_list1.remove(item1)
temp_list2.remove(item2)
precision.remove(self.precision)
break
else:
# If no match was found, return False
return False
# If all elements are matched, return True
return True
def is_interval(self, expr):
# Checks if an expression is an interval
return expr.startswith(("(", "[")) and expr.endswith((")", "]"))
def is_two_greater_sign(self, expr):
match = re.findall(r'<', expr)
return len(match) == 2
def sympy_sub_pi(self, expression_sympy):
# Replaces the symbol for pi in sympy expressions with its numerical value
return expression_sympy.subs(self.pi, math.pi)
def is_equal(self, expression1, expression2):
# Default first expression is ground truth. Check if expressions are equal in different aspects
if expression1 == expression2 and expression1 != "" and expression2 != "":
# print("Equivalent natively")
return True
# First check if both are intervals
if self.is_interval(expression1) and self.is_interval(expression2):
try:
if self.interval_equal(expression1, expression2):
# print("Interval equivalent")
return True
except:
return False
# Then check for numerical equality
try:
if self.numerical_equal(expression1, expression2):
# print("Numerically equivalent")
return True
except:
pass
# Then check if expressions are mathematically equal
try:
if self.expression_equal(expression1, expression2) and not ("=" in expression1 and "=" in expression2):
# print("Expression equivalent")
return True
except:
pass
# Lastly, check for equation equality
try:
if self.equation_equal(expression1, expression2):
# print("Equation equivalent")
return True
except:
pass
return False
def numerical_equal(self, expression1: str, expression2: str, include_percentage: bool = True):
# Check if two numerical values are equal within an allowed error range
# Includes possible percentage cases
reference = float(expression1)
prediction = float(expression2)
if include_percentage:
gt_result = [reference / 100, reference, reference * 100]
else:
gt_result = [reference]
for item in gt_result:
if abs(item - prediction) <= self.precision * 1.01:
return True
return False
def expression_equal(self, exp1, exp2):
# Check if two expressions are mathematically equivalent
# Extract expression and use sympy for equivalence checking
def extract_expression(expression):
if "=" in expression:
expression = expression.split("=")[1]
return expression.strip()
exp1 = extract_expression(exp1)
exp2 = extract_expression(exp2)
exp_too_long = len(exp1) > 300 or len(exp2) > 300
expr1_sym = sympify(parse_latex(exp1))
expr2_sym = sympify(parse_latex(exp2))
if expr1_sym == expr2_sym:
return True
else:
expr1_sym = self.sympy_sub_pi(expr1_sym)
expr2_sym = self.sympy_sub_pi(expr2_sym)
if (expr1_sym.has(sp.Symbol) and not expr2_sym.has(sp.Symbol)) or \
(not expr1_sym.has(sp.Symbol) and expr2_sym.has(sp.Symbol)):
return False
elif not expr1_sym.has(sp.Symbol) and not expr2_sym.has(sp.Symbol):
try:
if not (self.can_compute_power(expr1_sym) and self.can_compute_power(expr2_sym)):
print("These two numbers cannot be calculated by the current computer for: "
f"\"{str(expr1_sym)}\" and \"{str(expr2_sym)}\"")
return False
if exp_too_long:
print(f'Expression {exp1} or {exp2} is too long to compute. ')
return False
if abs(expr1_sym.evalf() - expr2_sym.evalf()) <= self.precision * 1.01:
return True
else:
return False
except:
return False
elif exp_too_long:
print(f'Expression {exp1} or {exp2} is too long to compute. ')
return False
else:
try:
simplified_expr = simplify(expr1_sym - expr2_sym)
num_value = simplified_expr.evalf()
return abs(num_value) < 1e-3
except:
return False
def equation_equal(self, expression1, expression2):
# Check if two equations are mathematically equivalent
# Simplify equations and use sympy for equivalence checking
def simplify_equation(latex_eq):
lhs, rhs = latex_eq.split('=')
lhs_expr = parse_latex(lhs)
rhs_expr = parse_latex(rhs)
equation = Eq(lhs_expr, rhs_expr)
simplified_eq = simplify(equation.lhs - equation.rhs)
return simplified_eq
expr1_sym = simplify_equation(expression1)
expr2_sym = simplify_equation(expression2)
division_result_1 = simplify(expr1_sym / expr2_sym)
division_result_2 = simplify(expr2_sym / expr1_sym)
if ((division_result_1.is_Integer and division_result_1 != 0) or # noqa: W504
(division_result_2.is_Integer and division_result_2 != 0)):
return True
else:
return False
def interval_equal(self, expression1, expression2):
# Check if two intervals are mathematically equivalent
def compare_two_interval(inter1, inter2):
if inter1[0] != inter2[0] or inter1[-1] != inter2[-1]:
return False
inter1 = inter1.strip('[]()')
inter2 = inter2.strip('[]()')
items_1 = inter1.split(',')
items_2 = inter2.split(',')
for item_1, item_2 in zip(items_1, items_2):
if not self.expression_equal(item_1, item_2):
return False
return True
interval1 = expression1
interval2 = expression2
if interval1 == interval2:
return True
else:
inter_list1 = interval1.split("\\cup")
inter_list2 = interval2.split("\\cup")
if len(inter_list1) != len(inter_list2):
return False
else:
for inter1, inter2 in zip(inter_list1, inter_list2):
if not compare_two_interval(inter1, inter2):
return False
return True
def preprocess(self, expression1, expression2):
# Preprocess expressions to extract and replace special symbols
def extract_boxed_content(latex_str):
boxed_matches = re.finditer(r'\\boxed{', latex_str)
results = ""
for match in boxed_matches:
start_index = match.end()
end_index = start_index
stack = 1
while stack > 0 and end_index < len(latex_str):
if latex_str[end_index] == '{':
stack += 1
elif latex_str[end_index] == '}':
stack -= 1
end_index += 1
if stack == 0:
content = latex_str[start_index:end_index - 1]
results += content + ","
else:
raise ValueError("Mismatched braces in LaTeX string.")
if results == "":
last_line_ans = latex_str.strip().split("\n")[-1]
dollar_pattern = r"\$(.*?)\$"
answers = re.findall(dollar_pattern, last_line_ans)
if answers:
for ans in answers:
results += ans + ","
else:
results = latex_str
return results
def sepcial_symbol_replace(expression):
expression = expression.replace("\\text{cm}^2", '').replace("\\text{cm}", "").replace("\\,cm", '').replace("\\text{ cm}", '').replace("cm", '').replace("\\text{分米}^2", '').replace("cm^{2}", '').replace("60 \\text{ cm}^2",'').replace("\\ \\text{m}", "").replace("\\text{米}","").strip() # noqa: E501
expression = re.sub(r"(.+)m$", r"\1", expression)
if "\\in " in expression:
expression = expression.split("\\in ")[1]
for signal in self.special_signal_map:
expression = expression.replace(signal, self.special_signal_map[signal])
expression = re.sub(r'(\\sin|\\cos|\\tan)(\d+)', r'\1((\2/180)\\pi)', expression)
expression = expression.strip("\n,.:;^_=+`!@#%^&*~,。")
pattern = r'\\(?:mathrm|mathbf)\{~?([^}]*)\}'
expression = re.sub(pattern, r'\1', expression)
return expression
exp1, exp2 = extract_boxed_content(expression1), extract_boxed_content(expression2)
exp1, exp2 = sepcial_symbol_replace(exp1), sepcial_symbol_replace(exp2)
return exp1, exp2
def can_compute_power(self, expr):
# Checks if a power expression can be computed
if isinstance(expr, Pow):
base, exp = expr.as_base_exp()
if base.is_number and exp.is_number:
MAX_EXP = 1000 # Adjust based on computing environment
if abs(exp.evalf()) > MAX_EXP:
return False
else:
return True
else:
return False
else:
return True # Not a power expression, can compute
class MMMath(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'MM-Math': 'https://opencompass.openxlab.space/utils/VLMEval/MM-Math.tsv',
}
DATASET_MD5 = {
'MM-Math': '1f064ed7c4e0e8926a3fa65849419ca5',
}
@classmethod
def evaluate(self, eval_file, **kwargs):
data = load(eval_file)
judger = AutoScoringJudge()
func = judger.judge
tups = [dict(expression1=x, expression2=y) for x, y in zip(data['answer'], data['prediction'])]
res = track_progress_rich(func, tups, nproc=16)
data['hit'] = res
dump(data, eval_file)
score_file = eval_file.replace('.xlsx', '_score.json')
score = {}
score['overall'] = np.mean(data['hit'])
# Results by Difficulty
difficulties = set(data['difficulty'])
for d in difficulties:
score[f'Difficulty-{d}'] = np.mean(data[data['difficulty'] == d]['hit'])
# Results by Year
years = set(data['year'])
for y in years:
score[f'Year-{y}'] = np.mean(data[data['year'] == y]['hit'])
# Results by Knowledge-L1
points = set(data['knowledge_l1'])
for p in points:
score[f'Knowledge-L1-{p}'] = np.mean(data[data['knowledge_l1'] == p]['hit'])
# Results by Knowledge-L2
points = set(data['knowledge_l2'])
for p in points:
score[f'Knowledge-L2-{p}'] = np.mean(data[data['knowledge_l2'] == p]['hit'])
dump(score, score_file)
return score

View File

@@ -0,0 +1,666 @@
import huggingface_hub
from huggingface_hub import snapshot_download
from ..smp import *
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..utils import track_progress_rich
import torchvision.transforms as T
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from decord import VideoReader, cpu
import imageio
import cv2
import zipfile
import os
import glob
from .utils.mvbench import *
FAIL_MSG = 'Failed to obtain answer via API.'
class MVBench(VideoBaseDataset):
MD5 = 'fd21d36522cdedd46d84dc46715ad832'
SYS = """Carefully watch the video and pay attention to the cause and sequence of events, \
the detail and movement of objects, and the action and pose of persons. \
Based on your observations, select the best option that accurately addresses the question.
"""
TYPE = 'Video-MCQ'
def __init__(self, dataset='MVBench', nframe=0, fps=-1):
self.type_data_list = {
'Action Sequence': ('action_sequence.json',
'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end
'Action Prediction': ('action_prediction.json',
'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end
'Action Antonym': ('action_antonym.json',
'your_data_path/ssv2_video/', 'video', False),
'Fine-grained Action': ('fine_grained_action.json',
'your_data_path/Moments_in_Time_Raw/videos/', 'video', False),
'Unexpected Action': ('unexpected_action.json',
'your_data_path/FunQA_test/test/', 'video', False),
'Object Existence': ('object_existence.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'Object Interaction': ('object_interaction.json',
'your_data_path/star/Charades_v1_480/', 'video', True), # has start & end
'Object Shuffle': ('object_shuffle.json',
'your_data_path/perception/videos/', 'video', False),
'Moving Direction': ('moving_direction.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'Action Localization': ('action_localization.json',
'your_data_path/sta/sta_video/', 'video', True), # has start & end
'Scene Transition': ('scene_transition.json',
'your_data_path/scene_qa/video/', 'video', False),
'Action Count': ('action_count.json',
'your_data_path/perception/videos/', 'video', False),
'Moving Count': ('moving_count.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'Moving Attribute': ('moving_attribute.json',
'your_data_path/clevrer/video_validation/', 'video', False),
'State Change': ('state_change.json',
'your_data_path/perception/videos/', 'video', False),
'Fine-grained Pose': ('fine_grained_pose.json',
'your_data_path/nturgbd/', 'video', False),
'Character Order': ('character_order.json',
'your_data_path/perception/videos/', 'video', False),
'Egocentric Navigation': ('egocentric_navigation.json',
'your_data_path/vlnqa/', 'video', False),
'Episodic Reasoning': ('episodic_reasoning.json',
'your_data_path/tvqa/frames_fps3_hq/', 'frame', True), # has start & end, read frame
'Counterfactual Inference': ('counterfactual_inference.json',
'your_data_path/clevrer/video_validation/', 'video', False),
}
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
@classmethod
def supported_datasets(cls):
return ['MVBench']
def prepare_dataset(self, dataset_name='MVBench', repo_id='OpenGVLab/MVBench'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'])):
return False
return True
if modelscope_flag_set():
repo_id = 'modelscope/MVBench'
cache_path = get_cache_path(repo_id, branch='main')
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def unzip_hf_zip(pth):
pth = os.path.join(pth, 'video/')
for filename in os.listdir(pth):
if filename.endswith('.zip'):
# 构建完整的文件路径
zip_path = os.path.join(pth, filename)
# 解压 ZIP 文件
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(pth)
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MD5:
return
json_data_dir = os.path.join(pth, 'json')
self.data_list = []
for k, v in self.type_data_list.items():
with open(os.path.join(json_data_dir, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
if os.path.exists(os.path.join(pth, v[1].replace('your_data_path', 'video'), data['video'])):
self.data_list.append({
'task_type': k,
'prefix': v[1].replace('your_data_path', 'video'),
'data_type': v[2],
'bound': v[3],
'start': data['start'] if 'start' in data.keys() else None,
'end': data['end'] if 'end' in data.keys() else None,
'video': data['video'],
'question': data['question'],
'answer': data['answer'],
'candidates': data['candidates']
})
else:
print(
'NTURGB-D zip file is removed according to MVBench, you can view it at '
'https://huggingface.co/datasets/OpenGVLab/MVBench for detailed reason.'
