Files
silero-vad/README.md
Alexander Veysov dbf3adf060 Update README.md
2020-11-23 13:42:52 +03:00

158 lines
6.9 KiB
Markdown

[![Mailing list : test](http://img.shields.io/badge/Email-gray.svg?style=for-the-badge&logo=gmail)](mailto:hello@silero.ai) [![Mailing list : test](http://img.shields.io/badge/Telegram-blue.svg?style=for-the-badge&logo=telegram)](https://t.me/joinchat/Bv9tjhpdXTI22OUgpOIIDg) [![License: CC BY-NC 4.0](https://img.shields.io/badge/License-MIT-lightgrey.svg?style=for-the-badge)](https://github.com/snakers4/silero-models/blob/master/LICENSE)
[![Open on Torch Hub](https://img.shields.io/badge/Torch-Hub-red?logo=pytorch&style=for-the-badge)](https://pytorch.org/hub/snakers4_silero-models_stt/) [![Open on TF Hub](https://img.shields.io/badge/TF-Hub-yellow?logo=tensorflow&style=for-the-badge)](https://tfhub.dev/silero/collections/silero-stt/1)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb)
![header)](https://user-images.githubusercontent.com/12515440/89997349-b3523080-dc94-11ea-9906-ca2e8bc50535.png)
- [Silero VAD](#silero-vad)
- [Getting Started](#getting-started)
- [PyTorch](#pytorch)
- [ONNX](#onnx)
- [Metrics](#metrics)
- [Performance Metrics](#performance-metrics)
- [Quality Metrics](#quality-metrics)
- [Contact](#contact)
- [Get in Touch](#get-in-touch)
- [Commercial Inquiries](#commercial-inquiries)
# Silero VAD
`Single Image Why our VAD is better than WebRTC`
Silero VAD: pre-trained enterprise-grade Voice Activity and Number Detector.
Enterprise-grade Speech Products made refreshingly simple (all see our [STT](https://github.com/snakers4/silero-models)).
Currently, there are hardly any high quality / modern / free / public voice activity detectors except for WebRTC Voice Activity Detector ([link](https://github.com/wiseman/py-webrtcvad)).
Also in enterprise it is crucial to be able to anonymize large-scale spoken corpora (i.e. remove personal data). Typically personal data is considered to be private / sensitive if it contains (i) a name (ii) some private ID. Name recognition is highly subjective and would depend on location, but Voice Activity and Number detections are quite general tasks.
**Key advantages:**
- Modern, portable;
- Small memory footprint (?);
- Trained on huge spoken corpora and noise / sound libraries;
- Slower than WebRTC, but sufficiently fast for IOT / edge / mobile applications;
- Superior metrics to WebRTC;
**Typical use cases:**
- Spoken corpora anonymization;
- Voice detection for IOT / edge / mobile use cases;
- Data cleaning and preparation, number and voice detection in general;
Key features / differences:
## Getting Started
All of the provided models are listed in the [models.yml](https://github.com/snakers4/silero-models/blob/master/models.yml) file.
Any meta-data and newer versions will be added there.
Currently we provide the following checkpoints:
| | PyTorch | ONNX | Quantization | Languages | Colab |
|-----------------|--------------------|--------------------|--------------|---------|-------|
| VAD v1 (vad_v1) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | `ru`, `en`, `de`, `es` | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb) |
### PyTorch
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb)
[![Open on Torch Hub](https://img.shields.io/badge/Torch-Hub-red?logo=pytorch&style=for-the-badge)](https://pytorch.org/hub/snakers4_silero-models_stt/)
```python
import torch
import zipfile
import torchaudio
from glob import glob
device = torch.device('cpu') # gpu also works, but our models are fast enough for CPU
model, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models',
model='silero_stt',
language='en', # also available 'de', 'es'
device=device)
(read_batch, split_into_batches,
read_audio, prepare_model_input) = utils # see function signature for details
# download a single file, any format compatible with TorchAudio (soundfile backend)
torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav',
dst ='speech_orig.wav', progress=True)
test_files = glob('speech_orig.wav')
batches = split_into_batches(test_files, batch_size=10)
input = prepare_model_input(read_batch(batches[0]),
device=device)
output = model(input)
for example in output:
print(decoder(example.cpu()))
```
### ONNX
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb)
You can run our model everywhere, where you can import the ONNX model or run ONNX runtime.
```python
import onnx
import torch
import onnxruntime
from omegaconf import OmegaConf
language = 'en' # also available 'de', 'es'
# load provided utils
_, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_stt', language=language)
(read_batch, split_into_batches,
read_audio, prepare_model_input) = utils
# see available models
torch.hub.download_url_to_file('https://raw.githubusercontent.com/snakers4/silero-models/master/models.yml', 'models.yml')
models = OmegaConf.load('models.yml')
available_languages = list(models.stt_models.keys())
assert language in available_languages
# load the actual ONNX model
torch.hub.download_url_to_file(models.stt_models.en.latest.onnx, 'model.onnx', progress=True)
onnx_model = onnx.load('model.onnx')
onnx.checker.check_model(onnx_model)
ort_session = onnxruntime.InferenceSession('model.onnx')
# download a single file, any format compatible with TorchAudio (soundfile backend)
torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav', dst ='speech_orig.wav', progress=True)
test_files = ['speech_orig.wav']
batches = split_into_batches(test_files, batch_size=10)
input = prepare_model_input(read_batch(batches[0]))
# actual onnx inference and decoding
onnx_input = input.detach().cpu().numpy()
ort_inputs = {'input': onnx_input}
ort_outs = ort_session.run(None, ort_inputs)
decoded = decoder(torch.Tensor(ort_outs[0])[0])
print(decoded)
```
## Metrics
### Performance Metrics
Speed metrics here.
### Quality Metrics
Quality metrics here.
## Contact
### Get in Touch
Try our models, create an [issue](https://github.com/snakers4/silero-models/issues/new), join our [chat](https://t.me/joinchat/Bv9tjhpdXTI22OUgpOIIDg), [email](mailto:hello@silero.ai) us.
### Commercial Inquiries
Please see our [wiki](https://github.com/snakers4/silero-models/wiki) and [tiers](https://github.com/snakers4/silero-models/wiki/Licensing-and-Tiers) for relevant information and [email](mailto:hello@silero.ai) us.