mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-04 17:39:22 +08:00
Merge pull request #664 from shashank14k/master
Adding additional params to get_speech_timestamps
This commit is contained in:
@@ -201,7 +201,10 @@ def get_speech_timestamps(audio: torch.Tensor,
|
||||
visualize_probs: bool = False,
|
||||
progress_tracking_callback: Callable[[float], None] = None,
|
||||
neg_threshold: float = None,
|
||||
window_size_samples: int = 512,):
|
||||
window_size_samples: int = 512,
|
||||
hop_size_ratio: float = 1,
|
||||
min_silence_at_max_speech: float = 98,
|
||||
use_max_poss_sil_at_max_speech: bool = True):
|
||||
|
||||
"""
|
||||
This method is used for splitting long audios into speech chunks using silero VAD
|
||||
@@ -251,13 +254,16 @@ def get_speech_timestamps(audio: torch.Tensor,
|
||||
|
||||
window_size_samples: int (default - 512 samples)
|
||||
!!! DEPRECATED, DOES NOTHING !!!
|
||||
|
||||
hop_size_ratio: float (default - 1), number of samples by which the window is shifted, 1 means hop_size_samples = window_size_samples
|
||||
min_silence_at_max_speech: float (default - 25ms), minimum silence duration in ms which is used to avoid abrupt cuts when max_speech_duration_s is reached
|
||||
use_max_poss_sil_at_max_speech: bool (default - True), whether to use the maximum possible silence at max_speech_duration_s or not. If not, the last silence is used.
|
||||
|
||||
Returns
|
||||
----------
|
||||
speeches: list of dicts
|
||||
list containing ends and beginnings of speech chunks (samples or seconds based on return_seconds)
|
||||
"""
|
||||
|
||||
if not torch.is_tensor(audio):
|
||||
try:
|
||||
audio = torch.Tensor(audio)
|
||||
@@ -282,25 +288,29 @@ def get_speech_timestamps(audio: torch.Tensor,
|
||||
raise ValueError("Currently silero VAD models support 8000 and 16000 (or multiply of 16000) sample rates")
|
||||
|
||||
window_size_samples = 512 if sampling_rate == 16000 else 256
|
||||
hop_size_samples = int(window_size_samples * hop_size_ratio)
|
||||
|
||||
model.reset_states()
|
||||
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
||||
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
||||
max_speech_samples = sampling_rate * max_speech_duration_s - window_size_samples - 2 * speech_pad_samples
|
||||
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
||||
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
|
||||
min_silence_samples_at_max_speech = sampling_rate * min_silence_at_max_speech / 1000
|
||||
|
||||
audio_length_samples = len(audio)
|
||||
|
||||
speech_probs = []
|
||||
for current_start_sample in range(0, audio_length_samples, window_size_samples):
|
||||
for current_start_sample in range(0, audio_length_samples, hop_size_samples):
|
||||
chunk = audio[current_start_sample: current_start_sample + window_size_samples]
|
||||
if len(chunk) < window_size_samples:
|
||||
chunk = torch.nn.functional.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
||||
speech_prob = model(chunk, sampling_rate).item()
|
||||
try:
|
||||
speech_prob = model(chunk, sampling_rate).item()
|
||||
except Exception as e:
|
||||
import ipdb; ipdb.set_trace()
|
||||
speech_probs.append(speech_prob)
|
||||
# caculate progress and seng it to callback function
|
||||
progress = current_start_sample + window_size_samples
|
||||
progress = current_start_sample + hop_size_samples
|
||||
if progress > audio_length_samples:
|
||||
progress = audio_length_samples
|
||||
progress_percent = (progress / audio_length_samples) * 100
|
||||
@@ -315,42 +325,56 @@ def get_speech_timestamps(audio: torch.Tensor,
|
||||
neg_threshold = max(threshold - 0.15, 0.01)
|
||||
temp_end = 0 # to save potential segment end (and tolerate some silence)