)
raise Exception(
f"{os.path.join(v[1].replace('your_data_path', 'video'), data['video'])} does not exist"
)
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
def move_files(pth):
src_folder = os.path.join(pth, 'video/data0613')
if not os.path.exists(src_folder):
return
for subdir in os.listdir(src_folder):
subdir_path = os.path.join(src_folder, subdir)
if os.path.isdir(subdir_path):
for subsubdir in os.listdir(subdir_path):
subsubdir_path = os.path.join(subdir_path, subsubdir)
if os.path.isdir(subsubdir_path):
for item in os.listdir(subsubdir_path):
item_path = os.path.join(subsubdir_path, item)
target_folder = os.path.join(pth, 'video', subdir, subsubdir)
if not os.path.exists(target_folder):
os.makedirs(target_folder)
target_path = os.path.join(target_folder, item)
try:
shutil.move(item_path, target_path)
except Exception as e:
print(f"Error moving {item_path} to {target_path}: {e}")
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id, revision='master')
else:
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
huggingface_hub.login(hf_token)
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
unzip_hf_zip(dataset_path)
move_files(dataset_path)
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
self.decord_method = {
'video': self.read_video,
'gif': self.read_gif,
'frame': self.read_frame,
}
self.nframe = 8
self.frame_fps = 3
# transform
self.transform = T.Compose([
Stack(),
ToTorchFormatTensor()
])
return dict(root=dataset_path, data_file=data_file)
def get_index(self, bound, fps, max_frame, first_idx=0):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / self.num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(self.num_segments)
])
return frame_indices
def read_video(self, video_path, bound=None):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def read_gif(self, video_path, bound=None, fps=25):
gif = imageio.get_reader(video_path)
max_frame = len(gif) - 1
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0)
for index, frame in enumerate(gif):
if index in frame_indices:
img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
img = Image.fromarray(img)
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def read_frame(self, video_path, bound=None, fps=3):
max_frame = len(os.listdir(video_path))
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=1) # frame_idx starts from 1
for frame_index in frame_indices:
img = Image.open(os.path.join(video_path, f'{frame_index:05d}.jpg'))
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def save_video_frames(self, imgs, video_name, frames):
frame_paths = self.frame_paths(video_name)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
block_size = imgs.size(0) // frames
split_tensors = torch.split(imgs, block_size)
to_pil = transforms.ToPILImage()
images = [to_pil(arr) for arr in split_tensors]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def qa_template(self, data):
question = f"Question: {data['question']}\n"
question += 'Options:\n'
answer = data['answer']
answer_idx = -1
for idx, c in enumerate(eval(data['candidates'])):
question += f"({chr(ord('A') + idx)}) {c}\n"
if c == answer:
answer_idx = idx
question = question.rstrip()
answer = f"({chr(ord('A') + answer_idx)}) {answer}"
return question, answer
def load_into_video_and_process(self, line):
try:
from moviepy.editor import VideoFileClip, ImageSequenceClip
except:
raise ImportError(
'MoviePy is not installed, please install it by running "pip install moviepy==1.0.3"'
)
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
if line['data_type'] in ['gif'] or os.path.splitext(video_path)[1] in ['.webm']:
processed_video_path = video_path.replace(os.path.splitext(video_path)[1], '.mp4')
if not os.path.exists(processed_video_path):
# using MoviePy to transform GIF, webm into mp4 format
gif_clip = VideoFileClip(video_path)
gif_clip.write_videofile(processed_video_path, codec='libx264')
gif_clip.close()
elif line['data_type'] in ['frame']:
input_images = os.path.join(video_path, '*.jpg')
processed_video_path = f'{video_path}.mp4'
if not os.path.exists(processed_video_path):
# using MoviePy to transform images into mp4
image_files = sorted(glob.glob(input_images))
image_clip = ImageSequenceClip(image_files, fps=self.frame_fps)
image_clip.write_videofile(processed_video_path, codec='libx264')
image_clip.close()
else:
processed_video_path = video_path
if line['bound']:
base_name, suffix = os.path.splitext(processed_video_path)
output_video_path = f'{base_name}_processed{suffix}'
if not os.path.exists(output_video_path):
video_clip = VideoFileClip(processed_video_path)
clip = video_clip.subclip(line['start'], min(line['end'], video_clip.duration))
clip.write_videofile(output_video_path)
clip.close()
else:
output_video_path = processed_video_path
return output_video_path
def save_video_into_images(self, line):
bound = None
if line['bound']:
bound = (
line['start'],
line['end'],
)
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
decord_method = self.decord_method[line['data_type']]
self.num_segments = self.nframe
torch_imgs = decord_method(video_path, bound)
img_frame_paths = self.save_video_frames(torch_imgs, line['video'], self.num_segments)
return img_frame_paths
def build_prompt(self, line, video_llm):
if self.fps > 0:
raise ValueError('MVBench does not support fps setting, please transfer to MVBench_MP4!')
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = [dict(type='text', value=self.SYS, role='system')]
message.append(dict(type='text', value=question))
if video_llm:
new_video_path = self.load_into_video_and_process(line)
message.append(dict(type='video', value=new_video_path))
else:
img_frame_paths = self.save_video_into_images(line)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nOnly give the best option.'))
message.append(dict(type='text', value='Best option:(', role='assistant'))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
model = judge_kwargs.setdefault('model', 'chatgpt-0125')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data_un['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
options = eval(data.loc[data['index'] == idx, 'candidates'].values[0])
answer_idx = -1
for id, c in enumerate(options):
if c == ans:
answer_idx = id
ans = f"({chr(ord('A') + answer_idx)}) {ans}"
input_item = data.loc[data['index'] == idx].to_dict(orient='records')[0]
for id, option_content in enumerate(eval(input_item['candidates'])):
input_item[chr(ord('A') + id)] = option_content
if option_content == input_item['answer']:
input_item['answer'] = chr(ord('A') + id)
if FAIL_MSG in pred:
data.loc[idx, 'score'] = -1
else:
data.loc[idx, 'score'] = int(check_ans_with_model(
pred, ans, model,
input_item,
'MVBench'
))
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating
class MVBench_MP4(VideoBaseDataset):
MP4_MD5 = '5c8c6f8b7972c2de65a629590f7c42f5'
SYS = """Carefully watch the video and pay attention to the cause and sequence of events, \
the detail and movement of objects, and the action and pose of persons. \
Based on your observations, select the best option that accurately addresses the question.
"""
TYPE = 'Video-MCQ'
def __init__(self, dataset='MVBench_MP4', nframe=0, fps=-1):
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
@classmethod
def supported_datasets(cls):
return ['MVBench_MP4']
def prepare_dataset(self, dataset_name='MVBench_MP4', repo_id='OpenGVLab/MVBench'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not os.path.exists(data_file):
return False
if md5(data_file) != self.MP4_MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'])):
return False
return True
if modelscope_flag_set():
repo_id = 'modelscope/MVBench'
cache_path = get_cache_path(repo_id, branch='video')
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if os.path.exists(data_file) and md5(data_file) == self.MP4_MD5:
return
json_data_path = os.path.join(dataset_path, 'test.json')
json_data = load(json_data_path)
root_data_dict = json_data['root']
self.data_list = []
for k, v in json_data['meta'].items():
for item in v:
self.data_list.append({
'task_type': k,
'prefix': root_data_dict[k],
'video': item['video'],
'question': item['question'],
'answer': item['answer'],
'candidates': item['candidates']
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id, revision='video')
else:
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
huggingface_hub.login(hf_token)
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset', revision='video')
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
# transform
self.transform = T.Compose([
Stack(),
ToTorchFormatTensor()
])
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = f"Question: {data['question']}\n"
question += 'Options:\n'
answer = data['answer']
answer_idx = -1
for idx, c in enumerate(eval(data['candidates'])):
question += f"({chr(ord('A') + idx)}) {c}\n"
if c == answer:
answer_idx = idx
question = question.rstrip()
answer = f"({chr(ord('A') + answer_idx)}) {answer}"
return question, answer
def get_index_by_frame(self, max_frame):
seg_size = float(max_frame) / self.num_segments
frame_indices = np.array([
int((seg_size / 2) + np.round(seg_size * idx))
for idx in range(self.num_segments)
])
return frame_indices
def get_index_by_fps(self, vid, fps):
total_frames = len(vid)
video_fps = vid.get_avg_fps()
total_duration = total_frames / video_fps
required_frames = int(total_duration * fps)
step_size = video_fps / fps
frame_indices = np.array([int(i * step_size) for i in range(required_frames)])
self.num_segments = len(frame_indices)
return frame_indices
def read_video(self, video_path):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
images_group = list()
if self.fps < 0:
frame_indices = self.get_index_by_frame(max_frame)
else:
frame_indices = self.get_index_by_fps(vr, self.fps)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
torch_imgs = self.transform(images_group)
return torch_imgs
def save_video_frames(self, imgs, video_name, frames):
if self.fps > 0:
frame_paths = self.frame_paths_fps(video_name, frames)
else:
frame_paths = self.frame_paths(video_name)
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
block_size = imgs.size(0) // frames
split_tensors = torch.split(imgs, block_size)
to_pil = transforms.ToPILImage()
images = [to_pil(arr) for arr in split_tensors]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def save_video_into_images(self, line):
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
if self.fps <= 0:
self.num_segments = self.nframe
else:
self.num_segments = 0
torch_imgs = self.read_video(video_path)
img_frame_paths = self.save_video_frames(torch_imgs, line['video'], self.num_segments)
return img_frame_paths
def build_prompt(self, line, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = [dict(type='text', value=self.SYS, role='system')]
message.append(dict(type='text', value=question))
video_path = os.path.join(self.data_root, line['prefix'], line['video'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
img_frame_paths = self.save_video_into_images(line)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nOnly give the best option.'))
message.append(dict(type='text', value='Best option:(', role='assistant'))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
model = judge_kwargs.setdefault('model', 'chatgpt-0125')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data_un['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
options = eval(data.loc[data['index'] == idx, 'candidates'].values[0])
answer_idx = -1
for id, c in enumerate(options):
if c == ans:
answer_idx = id
ans = f"({chr(ord('A') + answer_idx)}) {ans}"
input_item = data.loc[data['index'] == idx].to_dict(orient='records')[0]
for id, option_content in enumerate(eval(input_item['candidates'])):
input_item[chr(ord('A') + id)] = option_content
if option_content == input_item['answer']:
input_item['answer'] = chr(ord('A') + id)
if FAIL_MSG in pred:
data.loc[idx, 'score'] = -1
else:
data.loc[idx, 'score'] = int(check_ans_with_model(
pred, ans, model,
input_item,
'MVBench_MP4'
))
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating

View File

@@ -0,0 +1,189 @@
import re
import math
from typing import List
from vlmeval.dataset.utils.judge_util import build_judge
from vlmeval.smp import *
from .image_base import ImageBaseDataset
from .mmlongbench import concat_images, MMLongBench_auxeval, anls_compute
FAIL_MSG = 'Failed to obtain answer via API.'
def get_f1(gt, pred):
gt_bow, pred_bow = gt.strip().split(), pred.strip().split()
if not gt_bow or not pred_bow:
return 0.0
recall = len([pred_e for pred_e in pred_bow if pred_e in gt_bow]) / len(gt_bow)
precision = len([pred_e for pred_e in pred_bow if pred_e in gt_bow]) / len(pred_bow)
f1 = 2 * recall * precision / (recall + precision) if (recall + precision) > 1e-4 else 0.0
return f1
def SlideVQA_acc(result_file):
data = load(result_file)
anls_list, em_list, f1_list = list(), list(), list()
for i in range(len(data)):
item = data.iloc[i]
if isinstance(item['answer'], float) and math.isnan(item['answer']):
item['answer'] = 'Not answerable'
item['answer'] = re.sub('\n', '', item['answer']).lower()
item['pred'] = str(item['pred']).lower()
anls_score = anls_compute(item['answer'], item['pred'])
em_score = (item['answer'].strip() == item['pred'].strip())
f1_score = get_f1(item['answer'], item['pred'])
anls_list.append(anls_score)
em_list.append(em_score)
f1_list.append(f1_score)
print('---------------------')
print(item['answer'], item['pred'], anls_score, em_score, f1_score)
data['anls'] = anls_list
data['em'] = em_list
data['f1'] = f1_list
dump(data, result_file)
res = dict()
res['category'], res['num'] = ['anls', 'EM', 'F1'], [len(data), len(data), len(data)]
res['avg'] = [sum(anls_list) / len(data), sum(em_list) / len(data), sum(f1_list) / len(data)]
res = pd.DataFrame(res)
return res
class SlideVQA(ImageBaseDataset):
TYPE = 'VQA'
DATASET_URL = {
'SLIDEVQA_MINI': 'https://opencompass.openxlab.space/utils/VLMEval/SLIDEVQA_MINI.tsv',
'SLIDEVQA': 'https://opencompass.openxlab.space/utils/VLMEval/SLIDEVQA.tsv',
}
DATASET_MD5 = {
'SLIDEVQA_MINI': '6d9a8d8814fa5b7669deb2af3a3208eb',
'SLIDEVQA': '5e822c2f800e94c1e23badfd478326b6',
}
SUPPORTED_MODELS = {
'GPT4': (1, 1),
'GPT4V': (1, 1),
'GPT4V_HIGH': (1, 1),
'GPT4o': (1, 1),
'GPT4o_HIGH': (1, 1),
'GPT4o_MINI': (1, 1),
'XComposer2d5': (1, -1),
'XComposer2_4KHD': (1, -1),
'MiniCPM-Llama3-V-2_5': (1, 5),
'InternVL-Chat-V1-5': (5, 2),
}
def __init__(self, dataset, **kwargs):
self.model_list = list(self.SUPPORTED_MODELS.keys())
model_name = kwargs['model']
if not listinstr(self.model_list, model_name):
raise AssertionError("{} doesn't support the evaluation on SlideVQA.".format(model_name))
super(SlideVQA, self).__init__(dataset)
self.is_api = True if listinstr(['GPT4'], model_name) else False
self.max_pages = 120
concat_num, column_num = self.SUPPORTED_MODELS.get(model_name)
self.concat_num = concat_num
self.column_num = column_num
def dump_image(self, origin_line):
os.makedirs(self.img_root, exist_ok=True)
line = origin_line.copy()
if not isinstance(line['image_path'], List):
line['image_path'] = [line['image_path']]
line['image_path'] = line['image_path'][:self.max_pages]
if 'image' in line:
if isinstance(line['image'], list):
tgt_path = []
assert 'image_path' in line
for img, im_name in zip(line['image'], line['image_path']):
path = osp.join(self.img_root, im_name)
if not read_ok(path):
decode_base64_to_image_file(img, path)
tgt_path.append(path)
else:
tgt_path = osp.join(self.img_root, f"{line['index']}.jpg")
if not read_ok(tgt_path):
decode_base64_to_image_file(line['image'], tgt_path)
tgt_path = [tgt_path]
else:
assert 'image_path' in line
tgt_path = toliststr(line['image_path'])
if self.concat_num > 0 and not self.is_api:
concatenated_images = concat_images(tgt_path, max_concat=self.concat_num, column_num=self.column_num)
old_tgt_path = tgt_path
assert isinstance(old_tgt_path, list)
if self.column_num != -1:
tgt_path = [
'_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat{}_{}.jpg'.format(self.concat_num, i)
for i in range(len(concatenated_images))
]
else:
tgt_path = ['_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat_all.jpg']
for path, concatenated_image in zip(tgt_path, concatenated_images):
if not read_ok(path):
decode_base64_to_image_file(encode_image_to_base64(concatenated_image), path)
num_images, image_size = len(old_tgt_path), concatenated_image.size
print('concat {} images to a new one with size {}. save at {}'.format(num_images, image_size, path))
return tgt_path
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
logger = get_logger('Evaluation')
model = judge_kwargs['model']
suffix = eval_file.split('.')[-1]
storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
if osp.exists(storage):
logger.warning(f'GPT scoring file {storage} already exists, will reuse it in SlideVQA_eval. ')
else:
data = load(eval_file)
model = build_judge(max_tokens=128, **judge_kwargs)
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
new_results = list()
for model, line in tqdm(tups):
res = MMLongBench_auxeval(model, line)
new_results.append(res)
log_map, res_map, pred_map = {}, {}, {}
all_inds = [line['index'] for line in lines]
for k, v in zip(all_inds, new_results):
log_map[k] = v['log']
res_map[k] = v['res']
pred_map[k] = v['pred']
data['res'] = [res_map[idx] for idx in data['index']]
data['log'] = [log_map[idx] for idx in data['index']]
data['pred'] = [pred_map[idx] for idx in data['index']]
dump(data, storage)
score = SlideVQA_acc(storage)
score_pth = storage.replace('.xlsx', '_score.csv')
dump(score, score_pth)
logger.info(f'SlideVQA successfully finished evaluating {eval_file}, results saved in {score_pth}')
logger.info('Score: ')
logger.info(score)

View File

@@ -0,0 +1,639 @@
import huggingface_hub
from huggingface_hub import snapshot_download
from ..smp import *
from .video_concat_dataset import ConcatVideoDataset
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..utils import track_progress_rich
import torchvision.transforms as T
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from decord import VideoReader, cpu
from .utils.tempcompass import *
FAIL_MSG = 'Failed to obtain answer via API.'
