mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
update
This commit is contained in:
@@ -38,23 +38,21 @@ def main():
|
||||
args = get_args()
|
||||
|
||||
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
|
||||
|
||||
flow = cosyvoice.model.flow
|
||||
estimator = cosyvoice.model.flow.decoder.estimator
|
||||
|
||||
dtype = torch.float32 if not args.export_half else torch.float16
|
||||
device = torch.device("cuda")
|
||||
batch_size = 1
|
||||
seq_len = 1024
|
||||
hidden_size = flow.output_size
|
||||
seq_len = 256
|
||||
hidden_size = cosyvoice.model.flow.output_size
|
||||
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||||
mask = torch.zeros((batch_size, 1, seq_len), dtype=dtype, device=device)
|
||||
mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device)
|
||||
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||||
t = torch.tensor([0.], dtype=dtype, device=device)
|
||||
t = torch.rand((batch_size, ), dtype=dtype, device=device)
|
||||
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
|
||||
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||||
|
||||
onnx_file_name = 'estimator_fp16.onnx' if args.export_half else 'estimator_fp32.onnx'
|
||||
onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx'
|
||||
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
|
||||
dummy_input = (x, mask, mu, t, spks, cond)
|
||||
|
||||
@@ -90,14 +88,24 @@ def main():
|
||||
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
||||
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
||||
|
||||
trt_file_name = 'estimator_fp16.plan' if args.export_half else 'estimator_fp32.plan'
|
||||
trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
|
||||
trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
||||
|
||||
trtexec_cmd = f"{tensorrt_path}/bin/trtexec --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
||||
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
|
||||
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose"
|
||||
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose " + \
|
||||
("--fp16" if args.export_half else "")
|
||||
# /ossfs/workspace/TensorRT-10.2.0.19/bin/trtexec --onnx=estimator_fp32.onnx --saveEngine=estimator_fp32.plan --minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 --maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose
|
||||
print("execute ", trtexec_cmd)
|
||||
|
||||
os.system(trtexec_cmd)
|
||||
|
||||
print("x.shape", x.shape)
|
||||
print("mask.shape", mask.shape)
|
||||
print("mu.shape", mu.shape)
|
||||
print("t.shape", t.shape)
|
||||
print("spks.shape", spks.shape)
|
||||
print("cond.shape", cond.shape)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging
|
||||
|
||||
class CosyVoice:
|
||||
|
||||
def __init__(self, model_dir, load_jit=True, load_trt=True, use_fp16=False):
|
||||
def __init__(self, model_dir, load_jit=True, load_trt=False, use_fp16=False):
|
||||
instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
if not os.path.exists(model_dir):
|
||||
@@ -39,11 +39,14 @@ class CosyVoice:
|
||||
self.model.load('{}/llm.pt'.format(model_dir),
|
||||
'{}/flow.pt'.format(model_dir),
|
||||
'{}/hift.pt'.format(model_dir))
|
||||
load_jit = False
|
||||
if load_jit:
|
||||
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
||||
'{}/llm.llm.fp16.zip'.format(model_dir))
|
||||
|
||||
if load_trt:
|
||||
self.model.load_trt(model_dir, use_fp16)
|
||||
|
||||
del configs
|
||||
|
||||
def list_avaliable_spks(self):
|
||||
|
||||
@@ -107,7 +107,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
# concat text and prompt_text
|
||||
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
||||
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
|
||||
mask = (~make_pad_mask(token_len)).to(embedding.dtype).unsqueeze(-1).to(embedding)
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
|
||||
@@ -32,6 +32,7 @@ class ConditionalCFM(BASECFM):
|
||||
|
||||
self.estimator_context = None
|
||||
self.estimator_engine = None
|
||||
self.is_saved = None
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
||||
@@ -123,6 +124,41 @@ class ConditionalCFM(BASECFM):
|
||||
self.estimator_context.execute_async_v3(stream_handle=handle)
|
||||
return ret
|
||||
else:
|
||||
|
||||
if self.is_saved == None:
|
||||
self.is_saved = True
|
||||
output = self.estimator.forward(x, mask, mu, t, spks, cond)
|
||||
torch.save(x, "x.pt")
|
||||
torch.save(mask, "mask.pt")
|
||||
torch.save(mu, "mu.pt")
|
||||
torch.save(t, "t.pt")
|
||||
torch.save(spks, "spks.pt")
|
||||
torch.save(cond, "cond.pt")
|
||||
torch.save(output, "output.pt")
|
||||
dummy_input = (x, mask, mu, t, spks, cond)
|
||||
torch.onnx.export(
|
||||
self.estimator,
|
||||
dummy_input,
|
||||
"estimator_fp32.onnx",
|
||||
export_params=True,
|
||||
opset_version=17,
|
||||
do_constant_folding=True,
|
||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||
output_names=['output'],
|
||||
dynamic_axes={
|
||||
'x': {2: 'seq_len'},
|
||||
'mask': {2: 'seq_len'},
|
||||
'mu': {2: 'seq_len'},
|
||||
'cond': {2: 'seq_len'},
|
||||
'output': {2: 'seq_len'},
|
||||
}
|
||||
)
|
||||
# print("x, x.shape", x, x.shape)
|
||||
# print("mask, mask.shape", mask, mask.shape)
|
||||
# print("mu, mu.shape", mu, mu.shape)
|
||||
# print("t, t.shape", t, t.shape)
|
||||
# print("spks, spks.shape", spks, spks.shape)
|
||||
# print("cond, cond.shape", cond, cond.shape)
|
||||
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
||||
|
||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
||||
|
||||
Reference in New Issue
Block a user