Added params for hop_size, and min_silence_at_max speech to cut at a possible silence when max_dur reached to avoid abrupt cuts

This commit is contained in:
shashank14k
2025-07-25 20:51:40 +05:30
parent 94811cbe12
commit bbf22a0064

View File

@@ -201,7 +201,10 @@ def get_speech_timestamps(audio: torch.Tensor,
visualize_probs: bool = False,
progress_tracking_callback: Callable[[float], None] = None,
neg_threshold: float = None,
window_size_samples: int = 512,):
window_size_samples: int = 512,
hop_size_ratio: float = 1,
min_silence_at_max_speech: float = 98,
use_max_poss_sil_at_max_speech: bool = True):
"""
This method is used for splitting long audios into speech chunks using silero VAD
@@ -251,13 +254,16 @@ def get_speech_timestamps(audio: torch.Tensor,
window_size_samples: int (default - 512 samples)
!!! DEPRECATED, DOES NOTHING !!!
hop_size_ratio: float (default - 1), number of samples by which the window is shifted, 1 means hop_size_samples = window_size_samples
min_silence_at_max_speech: float (default - 25ms), minimum silence duration in ms which is used to avoid abrupt cuts when max_speech_duration_s is reached
use_max_poss_sil_at_max_speech: bool (default - True), whether to use the maximum possible silence at max_speech_duration_s or not. If not, the last silence is used.
Returns
----------
speeches: list of dicts
list containing ends and beginnings of speech chunks (samples or seconds based on return_seconds)
"""
if not torch.is_tensor(audio):
try:
audio = torch.Tensor(audio)
@@ -282,25 +288,29 @@ def get_speech_timestamps(audio: torch.Tensor,
raise ValueError("Currently silero VAD models support 8000 and 16000 (or multiply of 16000) sample rates")
window_size_samples = 512 if sampling_rate == 16000 else 256
hop_size_samples = int(window_size_samples * hop_size_ratio)
model.reset_states()
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
max_speech_samples = sampling_rate * max_speech_duration_s - window_size_samples - 2 * speech_pad_samples
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
min_silence_samples_at_max_speech = sampling_rate * min_silence_at_max_speech / 1000
audio_length_samples = len(audio)
speech_probs = []
for current_start_sample in range(0, audio_length_samples, window_size_samples):
for current_start_sample in range(0, audio_length_samples, hop_size_samples):
chunk = audio[current_start_sample: current_start_sample + window_size_samples]
if len(chunk) < window_size_samples:
chunk = torch.nn.functional.pad(chunk, (0, int(window_size_samples - len(chunk))))
speech_prob = model(chunk, sampling_rate).item()
try:
speech_prob = model(chunk, sampling_rate).item()
except Exception as e:
import ipdb; ipdb.set_trace()
speech_probs.append(speech_prob)
# caculate progress and seng it to callback function
progress = current_start_sample + window_size_samples
progress = current_start_sample + hop_size_samples
if progress > audio_length_samples:
progress = audio_length_samples
progress_percent = (progress / audio_length_samples) * 100
@@ -315,42 +325,56 @@ def get_speech_timestamps(audio: torch.Tensor,
neg_threshold = max(threshold - 0.15, 0.01)
temp_end = 0 # to save potential segment end (and tolerate some silence)
prev_end = next_start = 0 # to save potential segment limits in case of maximum segment size reached
possible_ends = []
for i, speech_prob in enumerate(speech_probs):
if (speech_prob >= threshold) and temp_end:
temp_end = 0
if temp_end != 0:
sil_dur = (hop_size_samples * i) - temp_end
if sil_dur > min_silence_samples_at_max_speech:
possible_ends.append((temp_end, sil_dur))
temp_end = 0
if next_start < prev_end:
next_start = window_size_samples * i
next_start = hop_size_samples * i
if (speech_prob >= threshold) and not triggered:
triggered = True
current_speech['start'] = window_size_samples * i
current_speech['start'] = hop_size_samples * i
continue
if triggered and (window_size_samples * i) - current_speech['start'] > max_speech_samples:
if prev_end:
if triggered and (hop_size_samples * i) - current_speech['start'] > max_speech_samples:
if possible_ends:
if use_max_poss_sil_at_max_speech:
prev_end, dur = max(possible_ends, key=lambda x: x[1]) # use the longest possible silence segment in the current speech chunk
else:
prev_end, dur = possible_ends[-1] # use the last possible silence segement
current_speech['end'] = prev_end
speeches.append(current_speech)
current_speech = {}
if next_start < prev_end: # previously reached silence (< neg_thres) and is still not speech (< thres)
triggered = False
else:
next_start = prev_end + dur
if next_start < prev_end + hop_size_samples * i: # previously reached silence (< neg_thres) and is still not speech (< thres)
#triggered = False
current_speech['start'] = next_start
else:
triggered = False
#current_speech['start'] = next_start
prev_end = next_start = temp_end = 0
possible_ends = []
else:
current_speech['end'] = window_size_samples * i
current_speech['end'] = hop_size_samples * i
speeches.append(current_speech)
current_speech = {}
prev_end = next_start = temp_end = 0
triggered = False
possible_ends = []
continue
if (speech_prob < neg_threshold) and triggered:
if not temp_end:
temp_end = window_size_samples * i
if ((window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech: # condition to avoid cutting in very short silence
prev_end = temp_end
if (window_size_samples * i) - temp_end < min_silence_samples:
temp_end = hop_size_samples * i
# if ((hop_size_samples * i) - temp_end) > min_silence_samples_at_max_speech: # condition to avoid cutting in very short silence
# prev_end = temp_end
if (hop_size_samples * i) - temp_end < min_silence_samples:
continue
else:
current_speech['end'] = temp_end
@@ -359,6 +383,7 @@ def get_speech_timestamps(audio: torch.Tensor,
current_speech = {}
prev_end = next_start = temp_end = 0
triggered = False
possible_ends = []
continue
if current_speech and (audio_length_samples - current_speech['start']) > min_speech_samples:
@@ -390,7 +415,7 @@ def get_speech_timestamps(audio: torch.Tensor,
speech_dict['end'] *= step
if visualize_probs:
make_visualization(speech_probs, window_size_samples / sampling_rate)
make_visualization(speech_probs, hop_size_samples / sampling_rate)
return speeches