class TempCompass(ConcatVideoDataset):
def __init__(self, dataset='TempCompass', nframe=0, fps=-1):
self.DATASET_SETS[dataset] = ['TempCompass_MCQ', 'TempCompass_Captioning', 'TempCompass_YorN']
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
@classmethod
def supported_datasets(cls):
return ['TempCompass']
def evaluate(self, eval_file, **judge_kwargs):
result = super().evaluate(eval_file=eval_file, **judge_kwargs)
suffix = eval_file.split('.')[-1]
result = result.reset_index().rename(columns={'index': 'dim.task_type'})
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
avg_dict = {}
for idx, item in result.iterrows():
dim, task_type = item['dim.task_type'].split('. ')
if dim not in avg_dict:
avg_dict[dim] = {'success': 0.0, 'overall': 0.0}
if task_type not in avg_dict:
avg_dict[task_type] = {'success': 0.0, 'overall': 0.0}
if 'overall' not in avg_dict:
avg_dict['overall'] = {'success': 0.0, 'overall': 0.0}
avg_dict[dim]['success'] += item['success']
avg_dict[dim]['overall'] += item['overall']
avg_dict[task_type]['success'] += item['success']
avg_dict[task_type]['overall'] += item['overall']
avg_dict['overall']['success'] += item['success']
avg_dict['overall']['overall'] += item['overall']
result.loc[idx, 'acc'] = round(item['success'] / item['overall'] * 100, 2)
for key, value in avg_dict.items():
# 使用 loc 方法添加新行
result.loc[len(result)] = {
'dim.task_type': key,
'success': value['success'],
'overall': value['overall'],
'acc': round(value['success'] / value['overall'] * 100, 2)
}
dump(result, score_file)
return result
class TempCompass_MCQ(VideoBaseDataset):
MD5 = '7efbb9e6d9dabacd22daf274852691dd'
TYPE = 'Video-MCQ'
def __init__(self, dataset='TempCompass_MCQ', nframe=0, fps=-1):
self.type_data_list = {
'multi-choice': ('multi-choice.json', './videos', '.mp4'),
'caption_matching': ('caption_matching.json', './videos', '.mp4'),
}
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
@classmethod
def supported_datasets(cls):
return ['TempCompass_MCQ']
def prepare_dataset(self, dataset_name='TempCompass_MCQ', repo_id='lmms-lab/TempCompass'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not osp.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'] + item['suffix'])):
return False
return True
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def read_parquet(pth):
import pandas as pd
for task_name in self.type_data_list.keys():
if not osp.exists(osp.join(pth, f'{task_name}.json')):
data = pd.read_parquet(osp.join(pth, task_name, 'test-00000-of-00001.parquet'))
data.to_json(osp.join(pth, f'{task_name}.json'), orient='records', lines=False)
def unzip_videos(pth):
import zipfile
if not osp.exists(osp.join(pth, 'videos')):
zip_file = osp.join(pth, 'tempcompass_videos.zip')
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(pth)
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if osp.exists(data_file) and md5(data_file) == self.MD5:
return
self.data_list = []
for k, v in self.type_data_list.items():
with open(osp.join(pth, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1],
'suffix': v[2],
'video': data['video_id'],
'question': data['question'].split('\n')[0],
'answer': data['answer'],
'dim': data['dim'],
'candidates': data['question'].split('\n')[1:],
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
read_parquet(dataset_path)
unzip_videos(dataset_path)
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = data['question'] + '\n' + '\n'.join(eval(data['candidates']))
answer = data['answer']
return question, answer
def save_video_frames(self, line):
vid_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if self.nframe > 0 and self.fps < 0:
step_size = len(vid) / (self.nframe + 1)
indices = [int(i * step_size) for i in range(1, self.nframe + 1)]
frame_paths = self.frame_paths(line['video'])
elif self.fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * self.fps)
step_size = video_info['fps'] / self.fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(line['video'], len(indices))
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def save_video_into_images(self, line):
frame_paths = self.save_video_frames(line)
return frame_paths
def build_prompt(self, line, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = []
message.append(dict(type='text', value=question))
video_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
img_frame_paths = self.save_video_into_images(line)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nPlease directly give the best option:'))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-1106', 'exact_matching']
judge_kwargs.update({
"max_tokens": 128,
"temperature": 1.0,
"top_p": 1,
"presence_penalty": 1,
})
suffix = eval_file.split('.')[-1]
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(score_file):
data = load(eval_file)
if model != 'exact_matching':
model = build_judge(system_prompt=sys_prompt, **judge_kwargs)
else:
model = None
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
_ = track_progress_rich(
evaluate_tempcompass_mcq,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,
)
ans = load(tmp_file)
for idx, item in data.iterrows():
data.loc[idx, 'score'] = ans[idx]['rating']
dump(data, score_file)
rating = get_dimension_rating(score_file)
return rating
class TempCompass_Captioning(VideoBaseDataset):
MD5 = '35be9bf2581ea7767f02e9a8f37ae1ab'
TYPE = 'Video-VQA'
def __init__(self, dataset='TempCompass_Captioning', nframe=0, fps=-1):
self.type_data_list = {
'captioning': ('captioning.json', './videos', '.mp4'),
}
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
@classmethod
def supported_datasets(cls):
return ['TempCompass_Captioning']
def prepare_dataset(self, dataset_name='TempCompass_Captioning', repo_id='lmms-lab/TempCompass'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not osp.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'] + item['suffix'])):
return False
return True
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def read_parquet(pth):
import pandas as pd
for task_name in self.type_data_list.keys():
if not osp.exists(osp.join(pth, f'{task_name}.json')):
data = pd.read_parquet(osp.join(pth, task_name, 'test-00000-of-00001.parquet'))
data.to_json(osp.join(pth, f'{task_name}.json'), orient='records', lines=False)
def unzip_videos(pth):
import zipfile
if not osp.exists(osp.join(pth, 'videos')):
zip_file = osp.join(pth, 'tempcompass_videos.zip')
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(pth)
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if osp.exists(data_file) and md5(data_file) == self.MD5:
return
self.data_list = []
for k, v in self.type_data_list.items():
with open(osp.join(pth, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1],
'suffix': v[2],
'video': data['video_id'],
'question': data['question'],
'answer': data['answer'],
'dim': data['dim'],
'mc_question': data['mc_question'],
'mc_answer': data['mc_answer'],
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
read_parquet(dataset_path)
unzip_videos(dataset_path)
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = data['question']
answer = data['answer']
return question, answer
def save_video_frames(self, line):
vid_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if self.nframe > 0 and self.fps < 0:
step_size = len(vid) / (self.nframe + 1)
indices = [int(i * step_size) for i in range(1, self.nframe + 1)]
frame_paths = self.frame_paths(line['video'])
elif self.fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * self.fps)
step_size = video_info['fps'] / self.fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(line['video'], len(indices))
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def save_video_into_images(self, line):
frame_paths = self.save_video_frames(line)
return frame_paths
def build_prompt(self, line, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = []
message.append(dict(type='text', value=question))
video_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
img_frame_paths = self.save_video_into_images(line)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-1106', 'exact_matching']
judge_kwargs.update({
"max_tokens": 128,
"temperature": 1.0,
"top_p": 1,
"presence_penalty": 1,
})
suffix = eval_file.split('.')[-1]
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(score_file):
data = load(eval_file)
if model != 'exact_matching':
model = build_judge(system_prompt=sys_prompt, **judge_kwargs)
else:
model = None
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
_ = track_progress_rich(
evaluate_tempcompass_captioning,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,
)
ans = load(tmp_file)
for idx, item in data.iterrows():
data.loc[idx, 'score'] = ans[idx]['rating']
dump(data, score_file)
rating = get_dimension_rating(score_file)
return rating
class TempCompass_YorN(VideoBaseDataset):
MD5 = 'c72c046d7fa0e82c8cd7462f2e844ea8'
TYPE = 'Video-Y/N'
def __init__(self, dataset='TempCompass_YorN', nframe=0, fps=-1):
self.type_data_list = {
'yes_no': ('yes_no.json', './videos', '.mp4'),
}
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
@classmethod
def supported_datasets(cls):
return ['TempCompass_YorN']
def prepare_dataset(self, dataset_name='TempCompass_YorN', repo_id='lmms-lab/TempCompass'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not osp.exists(data_file):
return False
if md5(data_file) != self.MD5:
return False
data = load(data_file)
for idx, item in data.iterrows():
if not osp.exists(osp.join(pth, item['prefix'], item['video'] + item['suffix'])):
return False
return True
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def read_parquet(pth):
import pandas as pd
for task_name in self.type_data_list.keys():
if not osp.exists(osp.join(pth, f'{task_name}.json')):
data = pd.read_parquet(osp.join(pth, task_name, 'test-00000-of-00001.parquet'))
data.to_json(osp.join(pth, f'{task_name}.json'), orient='records', lines=False)
def unzip_videos(pth):
import zipfile
if not osp.exists(osp.join(pth, 'videos')):
zip_file = osp.join(pth, 'tempcompass_videos.zip')
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(pth)
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if osp.exists(data_file) and md5(data_file) == self.MD5:
return
self.data_list = []
for k, v in self.type_data_list.items():
with open(osp.join(pth, v[0]), 'r') as f:
json_data = json.load(f)
for data in json_data:
self.data_list.append({
'task_type': k,
'prefix': v[1],
'suffix': v[2],
'video': data['video_id'],
'question': data['question'].split('\n')[0],
'answer': data['answer'],
'dim': data['dim']
})
data_df = pd.DataFrame(self.data_list)
data_df = data_df.assign(index=range(len(data_df)))
data_df.to_csv(data_file, sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
else:
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
read_parquet(dataset_path)
unzip_videos(dataset_path)
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(root=dataset_path, data_file=data_file)
def qa_template(self, data):
question = data['question']
answer = data['answer']
return question, answer
def save_video_frames(self, line):
vid_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if self.nframe > 0 and self.fps < 0:
step_size = len(vid) / (self.nframe + 1)
indices = [int(i * step_size) for i in range(1, self.nframe + 1)]
frame_paths = self.frame_paths(line['video'])
elif self.fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * self.fps)
step_size = video_info['fps'] / self.fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(line['video'], len(indices))
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths
def save_video_into_images(self, line):
frame_paths = self.save_video_frames(line)
return frame_paths
def build_prompt(self, line, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
question, answer = self.qa_template(line)
message = []
message.append(dict(type='text', value=question))
video_path = osp.join(self.data_root, line['prefix'], line['video'] + line['suffix'])
if video_llm:
message.append(dict(type='video', value=video_path))
else:
img_frame_paths = self.save_video_into_images(line)
for im in img_frame_paths:
message.append(dict(type='image', value=im))
message.append(dict(type='text', value='\nPlease answer yes or no:'))
return message
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-1106', 'exact_matching']
judge_kwargs.update({
"max_tokens": 128,
"temperature": 1.0,
"top_p": 1,
"presence_penalty": 1,
})
suffix = eval_file.split('.')[-1]
score_file = eval_file.replace(f'.{suffix}', f'_{model}_score.xlsx')
tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(score_file):
data = load(eval_file)
if model != 'exact_matching':
model = build_judge(system_prompt=sys_prompt, **judge_kwargs)
else:
model = None
lt = len(data)
lines = [data.iloc[i] for i in range(lt)]
tups = [(model, line) for line in lines]
indices = [line['index'] for line in lines]
ans = {}
if osp.exists(tmp_file):
ans = load(tmp_file)
tups = [x for x, i in zip(tups, indices) if i not in ans]
indices = [i for i in indices if i not in ans]
if len(indices):
_ = track_progress_rich(
evaluate_tempcompass_YorN,
tups,
nproc=nproc,
chunksize=nproc,
keys=indices,
save=tmp_file,
)
ans = load(tmp_file)
for idx, item in data.iterrows():
data.loc[idx, 'score'] = ans[idx]['rating']
dump(data, score_file)
rating = get_dimension_rating(score_file)
return rating

View File

@@ -0,0 +1,88 @@
from abc import abstractmethod
from ..smp import *
class TextBaseDataset:
MODALITY = 'TEXT'
DATASET_URL = {}
DATASET_MD5 = {}
def __init__(self, dataset='MMBench', **kwargs):
self.dataset_name = dataset
data = self.load_data(dataset)
data['index'] = [str(x) for x in data['index']]
if np.all([istype(x, int) for x in data['index']]):
data['index'] = [int(x) for x in data['index']]
self.data = data
self.post_build(dataset)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return dict(self.data.iloc[idx])
def prepare_tsv(self, url, file_md5=None):
data_root = LMUDataRoot()
os.makedirs(data_root, exist_ok=True)
update_flag = False
file_name = url.split('/')[-1]
data_path = osp.join(data_root, file_name)
if osp.exists(data_path) and (file_md5 is None or md5(data_path) == file_md5):
pass
else:
warnings.warn('The dataset tsv is not downloaded')
download_file(url, data_path)
update_flag = True
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None) or update_flag:
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
def dump_image(self, line):
return []
def display(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
assert isinstance(line, pd.Series) or isinstance(line, dict)
mmqa_display(line)
# Return a list of dataset names that are supported by this class, can override
@classmethod
def supported_datasets(cls):
return list(cls.DATASET_URL)
# Given the dataset name, return the dataset as a pandas dataframe, can override
def load_data(self, dataset):
url = self.DATASET_URL[dataset]
file_md5 = self.DATASET_MD5[dataset]
return self.prepare_tsv(url, file_md5)
# Post built hook, will be called after the dataset is built, can override
def post_build(self, dataset):
pass
# Given one data record, return the built prompt (a multi-modal message), can override
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
question = line['question']
msgs = []
msgs.append(dict(type='text', value=question))
return msgs
# Given the prediction file, return the evaluation results in the format of a dictionary or pandas dataframe
@abstractmethod
def evaluate(self, eval_file, **judge_kwargs):
pass

View File

@@ -0,0 +1,123 @@
from .text_base import TextBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..smp import *
class TextMCQDataset(TextBaseDataset):
TYPE = 'MCQ'
DATASET_URL = {}
DATASET_MD5 = {}
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
prompt += 'Please select the correct answer from the options above. \n'
msgs = []
msgs.append(dict(type='text', value=prompt))
return msgs
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import report_acc, report_acc_MMT, mcq_circular_eval, mcq_vanilla_eval
# assert dataset is not None
dataset_map = {
'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_EN_V11': 'MMBench_V11',
'MMBench_TEST_CN': 'MMBench_CN', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11'
}
dataset = self.dataset_name
if dataset in dataset_map:
dataset = dataset_map[dataset]
nproc = judge_kwargs.pop('nproc', 4)
circular = False
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
if circular:
data = mcq_circular_eval(model, data, meta, nproc, result_file, self.dataset_name)
else:
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
# load split
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
# May have different report acc functions for different datasets
if 'MMT' in dataset:
acc = report_acc_MMT(data)
else:
acc = report_acc(data)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(acc, score_file)
return acc
class CustomTextMCQDataset(TextMCQDataset):
def load_data(self, dataset):
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None):
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)

View File

@@ -0,0 +1,9 @@
from .judge_util import build_judge, DEBUG_MESSAGE
from .multiple_choice import extract_answer_from_item, prefetch_answer
from .vqa_eval import levenshtein_distance
__all__ = [
'build_judge', 'extract_answer_from_item', 'prefetch_answer',
'levenshtein_distance', 'DEBUG_MESSAGE',
]

View File

@@ -0,0 +1,59 @@
# CC-OCR: A Comprehensive and Challenging OCR Benchmark for Evaluating Large Multimodal Models in Literacy
## Introduction
Please refer to our [GitHub](https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/Benchmarks/CC-OCR) for more information.
