Update vllm example in ReadMe (#819)

* Update README.md

* Update README_zh.md
This commit is contained in:
Alphi
2025-02-08 17:52:37 +08:00
committed by GitHub
parent 06be4aa3d2
commit 47283856a3
2 changed files with 19 additions and 193 deletions

104
README.md
View File

@@ -2516,103 +2516,15 @@ See [our fork of ollama](https://github.com/OpenBMB/ollama/blob/minicpm-v2.6/exa
<details>
<summary> vLLM now officially supports MiniCPM-V 2.6, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.0. And you can use our fork to run MiniCPM-o 2.6 for now. Click to see. </summary>
1. For MiniCPM-o 2.6
1. Clone our fork of vLLM:
```shell
git clone https://github.com/OpenBMB/vllm.git
cd vllm
git checkout minicpmo
```
2. Install vLLM from source:
```shell
VLLM_USE_PRECOMPILED=1 pip install --editable .
```
3. Run MiniCPM-o 2.6 in the same way as the previous models (shown in the following example).
1. Install vLLM(>=0.7.1):
```shell
pip install vllm
```
2. For previous MiniCPM-V models
1. Install vLLM(>=0.5.4):
```shell
pip install vllm
```
2. Install timm: (optional, MiniCPM-V 2.0 need timm)
```shell
pip install timm==0.9.10
```
3. Run the example(for image):
```python
from transformers import AutoTokenizer
from PIL import Image
from vllm import LLM, SamplingParams
MODEL_NAME = "openbmb/MiniCPM-V-2_6"
# MODEL_NAME = "openbmb/MiniCPM-o-2_6"
# Also available for previous models
# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5"
# MODEL_NAME = "HwwwH/MiniCPM-V-2"
image = Image.open("xxx.png").convert("RGB")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
llm = LLM(
model=MODEL_NAME,
trust_remote_code=True,
gpu_memory_utilization=1,
max_model_len=2048
)
messages = [{
"role":
"user",
"content":
# Number of images
"(<image>./</image>)" + \
"\nWhat is the content of this image?"
}]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Single Inference
inputs = {
"prompt": prompt,
"multi_modal_data": {
"image": image
# Multi images, the number of images should be equal to that of `(<image>./</image>)`
# "image": [image, image]
},
}
# Batch Inference
# inputs = [{
# "prompt": prompt,
# "multi_modal_data": {
# "image": image
# },
# } for _ in 2]
# 2.6
stop_tokens = ['<|im_end|>', '<|endoftext|>']
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
# 2.0
# stop_token_ids = [tokenizer.eos_id]
# 2.5
# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
sampling_params = SamplingParams(
stop_token_ids=stop_token_ids,
use_beam_search=True,
temperature=0,
best_of=3,
max_tokens=1024
)
outputs = llm.generate(inputs, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
```
4. click [here](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink) if you want to use it with *video*, or get more details about `vLLM`.
</details>
2. Run Example:
* [Vision Language](https://docs.vllm.ai/en/latest/getting_started/examples/vision_language.html)
* [Audio Language](https://docs.vllm.ai/en/latest/getting_started/examples/audio_language.html)
</details>
## Fine-tuning

View File

@@ -2396,103 +2396,17 @@ llama.cpp 用法请参考[我们的fork llama.cpp](https://github.com/OpenBMB/ll
ollama 用法请参考[我们的fork ollama](https://github.com/OpenBMB/ollama/blob/minicpm-v2.6/examples/minicpm-v2.6/README.md) 在iPad上可以支持 16~18 token/s 的流畅推理测试环境iPad Pro + M4
<details>
<summary>点击查看, vLLM 现已官方支持MiniCPM-V 2.6、MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.0MiniCPM-o 2.6 模型也可以临时用我们的 fork 仓库运行</summary>
1. MiniCPM-o 2.6
1. 克隆我们的 vLLM fork 仓库:
```shell
git clone https://github.com/OpenBMB/vllm.git
cd vllm
git checkout minicpmo
```
2. 从源码进行安装:
```shell
VLLM_USE_PRECOMPILED=1 pip install --editable .
```
3. 用和之前同样的方式运行(下有样例).
2. 之前版本的 MiniCPM-V
1. 安装 vLLM(>=0.5.4):
```shell
pip install vllm
```
3. 安装 timm 库: 可选MiniCPM-V 2.0需安装)
```shell
pip install timm=0.9.10
```
4. 运行示例代码:注意如果使用本地路径的模型请确保模型代码已更新到Hugging Face上的最新版)
```python
from transformers import AutoTokenizer
from PIL import Image
from vllm import LLM, SamplingParams
MODEL_NAME = "openbmb/MiniCPM-V-2_6"
# MODEL_NAME = "openbmb/MiniCPM-o-2_6"
# Also available for previous models
# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5"
# MODEL_NAME = "HwwwH/MiniCPM-V-2"
image = Image.open("xxx.png").convert("RGB")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
llm = LLM(
model=MODEL_NAME,
trust_remote_code=True,
gpu_memory_utilization=1,
max_model_len=2048
)
messages = [{
"role":
"user",
"content":
# Number of images
"(<image>./</image>)" + \
"\nWhat is the content of this image?"
}]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Single Inference
inputs = {
"prompt": prompt,
"multi_modal_data": {
"image": image
# Multi images, the number of images should be equal to that of `(<image>./</image>)`
# "image": [image, image]
},
}
# Batch Inference
# inputs = [{
# "prompt": prompt,
# "multi_modal_data": {
# "image": image
# },
# } for _ in 2]
# 2.6
stop_tokens = ['<|im_end|>', '<|endoftext|>']
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
# 2.0
# stop_token_ids = [tokenizer.eos_id]
# 2.5
# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
sampling_params = SamplingParams(
stop_token_ids=stop_token_ids,
use_beam_search=True,
temperature=0,
best_of=3,
max_tokens=1024
)
outputs = llm.generate(inputs, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
```
4. [点击此处](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink)查看带视频推理和其他有关 `vLLM` 的信息。
<summary>点击查看, vLLM 现已官方支持MiniCPM-o 2.6、MiniCPM-V 2.6、MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.0。 </summary>
1. 安装 vLLM(>=0.7.1):
```shell
pip install vllm
```
2. 运行示例代码:注意如果使用本地路径的模型请确保模型代码已更新到Hugging Face上的最新版)
* [图文示例](https://docs.vllm.ai/en/latest/getting_started/examples/vision_language.html)
* [音频示例](https://docs.vllm.ai/en/latest/getting_started/examples/audio_language.html)
</details>