|
||||
prev_end = next_start = 0 # to save potential segment limits in case of maximum segment size reached
|
||||
|
||||
possible_ends = []
|
||||
|
||||
for i, speech_prob in enumerate(speech_probs):
|
||||
if (speech_prob >= threshold) and temp_end:
|
||||
temp_end = 0
|
||||
if temp_end != 0:
|
||||
sil_dur = (hop_size_samples * i) - temp_end
|
||||
if sil_dur > min_silence_samples_at_max_speech:
|
||||
possible_ends.append((temp_end, sil_dur))
|
||||
temp_end = 0
|
||||
if next_start < prev_end:
|
||||
next_start = window_size_samples * i
|
||||
next_start = hop_size_samples * i
|
||||
|
||||
if (speech_prob >= threshold) and not triggered:
|
||||
triggered = True
|
||||
current_speech['start'] = window_size_samples * i
|
||||
current_speech['start'] = hop_size_samples * i
|
||||
continue
|
||||
|
||||
if triggered and (window_size_samples * i) - current_speech['start'] > max_speech_samples:
|
||||
if prev_end:
|
||||
if triggered and (hop_size_samples * i) - current_speech['start'] > max_speech_samples:
|
||||
if possible_ends:
|
||||
if use_max_poss_sil_at_max_speech:
|
||||
prev_end, dur = max(possible_ends, key=lambda x: x[1]) # use the longest possible silence segment in the current speech chunk
|
||||
else:
|
||||
prev_end, dur = possible_ends[-1] # use the last possible silence segement
|
||||
current_speech['end'] = prev_end
|
||||
speeches.append(current_speech)
|
||||
current_speech = {}
|
||||
if next_start < prev_end: # previously reached silence (< neg_thres) and is still not speech (< thres)
|
||||
triggered = False
|
||||
else:
|
||||
next_start = prev_end + dur
|
||||
if next_start < prev_end + hop_size_samples * i: # previously reached silence (< neg_thres) and is still not speech (< thres)
|
||||
#triggered = False
|
||||
current_speech['start'] = next_start
|
||||
else:
|
||||
triggered = False
|
||||
#current_speech['start'] = next_start
|
||||
prev_end = next_start = temp_end = 0
|
||||
possible_ends = []
|
||||
else:
|
||||
current_speech['end'] = window_size_samples * i
|
||||
current_speech['end'] = hop_size_samples * i
|
||||
speeches.append(current_speech)
|
||||
current_speech = {}
|
||||
prev_end = next_start = temp_end = 0
|
||||
triggered = False
|
||||
possible_ends = []
|
||||
continue
|
||||
|
||||
if (speech_prob < neg_threshold) and triggered:
|
||||
if not temp_end:
|
||||
temp_end = window_size_samples * i
|
||||
if ((window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech: # condition to avoid cutting in very short silence
|
||||
prev_end = temp_end
|
||||
if (window_size_samples * i) - temp_end < min_silence_samples:
|
||||
temp_end = hop_size_samples * i
|
||||
# if ((hop_size_samples * i) - temp_end) > min_silence_samples_at_max_speech: # condition to avoid cutting in very short silence
|
||||
# prev_end = temp_end
|
||||
if (hop_size_samples * i) - temp_end < min_silence_samples:
|
||||
continue
|
||||
else:
|
||||
current_speech['end'] = temp_end
|
||||
@@ -359,6 +383,7 @@ def get_speech_timestamps(audio: torch.Tensor,
|
||||
current_speech = {}
|
||||
prev_end = next_start = temp_end = 0
|
||||
triggered = False
|
||||
possible_ends = []
|
||||
continue
|
||||
|
||||
if current_speech and (audio_length_samples - current_speech['start']) > min_speech_samples:
|
||||
@@ -390,7 +415,7 @@ def get_speech_timestamps(audio: torch.Tensor,
|
||||
speech_dict['end'] *= step
|
||||
|
||||
if visualize_probs:
|
||||
make_visualization(speech_probs, window_size_samples / sampling_rate)
|
||||
make_visualization(speech_probs, hop_size_samples / sampling_rate)
|
||||
|
||||
return speeches
|
||||
|
||||
|
||||
Reference in New Issue
Block a user