## Running Scripts
Once the environment is ready, execute the following script from the root directory of VLMEvalKit
to perform inference and evaluation tasks in batch.
```shell
MODEL_NAME="QwenVLMax"
OUTPUT_DIR="/your/path/to/output_dir"
SUB_OUTPUT_DIR=${OUTPUT_DIR}/multi_scene_ocr
python run.py --data CCOCR_MultiSceneOcr_Cord CCOCR_MultiSceneOcr_Funsd CCOCR_MultiSceneOcr_Iam CCOCR_MultiSceneOcr_ZhDoc CCOCR_MultiSceneOcr_ZhHandwriting CCOCR_MultiSceneOcr_Hieragent CCOCR_MultiSceneOcr_Ic15 CCOCR_MultiSceneOcr_Inversetext CCOCR_MultiSceneOcr_Totaltext CCOCR_MultiSceneOcr_ZhScene CCOCR_MultiSceneOcr_UgcLaion CCOCR_MultiSceneOcr_ZhDense CCOCR_MultiSceneOcr_ZhVertical --model ${MODEL_NAME} --work-dir ${SUB_OUTPUT_DIR} --verbose
python vlmeval/dataset/utils/ccocr_evaluator/common.py ${SUB_OUTPUT_DIR}
SUB_OUTPUT_DIR=${OUTPUT_DIR}/multi_lan_ocr
python run.py --data CCOCR_MultiLanOcr_Arabic CCOCR_MultiLanOcr_French CCOCR_MultiLanOcr_German CCOCR_MultiLanOcr_Italian CCOCR_MultiLanOcr_Japanese CCOCR_MultiLanOcr_Korean CCOCR_MultiLanOcr_Portuguese CCOCR_MultiLanOcr_Russian CCOCR_MultiLanOcr_Spanish CCOCR_MultiLanOcr_Vietnamese --model ${MODEL_NAME} --work-dir ${SUB_OUTPUT_DIR} --verbose
python vlmeval/dataset/utils/ccocr_evaluator/common.py ${SUB_OUTPUT_DIR}
SUB_OUTPUT_DIR=${OUTPUT_DIR}/doc_parsing
python run.py --data CCOCR_DocParsing_DocPhotoChn CCOCR_DocParsing_DocPhotoEng CCOCR_DocParsing_DocScanChn CCOCR_DocParsing_DocScanEng CCOCR_DocParsing_TablePhotoChn CCOCR_DocParsing_TablePhotoEng CCOCR_DocParsing_TableScanChn CCOCR_DocParsing_TableScanEng CCOCR_DocParsing_MolecularHandwriting CCOCR_DocParsing_FormulaHandwriting --model ${MODEL_NAME} --work-dir ${SUB_OUTPUT_DIR} --verbose
python vlmeval/dataset/utils/ccocr_evaluator/common.py ${SUB_OUTPUT_DIR}
SUB_OUTPUT_DIR=${OUTPUT_DIR}/kie
python run.py --data CCOCR_Kie_Sroie2019Word CCOCR_Kie_Cord CCOCR_Kie_EphoieScut CCOCR_Kie_Poie CCOCR_Kie_ColdSibr CCOCR_Kie_ColdCell --model ${MODEL_NAME} --work-dir ${SUB_OUTPUT_DIR} --verbose
python vlmeval/dataset/utils/ccocr_evaluator/common.py ${SUB_OUTPUT_DIR}
```
## Example Output
The evaluation results will be saved in `${SUB_OUTPUT_DIR}/summary.md`. For example, for the KIE subset,
the output is as follows:
| exp_name(f1_score) | COLD_CELL | COLD_SIBR | CORD | EPHOIE_SCUT | POIE | sroie2019_word | summary |
|:-------------------|------------:|------------:|-------:|--------------:|-------:|-----------------:|----------:|
| QwenVLMax | 81.01 | 72.46 | 69.33 | 71.2 | 60.85 | 76.37 | 71.87 |
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{yang2024ccocr,
title={CC-OCR: A Comprehensive and Challenging OCR Benchmark for Evaluating Large Multimodal Models in Literacy},
author={Zhibo Yang and Jun Tang and Zhaohai Li and Pengfei Wang and Jianqiang Wan and Humen Zhong and Xuejing Liu and Mingkun Yang and Peng Wang and Shuai Bai and LianWen Jin and Junyang Lin},
year={2024},
eprint={2412.02210},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.02210},
}
```
## Contact Us
If you have any questions, feel free to send an email to: wpf272043@alibaba-inc.com or xixing.tj@alibaba-inc.com

View File

@@ -0,0 +1,12 @@
from .kie_evaluator import KieEvaluator
from .doc_parsing_evaluator import ParsingEvaluator
from .ocr_evaluator import OcrEvaluator
from .common import summary
evaluator_map_info = {
"kie": KieEvaluator("kie"),
"doc_parsing": ParsingEvaluator("doc_parsing"),
"multi_lan_ocr": OcrEvaluator("multi_lan_ocr"),
"multi_scene_ocr": OcrEvaluator("multi_scene_ocr")
}

View File

@@ -0,0 +1,222 @@
import os
import json
import time
import sys
from abc import abstractmethod
from tabulate import tabulate
def pick_response_text(json_path):
"""
"""
try:
with open(json_path, "r") as f:
json_data = json.load(f)
except Exception as e:
print("--> file error: msg: {}, path: {}".format(e, json_path))
return None
for required_key in ["model_name", "response"]:
if required_key not in json_data:
print("--> required key not exists, name: {}, path: {}".format(required_key, json_path))
return None
model_name = json_data["model_name"]
model_response = json_data["response"]
response_text = None
if model_name.startswith("gpt") or model_name.startswith("o1"):
response_text = model_response.get("data", {}).get("response", {}).get("choices", [{}])[0].get("message", {}).get("content", None) # noqa: E501
elif model_name.startswith("local_"):
response_text = model_response
else:
if model_name.startswith("claude"):
content_list = model_response.get("content", None)
elif model_name.startswith("gemini"):
content_list = model_response.get("candidates", [{}])[0].get("content", {}).get("parts", None)
elif model_name.startswith("qwen"):
content_list = model_response.get("output", {}).get("choices", [{}])[0].get("message", {}).get("content", None) # noqa: E501
else:
raise NotImplementedError("The pick_response_text NOT implemented for model: {}".format(model_name))
if isinstance(content_list, list) and len(content_list) > 0:
response_text = content_list[0].get("text", None)
if response_text is None:
print("--> [error][{}] text pick error, path: {}".format(model_name, json_path))
return response_text
def load_response_from_dir(res_dir):
"""
"""
response_info = {}
for file_name in os.listdir(res_dir):
file_path = os.path.abspath(os.path.join(res_dir, file_name))
if not file_name.endswith(".json"):
print("--> skip: result file should be a json: but got: {}".format(file_path))
continue
response_text = pick_response_text(file_path)
if response_text is None:
continue
file_name_wo_ext, ext = os.path.splitext(file_name)
response_info[file_name_wo_ext] = response_text
return response_info
class BaseMetric(object):
""" BaseMetric """
""" OCRMetric """
def __init__(self, group_name, **kwargs):
self.group_name = group_name
self.kwargs = kwargs
def response_post_func(self, response_text, **kwargs):
return response_text
@abstractmethod
# Given the prediction and gt, return the evaluation results in the format of a dictionary
# results should contain a 'summary' key, for example:
# {
# "summary": {
# "f1-score": 99.99,
# "metric_name": "metric_value" # used for summaryonly metric info could be placed in this dict.
# },
# "your other info": "xxx"
# }
def evaluate(self, response_info, gt_info, normalize_func=None, **kwargs):
pass
def __call__(self, pdt_res_dir, gt_info, with_response_ratio=True, **kwargs):
if isinstance(pdt_res_dir, dict):
raw_response_info = pdt_res_dir
elif os.path.exists(pdt_res_dir) and os.path.isdir(pdt_res_dir):
raw_response_info = load_response_from_dir(pdt_res_dir)
else:
return ValueError("invalid input: response dict or folder are required, but got {}".format(pdt_res_dir))
post_error_list, response_info = [], {}
response_error_list = list(gt_info.keys() - raw_response_info.keys())
for file_name, single_pdt_str in raw_response_info.items():
single_pdt_str = self.response_post_func(single_pdt_str, **kwargs)
if single_pdt_str is None:
post_error_list.append(file_name)
continue
response_info[file_name] = single_pdt_str
meta_info = {
"gt_total_num": len(gt_info), "pdt_total_num": len(response_info),
"post_error_list": post_error_list, "response_error_list": response_error_list,
}
eval_info = self.evaluate(response_info, gt_info, **kwargs)
# add response_success_ratio
if "summary" in eval_info and with_response_ratio:
success_ratio = (len(response_info) + len(post_error_list)) / (len(gt_info) + 1e-9)
eval_info["summary"].update({"response_success_ratio": success_ratio})
return meta_info, eval_info
def summary(index_path, exp_dir_base, is_weighted_sum=False):
"""
"""
with open(index_path, "r") as f:
data_list = json.load(f)
all_data_info = {}
for data_info_item in data_list:
data_name = data_info_item["dataset"]
if not data_info_item.get("release", True):
continue
all_data_info[data_name] = data_info_item
dataset_list = list(all_data_info.keys())
summary_path = summary_multi_exp(exp_dir_base, dataset_list, is_weighted_sum=is_weighted_sum)
return summary_path
def summary_multi_exp(exp_dir_base, dataset_list=None, is_weighted_sum=False):
"""
"""
if dataset_list is None:
all_dataset_name = []
for exp_name in os.listdir(exp_dir_base):
dir_status_path = os.path.join(exp_dir_base, exp_name, "status.json")
if not os.path.exists(dir_status_path):
continue
with open(dir_status_path, "r") as f:
data_status_info = json.load(f)
all_dataset_name.extend(data_status_info.keys())
dataset_list = sorted(set(all_dataset_name))
# summary main code
all_evaluate_info, _ = {}, 0
for exp_name in os.listdir(exp_dir_base):
dir_status_path = os.path.join(exp_dir_base, exp_name, "status.json")
if not os.path.exists(dir_status_path):
print("--> skip: status.json not exist: {}".format(dir_status_path))
continue
with open(dir_status_path, "r") as f:
all_status_info = json.load(f)
for data_name in dataset_list:
total_num = all_status_info.get(data_name, {}).get("config", {}).get("num", "-1")
summary_info = all_status_info.get(data_name, {}).get("evaluation", {}).get("summary", {})
for metric_name, metric_value in summary_info.items():
if metric_name not in all_evaluate_info:
all_evaluate_info[metric_name] = {}
if exp_name not in all_evaluate_info[metric_name]:
all_evaluate_info[metric_name][exp_name] = {}
all_evaluate_info[metric_name][exp_name][data_name] = (metric_value, total_num)
all_table_md = []
for metric_name, metric_info in all_evaluate_info.items():
formatted_time = time.strftime("%Y-%m-%d %H:%M", time.localtime(time.time()))
summary_line_list = []
summary_key_name = "summary(weighted)" if is_weighted_sum else "summary"
summary_head = [f"exp_name({metric_name}_{formatted_time})"] + dataset_list + [summary_key_name]
for exp_name, data_eval_info in metric_info.items():
summary_line = [exp_name, ]
all_metric_value = 0
is_summary_valid, all_total_num, all_weighted_metric = True, 0, 0
for data_name in dataset_list:
metric_value, total_num = data_eval_info.get(data_name, ("-1", "-1"))
summary_line.append("{:.2f}".format(float(metric_value) * 100))
if str(metric_value) == "-1" or str(metric_value) == "-1":
is_summary_valid = False
continue
all_total_num += float(total_num)
all_weighted_metric += float(total_num) * float(metric_value)
all_metric_value += float(metric_value)
summary_value_valid = ((all_weighted_metric / (all_total_num + 1e-9)) * 100) if is_weighted_sum \
else (all_metric_value / (len(dataset_list) + 1e-9) * 100)
summary_value = "-" if not is_summary_valid else "{:.2f}".format(summary_value_valid)
summary_line.append(summary_value)
summary_line_list.append(summary_line)
md_table_info = tabulate(summary_line_list, headers=summary_head, tablefmt='pipe')
all_table_md.append(md_table_info)
print("\n\n".join(all_table_md))
summary_path = os.path.abspath(os.path.join(exp_dir_base, "summary.md"))
with open(summary_path, "w") as f:
f.write("\n\n".join(all_table_md))
return summary_path
if __name__ == '__main__':
if len(sys.argv) != 2:
print("Usage: python {} exp_base_dir".format(__file__))
exit(-1)
else:
print('--> info: {}'.format(sys.argv))
exp_base_dir = sys.argv[1]
summary_path = summary_multi_exp(exp_base_dir, dataset_list=None, is_weighted_sum=False)
print("--> info: summary saved at : {}".format(summary_path))
print("happy coding.")

