mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
112 lines
4.4 KiB
Python
112 lines
4.4 KiB
Python
import argparse
|
||
import logging
|
||
import os
|
||
import sys
|
||
|
||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||
|
||
try:
|
||
import tensorrt
|
||
except ImportError:
|
||
error_msg_zh = [
|
||
"step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
|
||
"step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
|
||
"step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=${TensorRT-Path}/lib/"
|
||
]
|
||
print("\n".join(error_msg_zh))
|
||
sys.exit(1)
|
||
|
||
import torch
|
||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||
|
||
def get_args():
|
||
parser = argparse.ArgumentParser(description='Export your model for deployment')
|
||
parser.add_argument('--model_dir',
|
||
type=str,
|
||
default='pretrained_models/CosyVoice-300M',
|
||
help='Local path to the model directory')
|
||
|
||
parser.add_argument('--export_half',
|
||
action='store_true',
|
||
help='Export with half precision (FP16)')
|
||
|
||
args = parser.parse_args()
|
||
print(args)
|
||
return args
|
||
|
||
def main():
|
||
args = get_args()
|
||
|
||
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
|
||
estimator = cosyvoice.model.flow.decoder.estimator
|
||
|
||
dtype = torch.float32 if not args.export_half else torch.float16
|
||
device = torch.device("cuda")
|
||
batch_size = 1
|
||
seq_len = 256
|
||
hidden_size = cosyvoice.model.flow.output_size
|
||
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||
mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device)
|
||
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||
t = torch.rand((batch_size, ), dtype=dtype, device=device)
|
||
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
|
||
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||
|
||
onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx'
|
||
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
|
||
dummy_input = (x, mask, mu, t, spks, cond)
|
||
|
||
estimator = estimator.to(dtype)
|
||
|
||
torch.onnx.export(
|
||
estimator,
|
||
dummy_input,
|
||
onnx_file_path,
|
||
export_params=True,
|
||
opset_version=18,
|
||
do_constant_folding=True,
|
||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||
output_names=['output'],
|
||
dynamic_axes={
|
||
'x': {2: 'seq_len'},
|
||
'mask': {2: 'seq_len'},
|
||
'mu': {2: 'seq_len'},
|
||
'cond': {2: 'seq_len'},
|
||
'output': {2: 'seq_len'},
|
||
}
|
||
)
|
||
|
||
tensorrt_path = os.environ.get('tensorrt_root_dir')
|
||
if not tensorrt_path:
|
||
raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
|
||
|
||
if not os.path.isdir(tensorrt_path):
|
||
raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
|
||
|
||
trt_lib_path = os.path.join(tensorrt_path, "lib")
|
||
if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
|
||
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
||
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
||
|
||
trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
|
||
trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
||
|
||
trtexec_cmd = f"{tensorrt_path}/bin/trtexec --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
||
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
|
||
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose " + \
|
||
("--fp16" if args.export_half else "")
|
||
# /ossfs/workspace/TensorRT-10.2.0.19/bin/trtexec --onnx=estimator_fp32.onnx --saveEngine=estimator_fp32.plan --minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 --maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose
|
||
print("execute ", trtexec_cmd)
|
||
|
||
os.system(trtexec_cmd)
|
||
|
||
print("x.shape", x.shape)
|
||
print("mask.shape", mask.shape)
|
||
print("mu.shape", mu.shape)
|
||
print("t.shape", t.shape)
|
||
print("spks.shape", spks.shape)
|
||
print("cond.shape", cond.shape)
|
||
|
||
if __name__ == "__main__":
|
||
main()
|