[![Mailing list : test](http://img.shields.io/badge/Email-gray.svg?style=for-the-badge&logo=gmail)](mailto:hello@silero.ai) [![Mailing list : test](http://img.shields.io/badge/Telegram-blue.svg?style=for-the-badge&logo=telegram)](https://t.me/joinchat/Bv9tjhpdXTI22OUgpOIIDg) [![License: CC BY-NC 4.0](https://img.shields.io/badge/License-MIT-lightgrey.svg?style=for-the-badge)](https://github.com/snakers4/silero-models/blob/master/LICENSE) [![Open on Torch Hub](https://img.shields.io/badge/Torch-Hub-red?logo=pytorch&style=for-the-badge)](https://pytorch.org/hub/snakers4_silero-models_stt/) [![Open on TF Hub](https://img.shields.io/badge/TF-Hub-yellow?logo=tensorflow&style=for-the-badge)](https://tfhub.dev/silero/collections/silero-stt/1) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb) ![header)](https://user-images.githubusercontent.com/12515440/89997349-b3523080-dc94-11ea-9906-ca2e8bc50535.png) - [Silero VAD](#silero-vad) - [Getting Started](#getting-started) - [PyTorch](#pytorch) - [ONNX](#onnx) - [Metrics](#metrics) - [Performance Metrics](#performance-metrics) - [Quality Metrics](#quality-metrics) - [Contact](#contact) - [Get in Touch](#get-in-touch) - [Commercial Inquiries](#commercial-inquiries) # Silero VAD `Single Image Why our VAD is better than WebRTC` Silero VAD: pre-trained enterprise-grade Voice Activity and Number Detector. Enterprise-grade Speech Products made refreshingly simple (all see our [STT](https://github.com/snakers4/silero-models)). Currently, there are hardly any high quality / modern / free / public voice activity detectors except for WebRTC Voice Activity Detector ([link](https://github.com/wiseman/py-webrtcvad)). Also in enterprise it is crucial to be able to anonymize large-scale spoken corpora (i.e. remove personal data). Typically personal data is considered to be private / sensitive if it contains (i) a name (ii) some private ID. Name recognition is highly subjective and would depend on location, but Voice Activity and Number detections are quite general tasks. **Key advantages:** - Modern, portable; - Small memory footprint (?); - Trained on huge spoken corpora and noise / sound libraries; - Slower than WebRTC, but sufficiently fast for IOT / edge / mobile applications; - Superior metrics to WebRTC; **Typical use cases:** - Spoken corpora anonymization; - Voice detection for IOT / edge / mobile use cases; - Data cleaning and preparation, number and voice detection in general; Key features / differences: ## Getting Started All of the provided models are listed in the [models.yml](https://github.com/snakers4/silero-models/blob/master/models.yml) file. Any meta-data and newer versions will be added there. Currently we provide the following checkpoints: | | PyTorch | ONNX | Quantization | Languages | Colab | |-----------------|--------------------|--------------------|--------------|---------|-------| | VAD v1 (vad_v1) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | `ru`, `en`, `de`, `es` | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb) | ### PyTorch [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb) [![Open on Torch Hub](https://img.shields.io/badge/Torch-Hub-red?logo=pytorch&style=for-the-badge)](https://pytorch.org/hub/snakers4_silero-models_stt/) ```python import torch import zipfile import torchaudio from glob import glob device = torch.device('cpu') # gpu also works, but our models are fast enough for CPU model, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_stt', language='en', # also available 'de', 'es' device=device) (read_batch, split_into_batches, read_audio, prepare_model_input) = utils # see function signature for details # download a single file, any format compatible with TorchAudio (soundfile backend) torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav', dst ='speech_orig.wav', progress=True) test_files = glob('speech_orig.wav') batches = split_into_batches(test_files, batch_size=10) input = prepare_model_input(read_batch(batches[0]), device=device) output = model(input) for example in output: print(decoder(example.cpu())) ``` ### ONNX [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb) You can run our model everywhere, where you can import the ONNX model or run ONNX runtime. ```python import onnx import torch import onnxruntime from omegaconf import OmegaConf language = 'en' # also available 'de', 'es' # load provided utils _, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_stt', language=language) (read_batch, split_into_batches, read_audio, prepare_model_input) = utils # see available models torch.hub.download_url_to_file('https://raw.githubusercontent.com/snakers4/silero-models/master/models.yml', 'models.yml') models = OmegaConf.load('models.yml') available_languages = list(models.stt_models.keys()) assert language in available_languages # load the actual ONNX model torch.hub.download_url_to_file(models.stt_models.en.latest.onnx, 'model.onnx', progress=True) onnx_model = onnx.load('model.onnx') onnx.checker.check_model(onnx_model) ort_session = onnxruntime.InferenceSession('model.onnx') # download a single file, any format compatible with TorchAudio (soundfile backend) torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav', dst ='speech_orig.wav', progress=True) test_files = ['speech_orig.wav'] batches = split_into_batches(test_files, batch_size=10) input = prepare_model_input(read_batch(batches[0])) # actual onnx inference and decoding onnx_input = input.detach().cpu().numpy() ort_inputs = {'input': onnx_input} ort_outs = ort_session.run(None, ort_inputs) decoded = decoder(torch.Tensor(ort_outs[0])[0]) print(decoded) ``` ## Metrics ### Performance Metrics Speed metrics here. ### Quality Metrics Quality metrics here. ## Contact ### Get in Touch Try our models, create an [issue](https://github.com/snakers4/silero-models/issues/new), join our [chat](https://t.me/joinchat/Bv9tjhpdXTI22OUgpOIIDg), [email](mailto:hello@silero.ai) us. ### Commercial Inquiries Please see our [wiki](https://github.com/snakers4/silero-models/wiki) and [tiers](https://github.com/snakers4/silero-models/wiki/Licensing-and-Tiers) for relevant information and [email](mailto:hello@silero.ai) us.