View File

@@ -0,0 +1,256 @@
import nltk
import re
from tqdm import tqdm
from collections import deque
from apted.helpers import Tree
from apted import APTED, Config
# local import
from .common import BaseMetric
# 移除指定的LaTeX命令
patterns = [
r'\\documentclass\{.*?\}',
r'\\usepackage\[.*?\]\{.*?\}',
r'\\usepackage\{.*?\}',
r'\\geometry\{.*?\}',
r'\\begin\{document\}',
r'\\end\{document\}',
r'\\noindent'
]
class TableTree(Tree):
"""
# Copyright 2020 IBM
# Author: peter.zhong@au1.ibm.com
# License: Apache 2.0 License.
"""
def __init__(self, tag, colspan=None, rowspan=None, content=None, *children):
self.tag = tag
self.colspan = colspan
self.rowspan = rowspan
self.content = content
self.children = list(children)
def bracket(self):
"""Show tree using brackets notation"""
if self.tag == "td":
result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % (
self.tag,
self.colspan,
self.rowspan,
self.content,
)
else:
result = '"tag": %s' % self.tag
for child in self.children:
result += child.bracket()
return "{{{}}}".format(result)
class CustomConfig(Config):
"""
# Copyright 2020 IBM
# Author: peter.zhong@au1.ibm.com
# License: Apache 2.0 License.
"""
def rename(self, node1, node2):
"""Compares attributes of trees"""
# print(node1.tag)
if (
(node1.tag != node2.tag)
or (node1.colspan != node2.colspan)
or (node1.rowspan != node2.rowspan)
):
return 1.0
if node1.tag == "td":
if node1.content or node2.content:
return nltk.edit_distance(node1.content, node2.content) / max(len(node1.content), len(node2.content))
return 0.0
class TEDS(object):
"""Tree Edit Distance basead Similarity
# Copyright 2020 IBM
# Author: peter.zhong@au1.ibm.com
# License: Apache 2.0 License.
"""
def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None):
assert isinstance(n_jobs, int) and (
n_jobs >= 1
), "n_jobs must be an integer greather than 1"
self.structure_only = structure_only
self.n_jobs = n_jobs
self.ignore_nodes = ignore_nodes
self.__tokens__ = []
def tokenize(self, node):
"""Tokenizes table cells"""
self.__tokens__.append("<%s>" % node.tag)
if node.text is not None:
self.__tokens__ += list(node.text)
for n in node.getchildren():
self.tokenize(n)
if node.tag != "unk":
self.__tokens__.append("</%s>" % node.tag)
if node.tag != "td" and node.tail is not None:
self.__tokens__ += list(node.tail)
def load_html_tree(self, node, parent=None):
"""Converts HTML tree to the format required by apted"""
global __tokens__
if node.tag == "td":
if self.structure_only:
cell = []
else:
self.__tokens__ = []
self.tokenize(node)
cell = self.__tokens__[1:-1].copy()
new_node = TableTree(
node.tag,
int(node.attrib.get("colspan", "1")),
int(node.attrib.get("rowspan", "1")),
cell,
*deque(),
)
else:
new_node = TableTree(node.tag, None, None, None, *deque())
if parent is not None:
parent.children.append(new_node)
if node.tag != "td":
for n in node.getchildren():
self.load_html_tree(n, new_node)
if parent is None:
return new_node
def evaluate(self, pred, true):
"""Computes TEDS score between the prediction and the ground truth of a
given sample
"""
# try_import("lxml")
from lxml import etree, html
if (not pred) or (not true):
return 0.0
parser = html.HTMLParser(remove_comments=True, encoding="utf-8")
pred = html.fromstring(pred, parser=parser)
true = html.fromstring(true, parser=parser)
if pred.xpath("body/table") and true.xpath("body/table"):
pred = pred.xpath("body/table")[0]
true = true.xpath("body/table")[0]
if self.ignore_nodes:
etree.strip_tags(pred, *self.ignore_nodes)
etree.strip_tags(true, *self.ignore_nodes)
n_nodes_pred = len(pred.xpath(".//*"))
n_nodes_true = len(true.xpath(".//*"))
n_nodes = max(n_nodes_pred, n_nodes_true)
tree_pred = self.load_html_tree(pred)
tree_true = self.load_html_tree(true)
distance = APTED(
tree_pred, tree_true, CustomConfig()
).compute_edit_distance()
return 1.0 - (float(distance) / n_nodes)
else:
return 0.0
class ParsingEvaluator(BaseMetric):
def response_post_func(self, response_text, **kwargs):
return response_text
def evaluate(self, response_info, gt_info, **kwargs):
op = kwargs['op']
if op == 'doc':
score = self.eval_doc(response_info, gt_info)
elif op == 'table':
score = self.eval_table(response_info, gt_info)
elif op in ['molecular', "formula"]:
score = self.eval_formula(response_info, gt_info, op_name=op)
else:
raise ValueError(f'doc parsing unsupported op: {op}')
# summary info
eval_info = {"summary": {"score": score}}
return eval_info
def eval_doc(self, response_info, gt_info):
results = []
for img_name, gt in tqdm(gt_info.items()):
if img_name not in response_info:
results.append(0)
continue
pred = response_info[img_name]
for pattern in patterns:
pred = re.sub(pattern, '', pred)
try:
pred = pred.split('```')[1]
except:
pass
pred = pred.replace('```latex', '')
pred = pred.replace('```', '')
pred = pred.replace(' ', '').replace('\n', '')
gt = gt.replace(' ', '').replace('\n', '')
edit_dist = nltk.edit_distance(pred, gt) / max(len(pred), len(gt))
results.append(1 - edit_dist)
score = sum(results) / len(results)
return score
def eval_table(self, response_info, gt_info):
teds = TEDS(structure_only=False, n_jobs=1)
results = []
for img_name, gt in tqdm(gt_info.items()):
if img_name not in response_info:
results.append(0)
continue
pred = response_info[img_name]
for pattern in patterns:
pred = re.sub(pattern, '', pred)
try:
pred = pred.split('```html')[1]
except:
pass
pred = pred.replace('```', '')
pred = pred.replace(' ', '').replace('\n', '').replace('', ',')
gt = gt.replace(' ', '').replace('\n', '')
pred_html = '<html><body>{}</body></html>'.format(pred)
gt_html = '<html><body>{}</body></html>'.format(gt)
results.append(teds.evaluate(pred_html, gt_html))
score = sum(results) / len(results)
return score
def eval_formula(self, response_info, gt_info, op_name='formula'):
results = []
for img_name, gt in tqdm(gt_info.items()):
if img_name not in response_info:
results.append(0)
continue
pred = response_info[img_name]
if op_name == 'formula':
pred = pred.replace("\n", " ").replace("```latex", "").replace("```", "").replace("\t", " ").replace(" ", "") # noqa: E501
gt = gt.replace(" ", "")
elif op_name == 'molecular':
pred = pred.replace("\n", "").replace(" ", "").replace("<smiles>", "").replace("</smiles>", "")
gt = gt.replace(" ", "")
edit_dist = nltk.edit_distance(pred, gt) / max(len(pred), len(gt))
results.append(1 - edit_dist)
score = sum(results) / len(results)
return score
if __name__ == '__main__':
pass

View File

@@ -0,0 +1,385 @@
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import json
import os
import sys
import re
import time
from typing import Any, Dict, List, Tuple, Union
import zss
from zss import Node
from collections import Counter
from nltk import edit_distance
# local import
from .common import BaseMetric
def flatten(data: dict):
"""
Convert Dictionary into Non-nested Dictionary
Example:
input(dict)
{
"menu": [
{"name" : ["cake"], "count" : ["2"]},
{"name" : ["juice"], "count" : ["1"]},
]
}
output(list)
[
("menu.name", "cake"),
("menu.count", "2"),
("menu.name", "juice"),
("menu.count", "1"),
]
"""
flatten_data = list()
def _flatten(value, key=""):
if type(value) is dict:
for child_key, child_value in value.items():
_flatten(child_value, f"{key}.{child_key}" if key else child_key)
elif type(value) is list:
for value_item in value:
_flatten(value_item, key)
else:
flatten_data.append((key, value))
_flatten(data)
return flatten_data
def update_cost(node1: Node, node2: Node):
"""
Update cost for tree edit distance.
If both are leaf node, calculate string edit distance between two labels (special token '<leaf>' will be ignored).
If one of them is leaf node, cost is length of string in leaf node + 1.
If neither are leaf node, cost is 0 if label1 is same with label2 othewise 1
"""
label1 = node1.label
label2 = node2.label
label1_leaf = "<leaf>" in label1
label2_leaf = "<leaf>" in label2
if label1_leaf and label2_leaf:
return edit_distance(label1.replace("<leaf>", ""), label2.replace("<leaf>", ""))
elif not label1_leaf and label2_leaf:
return 1 + len(label2.replace("<leaf>", ""))
elif label1_leaf and not label2_leaf:
return 1 + len(label1.replace("<leaf>", ""))
else:
return int(label1 != label2)
def insert_and_remove_cost(node: Node):
"""
Insert and remove cost for tree edit distance.
If leaf node, cost is length of label name.
Otherwise, 1
"""
label = node.label
if "<leaf>" in label:
return len(label.replace("<leaf>", ""))
else:
return 1
def normalize_dict(data: Union[Dict, List, Any]):
"""
Sort by value, while iterate over element if data is list
"""
# if not data:
# return {}
if isinstance(data, dict):
new_data = dict()
for key in sorted(data.keys(), key=lambda k: (len(k), k)):
value = normalize_dict(data[key])
if value:
if not isinstance(value, list):
value = [value]
new_data[key] = value
elif isinstance(data, list):
if all(isinstance(item, dict) for item in data):
new_data = []
for item in data:
item = normalize_dict(item)
if item:
new_data.append(item)
else:
new_data = [str(item).strip() for item in data if type(item) in {str, int, float} and str(item).strip()]
else:
new_data = [str(data).strip()]
return new_data
def cal_f1_all(preds, answers):
"""
Calculate global F1 accuracy score (field-level, micro-averaged) by counting all true positives,
false negatives and false positives
"""
metric_info, error_info = {}, {}
total_tp, total_fn_or_fp = 0, 0
for file_name, answer in answers.items():
sample_error_info = {"fp": [], "fn": [], "tp": []}
pred = preds.get(file_name, {})
pred, answer = flatten(normalize_dict(pred)), flatten(normalize_dict(answer))
for field in pred:
field_name = field[0]
if field_name not in metric_info:
metric_info[field_name] = {"total_tp": 0, "total_fn_or_fp": 0}
if field in answer:
total_tp += 1
metric_info[field_name]["total_tp"] += 1
sample_error_info["tp"].append(field)
answer.remove(field)
else:
total_fn_or_fp += 1
metric_info[field_name]["total_fn_or_fp"] += 1
sample_error_info["fp"].append(field)
total_fn_or_fp += len(answer)
for field in answer:
field_name = field[0]
if field_name not in metric_info:
metric_info[field_name] = {"total_tp": 0, "total_fn_or_fp": 0}
metric_info[field_name]["total_fn_or_fp"] += 1
sample_error_info["fn"].append(field)
sample_error_num = sum([len(v) for k, v in sample_error_info.items() if k != "tp"])
if sample_error_num > 0:
sample_error_info["error_num"] = sample_error_num
error_class_list = ["counter_" + x[0] for x in (sample_error_info["fn"] + sample_error_info["fp"])]
counter = Counter(error_class_list)
sample_error_info["error_info"] = dict(counter)
error_info[file_name] = sample_error_info
# summary
for field_name, field_info in metric_info.items():
field_tp, field_fn_or_fp = field_info["total_tp"], field_info["total_fn_or_fp"]
metric_info[field_name]["acc"] = field_tp / (field_tp + field_fn_or_fp / 2 + 1e-6)
print("donut_evaluator: total_tp: {}, total_fn_or_fp: {}, ptd_num: {}, gt_num: {}".format(total_tp, total_fn_or_fp,
len(preds), len(answers)))
error_info = {k: v for k, v in
sorted(error_info.items(), key=lambda item: item[1].get("error_num", 0), reverse=True)}
metric_info = {k: v for k, v in
sorted(metric_info.items(), key=lambda item: item[1].get("total_fn_or_fp", 0), reverse=True)}
return total_tp / (total_tp + total_fn_or_fp / 2 + 1e-6), metric_info, error_info
def construct_tree_from_dict(data: Union[Dict, List], node_name: str = None):
"""
Convert Dictionary into Tree
Example:
input(dict)
{
"menu": [
{"name" : ["cake"], "count" : ["2"]},
{"name" : ["juice"], "count" : ["1"]},
]
}
output(tree)
<root>
|
menu
/ \
<subtree> <subtree>
/ | | \
name count name count
/ | | \
<leaf>cake <leaf>2 <leaf>juice <leaf>1
"""
if node_name is None:
node_name = "<root>"
node = Node(node_name)
if isinstance(data, dict):
for key, value in data.items():
kid_node = construct_tree_from_dict(value, key)
node.addkid(kid_node)
elif isinstance(data, list):
if all(isinstance(item, dict) for item in data):
for item in data:
kid_node = construct_tree_from_dict(
item,
"<subtree>",
)
node.addkid(kid_node)
else:
for item in data:
node.addkid(Node(f"<leaf>{item}"))
else:
raise Exception(data, node_name)
return node
def cal_acc(pred: dict, answer: dict):
"""
Calculate normalized tree edit distance(nTED) based accuracy.
1) Construct tree from dict,
2) Get tree distance with insert/remove/update cost,
3) Divide distance with GT tree size (i.e., nTED),
4) Calculate nTED based accuracy. (= max(1 - nTED, 0 ).
"""
pred = construct_tree_from_dict(normalize_dict(pred))
answer = construct_tree_from_dict(normalize_dict(answer))
val1 = zss.distance(
pred,
answer,
get_children=zss.Node.get_children,
insert_cost=insert_and_remove_cost,
remove_cost=insert_and_remove_cost,
update_cost=update_cost,
return_operations=False,
)
val2 = zss.distance(
construct_tree_from_dict(normalize_dict({})),
answer,
get_children=zss.Node.get_children,
insert_cost=insert_and_remove_cost,
remove_cost=insert_and_remove_cost,
update_cost=update_cost,
return_operations=False,
)
return max(0, 1 - val1 / val2)
def cal_acc_all(pred_info, answer_info):
acc_info, error_info = {}, {}
for file_name, answer in answer_info.items():
# if file_name not in pred_info:
# print("---> error: pdt not found: {}".format(file_name))
# continue
pred = pred_info.get(file_name, {})
acc = cal_acc(pred, answer)
acc_info[file_name] = acc
if acc < 1.0:
error_info[file_name] = {"acc": acc, "pred": pred, "answer": answer}
error_info = {k: v for k, v in sorted(error_info.items(), key=lambda item: item[1].get("acc", 0))}
acc_averge = sum(list(acc_info.values())) / (len(acc_info) + 1e-6)
return acc_averge, error_info
def normalize_values_of_nested_dict(d, normalize_func):
"""
"""
if isinstance(d, dict):
return {k: normalize_values_of_nested_dict(v, normalize_func) for k, v in d.items()}
elif isinstance(d, list):
return [normalize_values_of_nested_dict(x, normalize_func) if isinstance(x, dict) else x for x in d]
elif isinstance(d, str):
return normalize_func(d)
else:
return d
def eval_donut(pdt_info, gt_info, normalize_func=None, data_name=None):
"""
"""
if normalize_func is not None:
print("--> info: normalize_func executed.")
pdt_info = normalize_values_of_nested_dict(pdt_info, normalize_func)
gt_info = normalize_values_of_nested_dict(gt_info, normalize_func)
f1_score, class_eval_info, error_info = cal_f1_all(pdt_info, gt_info)
acc_average, acc_error_info = cal_acc_all(pdt_info, gt_info)
eval_info = {"f1_score": f1_score, "acc": acc_average, "class_f1_score": class_eval_info,
"f1_error_info": error_info, "acc_error_info": acc_error_info}
print(data_name, "f1_score", f1_score, "acc", acc_average)
return eval_info
def post_process_to_json(qwen_info_str, file_name=None):
try:
if "```json" in qwen_info_str:
if "```" not in qwen_info_str:
qwen_info_str += "```"
qwen_info_group = re.search(r'```json(.*?)```', qwen_info_str, re.DOTALL)
json_str = qwen_info_group.group(1).strip().replace("\n", "")
else:
json_str = qwen_info_str.strip().replace("\n", "")
json_data = json.loads(json_str)
return json_data
except Exception as err: # noqa: F841
return None
def fullwidth_to_halfwidth(text):
# 全角转半角
result = ''
for char in text:
code_point = ord(char)
# 全角空格直接转化
if code_point == 0x3000:
code_point = 0x0020
# 其他全角字符(除空格)转换为半角
elif 0xFF01 <= code_point <= 0xFF5E:
code_point -= 0xFEE0
result += chr(code_point)
result = result.replace("", ",")
return result
def remove_unnecessary_spaces(text):
# 去掉中文字符之间的空格
text = re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff])', '', text)
# 去掉中文和英文、数字之间的空格
text = re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[a-zA-Z0-9])', '', text)
text = re.sub(r'(?<=[a-zA-Z0-9])\s+(?=[\u4e00-\u9fff])', '', text)
# 去掉符号前的不必要空格,保留符号后的一个空格
text = re.sub(r'(?<![0-9])\s*([,.!?:;])\s*', r'\1 ', text) # 非数字前后的符号
# 在数字和英文之间添加空格
text = re.sub(r'(?<=[0-9])(?=[a-zA-Z])', ' ', text)
text = re.sub(r'(?<=[a-zA-Z])(?=[0-9])', ' ', text)
text = re.sub(r'\s+', ' ', text)
return text
class KieEvaluator(BaseMetric):
def response_post_func(self, response_text, **kwargs):
response_text = post_process_to_json(response_text, file_name=kwargs.get('file_name', None))
return response_text
def normalize_func(self, text, **kwargs):
halfwidth_text = fullwidth_to_halfwidth(str(text))
cleaned_text = remove_unnecessary_spaces(halfwidth_text)
return cleaned_text
def evaluate(self, response_info, gt_info, **kwargs):
"""
response_info: dict: {"file_name_1": response, "file_name_2": gt}
gt_info: dict: {"file_name_1": gt, "file_name_2": gt}
kwargs: dataset index config: {'dataset': 'kie_benchmark_POIE', 'group': 'kie', 'op': 'poie', 'num': 250}
"""
# gt should be a dict for kie task, fix for VLMEvalKit
for image_name, label_content in gt_info.items():
if isinstance(label_content, str):
gt_info[image_name] = json.loads(label_content)
response_info = normalize_values_of_nested_dict(response_info, self.normalize_func)
gt_info = normalize_values_of_nested_dict(gt_info, self.normalize_func)
f1_score, class_eval_info, error_info = cal_f1_all(response_info, gt_info)
acc_average, acc_error_info = cal_acc_all(response_info, gt_info)
# summary info
summary_info = {"f1_score": f1_score, "acc": acc_average}
eval_info = {"summary": summary_info, "class_f1_score": class_eval_info,
"f1_error_info": error_info, "acc_error_info": acc_error_info}
return eval_info
if __name__ == '__main__':
pass

View File

@@ -0,0 +1,106 @@
import os
import sys
import json
import re
from collections import Counter
# local import
from .common import BaseMetric
def token_normalize(token_text, is_lower=False, is_alphanum_only=False):
"""
"""
if is_lower:
token_text = token_text.lower()
if is_alphanum_only:
token_text = re.sub('[^A-Za-z0-9]+', '', token_text)
return token_text
def text_normalize_and_tokenize(text, is_keep_blank=True, is_lower=True, is_alphanum_only=False):
text = text.replace("\t", " ").replace("\n", " ").replace("###", "").replace("***", "")
text = re.sub(r'\s+', ' ', text)
if not is_keep_blank:
text = text.replace(" ", "")
text_tokens = text.split(" ") if is_keep_blank else list(text)
text_token_normalized = [token_normalize(t, is_lower, is_alphanum_only) for t in text_tokens]
text_token_normalized = [x for x in text_token_normalized if len(x) > 0]
return text_token_normalized
def evaluate_single_sample(gts, preds):
right_num = 0
gt_counter_info = dict(Counter(gts))
pdt_counter_info = dict(Counter(preds))
for gt_token, gt_count in gt_counter_info.items():
pred_count = pdt_counter_info.get(gt_token, 0)
right_num += min(gt_count, pred_count)
return right_num
def calculate_metrics(response_info, gt_info, is_verbose=False):
"""
"""
macro_recall_list, macro_precision_list, macro_f1_list = [], [], []
total_gt_num, total_pred_num, total_right_num = 0, 0, 0
for file_name, fullbox_gts in gt_info.items():
fullbox_preds = response_info.get(file_name, [])
right_num = evaluate_single_sample(fullbox_gts, fullbox_preds)
total_right_num += right_num
total_gt_num += len(fullbox_gts)
total_pred_num += len(fullbox_preds)
macro_recall = right_num / (len(fullbox_gts) + 1e-9)
macro_precision = right_num / (len(fullbox_preds) + 1e-9)
macro_f1 = 2 * macro_recall * macro_precision / (macro_recall + macro_precision + 1e-9)
macro_recall_list.append(macro_recall)
macro_precision_list.append(macro_precision)
macro_f1_list.append(macro_f1)
# marco
final_macro_recall = sum(macro_recall_list) / (len(macro_recall_list) + 1e-9)
final_macro_precision = sum(macro_precision_list) / (len(macro_precision_list) + 1e-9)
final_macro_f1 = sum(macro_f1_list) / (len(macro_f1_list) + 1e-9)
# micro
recall_acc = total_right_num / (total_gt_num + 1e-9)
preci_acc = total_right_num / (total_pred_num + 1e-9)
hmean = 2 * recall_acc * preci_acc / (recall_acc + preci_acc + 1e-9)
vbs_eval_result = {
'macro_recall': final_macro_recall, 'macro_precision': final_macro_precision, 'macro_f1_score': final_macro_f1,
'micro_recall': recall_acc, 'micro_precision': preci_acc, 'mirco_f1_score': hmean
}
eval_result = vbs_eval_result if is_verbose else {'macro_f1_score': final_macro_f1, 'mirco_f1_score': hmean}
return eval_result
class OcrEvaluator(BaseMetric):
def response_post_func(self, response_text, **kwargs):
return response_text
def evaluate(self, response_info, gt_info, **kwargs):
# hard code here
dataset_name = kwargs['dataset']
is_word_level, is_lower, is_alphanum_only = True, True, False
if dataset_name in ["Arabic", "Japanese", "Korean"] or "zh" in dataset_name:
is_word_level = False
if "multi_scene_ocr" in self.group_name and is_word_level:
is_alphanum_only = True
eval_config = {"word_level": is_word_level, "alphanum_only": is_alphanum_only, "lowercase": is_lower}
image_pdt_info, image_gt_info = {}, {}
for file_name, gt_src in gt_info.items():
pred_src = response_info.get(file_name, "")
pdt_token_list = text_normalize_and_tokenize(
str(pred_src).strip(), is_word_level, is_lower, is_alphanum_only)
gt_token_list = text_normalize_and_tokenize(
str(gt_src).strip(), is_word_level, is_lower, is_alphanum_only)
image_pdt_info[file_name] = pdt_token_list
image_gt_info[file_name] = gt_token_list
eval_result = calculate_metrics(image_pdt_info, image_gt_info, is_verbose=False)
return {"summary": eval_result, "metric_config": eval_config}
if __name__ == '__main__':
pass

View File

@@ -0,0 +1,682 @@
from ...smp import *
from .multiple_choice import extract_answer_from_item
import pandas as pd
import numpy as np
import re
FAIL_MSG = "Failed to obtain answer via API."
frame_tmpl = "frame-{}-of-{}.jpg"
sys_prompt_open_eval_step_1 = (
"You will be provided with a question, a model's prediction, and the ground "
"truth answer for this question.\n"
"Your task is to judge whether the model's prediction is correct based on the "
"meaning of the two texts.\n"
"In most cases, this can be done by determining if the meaning of the model's "
"prediction is consistent with, or contains, the ground truth answer. However, "
"in some cases where the two texts differ, it may represent different "
"descriptions of the same visual scene, in which case visual information is "
"needed for further judgment.\n"
"Therefore, I hope you:\n"
"- Output 0, if the model's prediction and the ground truth answer are neither "
"consistent nor related by inclusion, with fundamentally different meanings.\n"
"- Output 1, if the meaning of the model's prediction and the ground truth "
"answer is consistent, or if the model's prediction meaningfully contains the "
"ground truth answer.\n"
"- Output 2, if the model's prediction and ground truth are not consistent or "
"inclusive, but may be different descriptions of the same visual scene, "
"requiring visual information for further judgment.\n"
"Only output the answer in the following format:\n\n"
'```json\n{"result": choice}\n```\n\n'
"The choice is either 0, 1, or 2 as specified above."
)
sys_prompt_open_eval_step_2 = (
"You will be provided with a question, a model's prediction, and the sampling "
"frames of the clue intervals related to this question.\n"
"Your task is to determine whether the model has answered the question "
"correctly based on the visual information provided.\n"
"Therefore, I hope you:\n"
"- Output 0, if the model's prediction does not correctly answer the question.\n"
"- Output 1, if the model's prediction correctly answers the question.\n"
"Only output the answer in the following format without output extra "
"explanation:\n\n"
'```json\n{"result": choice}\n```\n\n'
"The choice is either 0 or 1 as specified above."
)
FAIL_MSG = "Failed to obtain answer via API."
# '10-20', '20-30', '30-40', '40-50', '50-60'
DURATIONS = ["0 ~ 10", "10 ~ 20", "20 ~ 30", "30 ~ 40", "40 ~ 50", "50 ~ 60", "60+"]
DOMAINS = [
"Life Record",
"Music & TV show",
"Instruction & Knowledge",
"Driving",
"Embodied Expert",
"Humor/funny",
"Electonic/Social Gaming",
"Security & Health",
"Sports & Exercise",
"Special Scenes",
"Art & Culture",
"GUI",
"News",
"Animal & Pet",
]
SUB_CATEGORIES = [
"Time Cognition",
"Hallucination",
"Entity Perception",
"2D Spatial Perception",
"Time Perception",
"Scene Perception",
"Text Perception",
"Event Cognition",
"Entity Cognition",
"Text Cognition",
"Event Perception",
"Scene Cognition",
]
def get_dimention_rating_open_ended(data_path):
# 读取数据
df = load(data_path)
df = df[df["score"] != -1]
# 将秒转换为分钟并分配到对应区间
df["duration_minutes"] = df["duration"] / 60
df["duration_range"] = pd.cut(
df["duration_minutes"], bins=[-np.inf, 10, 20, 30, 40, 50, 60, np.inf], labels=DURATIONS
)
# 初始化结果字典
result = {
"overall": 0,
"duration": {k: 0 for k in DURATIONS},
"domain": {k: 0 for k in DOMAINS},
"sub_category": {k: 0 for k in SUB_CATEGORIES},
}
# Overall
result["overall"] = round(df["score"].mean(), 4)
# Duration
for dur in DURATIONS:
dur_scores = df[df["duration_range"] == dur]["score"]
result["duration"][dur] = round(dur_scores.mean(), 4) if not dur_scores.empty else 0
# Domain
for domain in DOMAINS:
domain_scores = df[df["domain"] == domain]["score"]
result["domain"][domain] = round(domain_scores.mean(), 4) if not domain_scores.empty else 0
# Sub-category
for sub_cat in SUB_CATEGORIES:
sub_cat_scores = df[df["sub_category"] == sub_cat]["score"]
result["sub_category"][sub_cat] = round(sub_cat_scores.mean(), 4) if not sub_cat_scores.empty else 0
return result
def get_dimention_rating_mcq_grouding(data_path):
# 读取数据
df = load(data_path)
# df.loc[(df['task_mode'] == 'miou') & (df['score'] == -1), 'score'] = 0
df = df[df["score"] != -1]
# 将秒转换为分钟并分配到对应区间
df["duration_minutes"] = df["duration"] / 60
df["duration_range"] = pd.cut(
df["duration_minutes"], bins=[-np.inf, 10, 20, 30, 40, 50, 60, np.inf], labels=DURATIONS
)
# 初始化结果字典
result = {
metric: {
"overall": 0,
"duration": {k: 0 for k in DURATIONS},
"domain": {k: 0 for k in DOMAINS},
"sub_category": {k: 0 for k in SUB_CATEGORIES},
}
for metric in ["long_acc", "clue_acc", "miou", "CRR", "acc@iou", "rec@iou"]
}
# 计算基础指标
for metric in ["long_acc", "clue_acc", "miou"]:
metric_df = df[df["task_mode"] == metric]
# Overall
result[metric]["overall"] = round(metric_df["score"].mean(), 4)
# Duration
for dur in DURATIONS:
dur_scores = metric_df[metric_df["duration_range"] == dur]["score"]
result[metric]["duration"][dur] = round(dur_scores.mean(), 4) if not dur_scores.empty else 0
# Domain
for domain in DOMAINS:
domain_scores = metric_df[metric_df["domain"] == domain]["score"]
result[metric]["domain"][domain] = round(domain_scores.mean(), 4) if not domain_scores.empty else 0
# Sub-category
for sub_cat in SUB_CATEGORIES:
sub_cat_scores = metric_df[metric_df["sub_category"] == sub_cat]["score"]
result[metric]["sub_category"][sub_cat] = round(sub_cat_scores.mean(), 4) if not sub_cat_scores.empty else 0
# 计算复合指标 CRR
def calculate_crr(scores):
long_acc = scores[scores["task_mode"] == "long_acc"]["score"].mean()
clue_acc = scores[scores["task_mode"] == "clue_acc"]["score"].mean()
return round(min(long_acc, clue_acc) / clue_acc, 4) if clue_acc != 0 else 0
# Overall CRR
result["CRR"]["overall"] = calculate_crr(df)
# Duration CRR
for dur in DURATIONS:
dur_df = df[df["duration_range"] == dur]
result["CRR"]["duration"][dur] = calculate_crr(dur_df)
# Domain CRR
for domain in DOMAINS:
domain_df = df[df["domain"] == domain]
result["CRR"]["domain"][domain] = calculate_crr(domain_df)
# Sub-category CRR
for sub_cat in SUB_CATEGORIES:
sub_cat_df = df[df["sub_category"] == sub_cat]
result["CRR"]["sub_category"][sub_cat] = calculate_crr(sub_cat_df)
# 计算 acc@iou
def calculate_acc_at_iou_threshold(scores, threshold):
miou_qids = set(scores[scores["task_mode"] == "miou"]["qid"])
long_acc_qids = set(scores[scores["task_mode"] == "long_acc"]["qid"])
valid_qids = miou_qids & long_acc_qids
miou_positive = set(scores[(scores["task_mode"] == "miou") & (scores["score"] > threshold)]["qid"])
long_acc_positive = scores[
(scores["task_mode"] == "long_acc") & (scores["qid"].isin(miou_positive)) & (scores["score"] == 1)
]
acc_at_iou_threshold = len(long_acc_positive) / len(valid_qids) if len(valid_qids) > 0 else 0
return round(acc_at_iou_threshold, 4)
def calculate_acc_at_iou(scores):
thresholds = [0.1, 0.2, 0.3, 0.4, 0.5]
acc_at_iou_values = [calculate_acc_at_iou_threshold(scores, threshold) for threshold in thresholds]
return round(sum(acc_at_iou_values) / len(acc_at_iou_values), 4)
# Overall acc@iou
result["acc@iou"]["overall"] = calculate_acc_at_iou(df)
# Duration acc@iou
for dur in DURATIONS:
dur_df = df[df["duration_range"] == dur]
result["acc@iou"]["duration"][dur] = calculate_acc_at_iou(dur_df)
# Domain acc@iou
for domain in DOMAINS:
domain_df = df[df["domain"] == domain]
result["acc@iou"]["domain"][domain] = calculate_acc_at_iou(domain_df)
# Sub-category acc@iou
for sub_cat in SUB_CATEGORIES:
sub_cat_df = df[df["sub_category"] == sub_cat]
result["acc@iou"]["sub_category"][sub_cat] = calculate_acc_at_iou(sub_cat_df)
# 计算 rec@iou
def calculate_rec_at_iou_threshold(scores, threshold):
# 获取所有 miou 类型的数据
miou_scores = scores[scores["task_mode"] == "miou"]
# 计算 miou score 大于 threshold 的数量
miou_positive = miou_scores[miou_scores["score"] > threshold]
# 计算比例
rec_at_iou = len(miou_positive) / len(miou_scores) if len(miou_scores) > 0 else 0
return round(rec_at_iou, 4)
def calculate_rec_at_iou(scores):
thresholds = [0.1, 0.2, 0.3, 0.4, 0.5]
rec_at_iou_values = [calculate_rec_at_iou_threshold(scores, threshold) for threshold in thresholds]
return round(sum(rec_at_iou_values) / len(rec_at_iou_values), 4)
# Overall rec@iou
result["rec@iou"]["overall"] = calculate_rec_at_iou(df)
# Duration rec@iou
for dur in DURATIONS:
dur_df = df[df["duration_range"] == dur]
result["rec@iou"]["duration"][dur] = calculate_rec_at_iou(dur_df)
# Domain rec@iou
for domain in DOMAINS:
domain_df = df[df["domain"] == domain]
result["rec@iou"]["domain"][domain] = calculate_rec_at_iou(domain_df)
# Sub-category rec@iou
for sub_cat in SUB_CATEGORIES:
sub_cat_df = df[df["sub_category"] == sub_cat]
result["rec@iou"]["sub_category"][sub_cat] = calculate_rec_at_iou(sub_cat_df)
return result
def milliseconds_to_seconds(milliseconds):
return milliseconds / 1000
def sample_frames_clue_average(clues_time_intervals, frame_num, fps):
# 计算每个线索区间的时长
clues_frame_intervals = [(round(interval[0] * fps), round(interval[1] * fps)) for interval in clues_time_intervals]
clue_durations = [interval[1] - interval[0] for interval in clues_frame_intervals]
total_duration = sum(clue_durations)
# 如果 frame_num 的数量大于等于总帧数, 则直接返回全部帧
if frame_num >= total_duration:
return [frame for interval in clues_frame_intervals for frame in range(interval[0], interval[1])]
frames_per_clue = [int(frame_num * (duration / total_duration)) for duration in clue_durations]
frame_indices = []
for i, (interval, num_frames) in enumerate(zip(clues_frame_intervals, frames_per_clue)):
num_frames = max(1, num_frames)
seg_size = (interval[1] - interval[0]) / num_frames
clue_frame_indices = [int(interval[0] + seg_size / 2 + seg_size * idx) for idx in range(num_frames)]
frame_indices.extend(clue_frame_indices)
return frame_indices
def merge_intervals(intervals):
"""
Merge overlapping intervals in a list.
Assumes each interval is a list [start, end].
"""
if not intervals:
return []
# Sort intervals by start time
intervals.sort(key=lambda x: x[0])
merged = [intervals[0]]
for current in intervals[1:]:
last_merged = merged[-1]
# Check if there is an overlap
if current[0] <= last_merged[1]:
# Merge the current interval with the last one
last_merged[1] = max(last_merged[1], current[1])
else:
# No overlap, add current interval
merged.append(current)
return merged
def calculate_intervals_iou(intervals1, intervals2):
"""
Calculate the IoU of two lists of intervals.
Each list contains intervals represented as [start, end].
"""
# Merge overlapping intervals in both lists
merged1 = merge_intervals(intervals1)
merged2 = merge_intervals(intervals2)
# Calculate total length of intervals for both lists
def total_length(merged_intervals):
return sum(end - start for start, end in merged_intervals)
length1 = total_length(merged1)
length2 = total_length(merged2)
# Calculate intersection length
intersection_length = 0
for interval1 in merged1:
for interval2 in merged2:
intersection_start = max(interval1[0], interval2[0])
intersection_end = min(interval1[1], interval2[1])
intersection_length += max(0, intersection_end - intersection_start)
# Calculate union length
union_length = length1 + length2 - intersection_length
# IoU is intersection divided by union
iou = intersection_length / union_length if union_length > 0 else 0
return iou
def post_process(response, right_answer, task_mode, duration):
result = -1
if response:
# 找到 ```json 和 ``` 的位置
json_start = response.find("```json")
json_end = response.find("```", json_start + len("```json"))
# 如果找到了 json 内容
if json_start != -1 and json_end != -1:
json_content = response[json_start + len("```json"):json_end].strip()
else:
json_content = ""
if json_content:
if task_mode in ["long_acc", "clue_acc"]:
json_content = re.sub(r"(?<=:\s)([A-Za-z_]\w*)", r'"\1"', json_content)
try:
model_result = json.loads(json_content)["result"]
if task_mode in ["long_acc", "clue_acc"]:
result = 1 if right_answer == model_result else 0
elif task_mode == "miou":
if not isinstance(model_result, list):
return -1
if not isinstance(model_result[0], list):
model_result = [model_result]
need_duration = all(interval[0] <= 1 and interval[1] <= 1 for interval in model_result)
if need_duration:
model_result = [[interval[0] * duration, interval[1] * duration] for interval in model_result]
right_answer = eval(right_answer)
result = calculate_intervals_iou(right_answer, model_result)
except Exception as e:
print(f"Error in parsing JSON: {e}, {json_content}")
if result == -1:
if task_mode in ["long_acc", "clue_acc"]:
# 检查是否存在大写字母 A-H认为其为模型答案
matches = re.findall(r"\b[A-H]\b", response)
if matches:
result = 1 if right_answer in matches else 0
elif task_mode == "miou":
# 提取所有实数,进行配对
numbers = re.findall(r"-?\d+\.?\d*", response)
if len(numbers) < 2:
result = -1
else:
if len(numbers) % 2 != 0:
numbers = numbers[:-1]
model_result = [[float(numbers[i]), float(numbers[i + 1])] for i in range(0, len(numbers), 2)]
if type(right_answer) is str:
right_answer = eval(right_answer)
result = calculate_intervals_iou(right_answer, model_result)
return result
def get_timestampes(frame_indices, fps):
seconds = list(map(lambda x: str(round(x / fps, 4)), frame_indices))
timestamps = ", ".join(seconds)
return "A total of {frame_num} frames are sampled. Their corresponding timestamps are:\n\n{timestamps}\n\n".format(
frame_num=len(frame_indices), timestamps=timestamps
)
def post_process_open(response):
model_result = -1
if response and response != FAIL_MSG:
json_start = response.find("```json")
json_end = response.find("```", json_start + len("```json"))
# 如果找到了 json 内容
if json_start != -1 and json_end != -1:
json_content = response[json_start + len("```json"):json_end].strip()
else:
json_content = ""
if json_content:
try:
model_result = json.loads(json_content)["result"]
except Exception as e:
print(f"Error in parsing JSON: {e}, {json_content}")
if model_result == -1:
model_result = response
return model_result
def post_process_eval_open(response, step):
model_result = -1
if response and response != FAIL_MSG:
json_start = response.find("```json")
json_end = response.find("```", json_start + len("```json"))
if json_start != -1 and json_end != -1:
json_content = response[json_start + len("```json"):json_end].strip()
else:
json_content = ""
if json_content:
try:
model_result = json.loads(json_content)["result"]
except Exception as e:
print(f"Error in parsing JSON: {e}, {json_content}")
return -1
if model_result == -1:
if step == 1:
match = re.search(r"[012]", response)
if match:
model_result = int(match.group())
else:
match = re.search(r"[01]", response)
if match:
model_result = int(match.group())
return model_result
def eval_open_first(model, line):
user_prompt = ""
user_prompt += f"Question: {line['question']}\n\n"
user_prompt += f"The ground truth answer is '{line['answer']}'\n\n"
user_prompt += f"The model's prediction is '{line['model_result']}'\n\n"
result = model.generate(user_prompt)
return result
def save_step_1_steps(data, step_1_results):
# 处理所有结果
data["step_1_result"] = data["qid"].map(lambda x: post_process_eval_open(step_1_results[x], 1))
# 条件更新
mask = data["step_1_result"].isin([-1, 0, 1])
data.loc[mask, "step_2_result"] = data.loc[mask, "step_1_result"]
data.loc[mask, "score"] = data.loc[mask, "step_1_result"]
return data
def eval_open_second(model, line, frame_paths):
user_prompt = ""
user_prompt += f"Question: {line['question']}\n\n"
user_prompt += f"The model's prediction is '{line['model_result']}'\n\n"
result = model.generate([user_prompt] + frame_paths)
return result
def save_step_2_steps(data, step_1_results):
# 处理所有结果
data["score"] = data["qid"].map(lambda x: post_process_eval_open(step_1_results[x], 2))
return data
def clue_frame_paths(clue_frame_root, qid, num_frames=8):
frame_root = osp.join(clue_frame_root, str(qid))
os.makedirs(frame_root, exist_ok=True)
return [osp.join(frame_root, frame_tmpl.format(i, num_frames)) for i in range(1, num_frames + 1)]
def save_clue_video_frames(data_root, clue_frame_root, video, uid, clue_intervals=None, num_frames=8, fps=-1):
if type(uid) is str:
uid = str(uid)
vid_path = osp.join(data_root, video)
vid = decord.VideoReader(vid_path)
vid_fps = vid.get_avg_fps()
if clue_intervals is not None:
# 1. 合并重叠区间
merged_intervals = merge_intervals(clue_intervals)
if num_frames > 0 and fps < 0:
# 2. 基于clue_intervals均匀抽帧
indices = sample_frames_clue_average(merged_intervals, num_frames, vid_fps)
frame_paths = clue_frame_paths(clue_frame_root, uid, len(indices))
# 保存帧
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth):
im.save(pth)
return frame_paths, indices, vid_fps
def get_chunk_number(filename):
try:
num = filename.split("chunk_")[1].split(".zip")[0]
return int(num)
except:
return float('inf')
def unzip_hf_zip(pth):
import zipfile
target_dir = pth
if os.path.exists(f"{target_dir}/cg_videos_720p") and os.path.exists(f"{target_dir}/cg_subtitles")\
and os.path.exists(f"{target_dir}/cg_clue_videos"):
print("all exists")
return
video_zip_files = [
os.path.join(target_dir, file)
for file in os.listdir(target_dir)
if file.endswith(".zip") and file.startswith("video")
]
video_zip_files = sorted(video_zip_files, key=lambda x: get_chunk_number(os.path.basename(x)))
videos_temp_zip = os.path.join(target_dir, "videos_merged.zip")
print("Merging video files ...")
with open(videos_temp_zip, "wb") as outfile:
for video_zip_file in tqdm(video_zip_files, desc="Merging videos"):
with open(video_zip_file, "rb") as infile:
outfile.write(infile.read())
print("Extracting video files...")
try:
with zipfile.ZipFile(videos_temp_zip, "r") as zip_ref:
total_files = len(zip_ref.namelist())
for file in tqdm(zip_ref.namelist(), desc="Extracting", total=total_files):
zip_ref.extract(file, target_dir)
print(f"Successfully extracted to {target_dir}")
except Exception as e:
print(f"Error during extraction: {e}")
finally:
if os.path.exists(videos_temp_zip):
os.remove(videos_temp_zip)
print("Cleaned up temporary video file")
clue_video_zip_files = [
os.path.join(target_dir, file)
for file in os.listdir(target_dir)
if file.endswith(".zip") and file.startswith("clue_video")
]
clue_video_zip_files = sorted(clue_video_zip_files, key=lambda x: get_chunk_number(os.path.basename(x)))
clue_videos_temp_zip = os.path.join(target_dir, "clue_videos_merged.zip")
print("Merging clue video files ...")
with open(clue_videos_temp_zip, "wb") as outfile:
for clue_video_zip_file in tqdm(clue_video_zip_files, desc="Merging clue_videos"):
with open(clue_video_zip_file, "rb") as infile:
outfile.write(infile.read())
print("Extracting clue video files...")
try:
with zipfile.ZipFile(clue_videos_temp_zip, "r") as zip_ref:
total_files = len(zip_ref.namelist())
for file in tqdm(zip_ref.namelist(), desc="Extracting", total=total_files):
zip_ref.extract(file, target_dir)
print(f"Successfully extracted to {target_dir}")
except Exception as e:
print(f"Error during extraction: {e}")
finally:
if os.path.exists(clue_videos_temp_zip):
os.remove(clue_videos_temp_zip)
print("Cleaned up temporary clue video file")
print("Extracting subtitle files ...")
subtitles_zip = os.path.join(target_dir, "subtitles.zip")
try:
with zipfile.ZipFile(subtitles_zip, "r") as zip_ref:
total_files = len(zip_ref.namelist())
for file in tqdm(zip_ref.namelist(), desc="Extracting", total=total_files):
zip_ref.extract(file, target_dir)
print(f"Successfully extracted to {target_dir}")
except Exception as e:
print(f"Error during extraction: {e}")

View File

@@ -0,0 +1,13 @@
import json
import argparse
from collections import defaultdict
def is_correct(predict, answer):
# predict是标准答案 answer是预测
if len(answer) == 1:
return answer[0] == predict[0]
elif len(answer) != 1 and answer[0] in ['A', 'B', 'C', 'D']:
return answer[0] == predict[0]
elif len(answer) != 1 and answer[0] not in ['A', 'B', 'C', 'D']:
return predict[4:].lower() in answer.lower()

View File

@@ -0,0 +1,54 @@
from ...smp import *
import os
def report_acc_hrbench(df):
cycle_group = df.groupby('cycle_category')
result_dic = defaultdict(list)
avg_dic = defaultdict(int)
count = 0
for key, data_value in cycle_group:
count += 1
_, resp_dic = hrbench_score(data_value)
for task_type, accuracy in resp_dic.items():
result_dic['cycle'].append(key)
result_dic['type'].append(task_type)
result_dic['accuracy'].append(accuracy)
avg_dic[task_type] += accuracy
for task_type, accuracy in avg_dic.items():
result_dic['cycle'].append('Average')
result_dic['type'].append(task_type)
result_dic['accuracy'].append(accuracy / count)
result_pd = pd.DataFrame(result_dic)
return result_pd
def hrbench_score(data):
ret = defaultdict(list)
resp_dic = {}
category_list = set(data['category'])
score_dict = defaultdict(list)
for i in range(len(data)):
d = data.iloc[i]
category = d['category']
gpt_score = d['hit']
score_dict[category].append(gpt_score)
score_dict['all'].append(gpt_score)
all_acc = np.mean(score_dict['all'])
ret['type'].append('all')
ret['acc'].append(all_acc)
resp_dic['all'] = all_acc
for cate in category_list:
acc = np.mean(score_dict[cate])
ret['type'].append(cate)
ret['acc'].append(acc)
resp_dic[cate] = acc
return pd.DataFrame(ret), resp_dic

View File

@@ -0,0 +1,49 @@
import os
from ...smp import load_env
INTERNAL = os.environ.get('INTERNAL', 0)
def build_judge(**kwargs):
from ...api import OpenAIWrapper, SiliconFlowAPI
model = kwargs.pop('model', None)
kwargs.pop('nproc', None)
load_env()
LOCAL_LLM = os.environ.get('LOCAL_LLM', None)
if LOCAL_LLM is None:
model_map = {
'gpt-4-turbo': 'gpt-4-1106-preview',
'gpt-4-0613': 'gpt-4-0613',
'gpt-4-0125': 'gpt-4-0125-preview',
'gpt-4-0409': 'gpt-4-turbo-2024-04-09',
'chatgpt-1106': 'gpt-3.5-turbo-1106',
'chatgpt-0125': 'gpt-3.5-turbo-0125',
'gpt-4o': 'gpt-4o-2024-05-13',
'gpt-4o-0806': 'gpt-4o-2024-08-06',
'gpt-4o-mini': 'gpt-4o-mini-2024-07-18',
'qwen-7b': 'Qwen/Qwen2.5-7B-Instruct',
'qwen-72b': 'Qwen/Qwen2.5-72B-Instruct',
'deepseek': 'deepseek-ai/DeepSeek-V2.5',
}
model_version = model_map[model]
else:
model_version = LOCAL_LLM
if model in ['qwen-7b', 'qwen-72b', 'deepseek']:
model = SiliconFlowAPI(model_version, **kwargs)
else:
model = OpenAIWrapper(model_version, **kwargs)
return model
DEBUG_MESSAGE = """
To debug the OpenAI API, you can try the following scripts in python:
```python
from vlmeval.api import OpenAIWrapper
model = OpenAIWrapper('gpt-4o', verbose=True)
msgs = [dict(type='text', value='Hello!')]
code, answer, resp = model.generate_inner(msgs)
print(code, answer, resp)
```
You cam see the specific error if the API call fails.
"""

View File

@@ -1,10 +1,6 @@
import argparse
import numpy as np
import pandas as pd
import os.path as osp
from vlmeval.evaluate.misc import build_judge
from vlmeval.smp import *
from vlmeval.utils import track_progress_rich
from ...smp import *
rule_dict = {
'llava_bench_conv': {'role': 'Assistant', 'prompt': 'We would like to request your feedback on the performance of two AI assistants in response to the user question displayed above. The user asks the question on observing an image. For your reference, the visual content in the image is represented with a few sentences describing the image. \nPlease rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance.\nPlease first output a single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space.\nIn the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment.'}, # noqa: E501
@@ -67,54 +63,3 @@ def LLaVABench_score(data):
ret['VLM Score'].append(np.mean(sub['score']) * 10)
ret['GPT4 Score'].append(np.mean(sub['gpt4_score']) * 10)
return pd.DataFrame(ret)
def LLaVABench_eval(eval_file, **judge_kwargs):
suffix = '.' + eval_file.split('.')[-1]
record_file = eval_file.replace(suffix, '_openai_result' + suffix)
score_file = eval_file.replace(suffix, '_score.csv')
nproc = judge_kwargs.pop('nproc', 4)
if not osp.exists(record_file):
data = load(eval_file)
lines = [data.iloc[i] for i in range(len(data))]
model = build_judge(
temperature=0.2,
system_prompt='You are a helpful and precise assistant for checking the quality of the answer.',
**judge_kwargs)
prompts = [build_prompt(line) for line in lines]
tups = [(model, prompt) for prompt in prompts]
scores = track_progress_rich(LLaVABench_atomeval, tups, nproc=nproc, chunksize=nproc)
data['gpt4_score'] = [x[0] for x in scores]
data['score'] = [x[1] for x in scores]
dump(data, record_file)
data = load(record_file)
ret = LLaVABench_score(data).round(1)
print(ret)
dump(ret, score_file)
return ret
def parse_args():
parser = argparse.ArgumentParser(description='LLaVABench Evaluation. ')
parser.add_argument('data', type=str, help='The question set for inference, in excel / tsv / json format. ')
parser.add_argument(
'--model', type=str, help='The LLM (GPT) used for inference. ', default='gpt-4-turbo',
choices=['gpt-4-0613', 'gpt-4-turbo', 'chatgpt-1106', 'chatgpt-0613', 'gpt-4-0314'])
parser.add_argument('--nproc', type=int, default=4)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
load_env()
args = parse_args()
judge_kwargs = dict(model=args.model, nproc=args.nproc, verbose=args.verbose)
if 'OPENAI_API_KEY_JUDGE' in os.environ and os.environ['OPENAI_API_KEY_JUDGE']:
judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE']
if 'OPENAI_API_BASE_JUDGE' in os.environ and os.environ['OPENAI_API_BASE_JUDGE']:
judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE']
LLaVABench_eval(eval_file=args.data, **judge_kwargs)

View File

@@ -0,0 +1,150 @@
import pandas as pd
# from colorama import Fore, Back, Style
from ...smp import *
FAIL_MSG = 'Failed to obtain answer via API.'
def build_prompt_logicvista(line):
question = line['question']
prediction = str(line['prediction'])
tmpl = (
"You are a information extractor that extracts multiple choice letter answer choices "
"from a paragraph that contains the answer choice and sometimes explaination of why that "
"choice is correct to the given question.\n"
"What letter did the following answer choose? If the answer did not select a letter answer choice, "
"first try to infer the answer based off the given choices.\n"
"If it does not seem like the given answer corresponds to an answer choice OR if there is no selected answer, please just respond with Z.\n"
"Make sure you answer with ONLY the letters chosen.\n"
'Example 1: \n'
'Question: <start>\nWhat is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\n<end>\n'
'Answer: <start>\na cute teddy bear\n<end>\nYour output: A\n'
'Example 2: \n'
'Question: <start>\nWhat is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\n<end>\n'
'Answer: <start>\nSpider\n<end>\nYour output: Z\n'
'Example 3: \n'
'Question: <start>\nWhich figure is a rotation of the object?\n<end>\n'
'Answer: <start>\nThe figure on the right, labeled "D," is a rotation of the object shown in the top left corner.\n<end>\nYour output: D\n'
'Example 4: \n'
'Question: <start>\nWhich of the boxes comes next in the sequence? Select from A-E\n<end>\n'
'Answer: <start>\nThe sequence of the boxes is A, B, C, D, E.\n<end>\nYour output: ABCDE\n'
'Example 5: \n'
'Question: <start>\n{}\n<end>\nAnswer: <start>\n{}\n<end>\nYour output: '
)
return tmpl.format(question, prediction)
def LogicVista_auxeval(model, line):
prompt = build_prompt_logicvista(line)
print(prompt)
log = ''
retry = 5
for i in range(retry):
prediction = line['prediction']
res = model.generate(prompt, temperature=i * 0.5)
answer = line['answer'].split(", ")
for j in range(0, len(answer)):
answer[j] = answer[j].lower()
answer.sort()
answer = ''.join(answer)
if FAIL_MSG in res:
log += f'Try {i}: output is {prediction}, failed to parse.\n'
elif not res.isupper() or not res.isalpha():
log += f'Try {i}: output is {prediction}, failed to parse.\n'
else:
log += 'Succeed'
hit = 0
extracted = [alpha.lower() for alpha in res]
extracted.sort()
extracted = ''.join(extracted)
if extracted == answer:
hit = 1
return dict(log=log, res=res, hit=hit)
log += 'All 5 retries failed.\n'
return dict(log=log, res='', hit=0)
cat = ["diagram", "ocr", "patterns", "graphs", "tables", "3d shapes", "puzzles", "sequences", "physics"]
def evaluate_logicvista(file_path):
df = pd.read_excel(file_path)
tot = defaultdict(lambda: 0)
hit = defaultdict(lambda: 0)
acc = defaultdict(lambda: 0)
lt = len(df)
skill_list = []
df_tot = df
df_inductive = df[df["skill"].str.contains("inductive")]
df_deductive = df[df["skill"].str.contains("deductive")]
df_numerical = df[df["skill"].str.contains("numerical")]
df_spatial = df[df["skill"].str.contains("spatial")]
df_mechanical = df[df["skill"].str.contains("mechanical")]
tot_correct = df_tot["hit"].sum()
tot_acc = (tot_correct / df_tot.shape[0]) * 100
tot['Overall'] = df_tot.shape[0]
hit['Overall'] = tot_correct
acc['Overall'] = tot_acc
inductive_correct = df_inductive["hit"].sum()
inductive_acc = (inductive_correct / df_inductive.shape[0]) * 100
tot["inductive"] = df_inductive.shape[0]
hit["inductive"] = inductive_correct
acc["inductive"] = inductive_acc
deductive_correct = df_deductive["hit"].sum()
deductive_acc = (deductive_correct / df_deductive.shape[0]) * 100
tot["deductive"] = df_deductive.shape[0]
hit["deductive"] = deductive_correct
acc["deductive"] = deductive_acc
numerical_correct = df_numerical["hit"].sum()
numerical_acc = (numerical_correct / df_numerical.shape[0]) * 100
tot["numerical"] = df_numerical.shape[0]
hit["numerical"] = numerical_correct
acc["numerical"] = numerical_acc
spatial_correct = df_spatial["hit"].sum()
spatial_acc = (spatial_correct / df_spatial.shape[0]) * 100
tot["spatial"] = df_spatial.shape[0]
hit["spatial"] = spatial_correct
acc["spatial"] = spatial_acc
mechanical_correct = df_mechanical["hit"].sum()
mechanical_acc = (mechanical_correct / df_mechanical.shape[0]) * 100
tot["mechanical"] = df_mechanical.shape[0]
hit["mechanical"] = mechanical_correct
acc["mechanical"] = mechanical_acc
# capability dimension, the official data json does not contain 'capability' column, so it is now ignored
# for i in cat:
# curr = df[df["capability"].str.contains(i.replace(" ", ""))]
# correct = curr["hit"].sum()
# accuracy = (correct / curr.shape[0]) * 100
# tot[i] = curr.shape[0]
# hit[i] = correct
# acc[i] = accuracy
res = defaultdict(list)
for k in tot.keys():
res['Task&Skill'].append(k)
res['tot'].append(tot[k])
res['hit'].append(hit[k])
res['acc'].append(acc[k])
res = pd.DataFrame(res)
return res

View File

@@ -0,0 +1,80 @@
from ...smp import *
from .multiple_choice import extract_answer_from_item
import numpy as np
import re
FAIL_MSG = 'Failed to obtain answer via API.'
DURATIONS = [15, 60, 600, 3600]
TASK_CATEGORIES = [
"S2E", "S2O", "S2A",
"E2O", "O2E", "T2E",
"T2O", "T2A", "E3E",
"O3O", "SSS", "SOS",
"SAA", "T3E", "T3O",
"TOS", "TAA"
]
def get_dimension_rating(data_path):
data = load(data_path)
print(data.iloc[0])
duration_rating = {k: {} for k in DURATIONS}
for duration in DURATIONS + ['overall']:
duration_rating[duration] = {
'overall': '',
'question_category': {k: [] for k in TASK_CATEGORIES}
}
for i in range(len(data)):
task_ctg = data.iloc[i]['question_category']
duration = data.iloc[i]['duration_group']
duration_rating[duration]['question_category'][task_ctg].append(data.iloc[i]['score'])
duration_rating['overall']['question_category'][task_ctg].append(data.iloc[i]['score'])
for duration in DURATIONS + ['overall']:
overall_res_dur = f'{np.mean([x for x in sum(duration_rating[duration]["question_category"].values(), []) if x >= 0]):.3f}' # noqa: E501
duration_rating[duration]['overall'] = overall_res_dur
for task_ctg in TASK_CATEGORIES:
task_res_dur = f'{np.mean([x for x in duration_rating[duration]["question_category"][task_ctg] if x >= 0]):.3f}' # noqa: E501
duration_rating[duration]['question_category'][task_ctg] = task_res_dur
return duration_rating
def extract_option(model, input_item, dataset_name):
options = input_item['question'].split('\n')[1:]
for id, option in enumerate(options):
option_id = chr(ord('A') + id) + '.'
if option.find(option_id) >= 0:
input_item[chr(ord('A') + id)] = option[option.find(option_id) + len(option_id):].strip('. \n')
return extract_answer_from_item(model, input_item, dataset_name)['opt']
def extract_characters_regex(s):
s = s.strip()
answer_prefixes = [
'The best answer is',
'The correct answer is',
'The answer is',
'The answer',
'The best option is'
'The correct option is',
'Best answer:'
'Best option:',
'Answer:',
'Option:',
]
for answer_prefix in answer_prefixes:
s = s.replace(answer_prefix, '')
if len(s.split()) > 10 and not re.search('[ABCDE]', s):
return ''
matches = re.search(r'[ABCDE]', s)
if matches is None:
return ''
return matches[0]

Some files were not shown because too many files have changed in this diff Show More