mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 09:49:20 +08:00
135 lines
5.6 KiB
Markdown
135 lines
5.6 KiB
Markdown
## SWIFT install
|
||
You can quickly install SWIFT using bash commands.
|
||
|
||
``` bash
|
||
git clone https://github.com/modelscope/swift.git
|
||
cd swift
|
||
pip install -r requirements.txt
|
||
pip install -e '.[llm]'
|
||
```
|
||
|
||
## SWIFT Infer
|
||
Inference using SWIFT can be carried out in two ways: through a command line interface and via Python code.
|
||
|
||
### Quick start
|
||
Here are the steps to launch SWIFT from the Bash command line:
|
||
|
||
1. Run the bash code will download the model of MiniCPM-Llama3-V-2_5 and run the inference
|
||
``` shell
|
||
CUDA_VISIBLE_DEVICES=0 swift infer --model_type minicpm-v-v2_5-chat
|
||
```
|
||
|
||
2. You can also run the code with more arguments below to run the inference:
|
||
```
|
||
model_id_or_path # Can be the model ID from Hugging Face or the local path to the model
|
||
infer_backend ['AUTO', 'vllm', 'pt'] # Backend for inference, default is auto
|
||
dtype ['bf16', 'fp16', 'fp32', 'AUTO'] # Computational precision
|
||
max_length # Maximum length
|
||
max_new_tokens: int = 2048 # Maximum number of tokens to generate
|
||
do_sample: bool = True # Whether to sample during generation
|
||
temperature: float = 0.3 # Temperature coefficient during generation
|
||
top_k: int = 20
|
||
top_p: float = 0.7
|
||
repetition_penalty: float = 1. # Penalty for repetition
|
||
num_beams: int = 1 # Number of beams for beam search
|
||
stop_words: List[str] = None # List of stop words
|
||
quant_method ['bnb', 'hqq', 'eetq', 'awq', 'gptq', 'aqlm'] # Quantization method for the model
|
||
quantization_bit [0, 1, 2, 3, 4, 8] # Default is 0, which means no quantization is used
|
||
```
|
||
3. Example:
|
||
``` shell
|
||
CUDA_VISIBLE_DEVICES=0,1 swift infer \
|
||
--model_type minicpm-v-v2_5-chat \
|
||
--model_id_or_path /root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5 \
|
||
--dtype bf16
|
||
```
|
||
### Python code with SWIFT infer
|
||
The following demonstrates using Python code to initiate inference with the MiniCPM-Llama3-V-2_5 model through SWIFT.
|
||
|
||
```python
|
||
import os
|
||
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # Set the number of GPUs to use
|
||
|
||
from swift.llm import (
|
||
get_model_tokenizer, get_template, inference, ModelType,
|
||
get_default_template_type, inference_stream
|
||
) # Import necessary modules
|
||
|
||
from swift.utils import seed_everything # Set random seed
|
||
import torch
|
||
|
||
model_type = ModelType.minicpm_v_v2_5_chat
|
||
template_type = get_default_template_type(model_type) # Obtain the template type, primarily used for constructing special tokens and image processing workflow
|
||
print(f'template_type: {template_type}')
|
||
|
||
model, tokenizer = get_model_tokenizer(model_type, torch.bfloat16,
|
||
model_id_or_path='/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5',
|
||
model_kwargs={'device_map': 'auto'}) # Load the model, set model type, model path, model parameters, device allocation, etc., computation precision, etc.
|
||
model.generation_config.max_new_tokens = 256
|
||
template = get_template(template_type, tokenizer) # Construct the template based on the template type
|
||
seed_everything(42)
|
||
|
||
images = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/road.png'] # Image URL
|
||
query = '距离各城市多远?' # Note: Query is still in Chinese, consider translating if needed
|
||
response, history = inference(model, template, query, images=images) # Obtain results through inference
|
||
print(f'query: {query}')
|
||
print(f'response: {response}')
|
||
|
||
# Streaming output
|
||
query = '距离最远的城市是哪?' # Note: Query is still in Chinese, consider translating if needed
|
||
gen = inference_stream(model, template, query, history, images=images) # Call the streaming output interface
|
||
print_idx = 0
|
||
print(f'query: {query}\nresponse: ', end='')
|
||
for response, history in gen:
|
||
delta = response[print_idx:]
|
||
print(delta, end='', flush=True)
|
||
print_idx = len(response)
|
||
print()
|
||
print(f'history: {history}')
|
||
```
|
||
|
||
## SWIFT train
|
||
SWIFT supports training on the local dataset,the training steps are as follows:
|
||
1. Make the train data like this:
|
||
```jsonl
|
||
{"query": "What does this picture describe?", "response": "This picture has a giant panda.", "images": ["local_image_path"]}
|
||
{"query": "What does this picture describe?", "response": "This picture has a giant panda.", "history": [], "images": ["image_path"]}
|
||
{"query": "Is bamboo tasty?", "response": "It seems pretty tasty judging by the panda's expression.", "history": [["What's in this picture?", "There's a giant panda in this picture."], ["What is the panda doing?", "Eating bamboo."]], "images": ["image_url"]}
|
||
```
|
||
2. LoRA Tuning:
|
||
|
||
The LoRA target model are k and v weight in LLM you should pay attention to the eval_steps,maybe you should set the eval_steps to a large value, like 200000,beacuase in the eval time , SWIFT will return a memory bug so you should set the eval_steps to a very large value.
|
||
```shell
|
||
# Experimental environment: A100
|
||
# 32GB GPU memory
|
||
CUDA_VISIBLE_DEVICES=0 swift sft \
|
||
--model_type minicpm-v-v2_5-chat \
|
||
--dataset coco-en-2-mini \
|
||
```
|
||
3. All parameters finetune:
|
||
|
||
When the argument of lora_target_modules is ALL, the model will finetune all the parameters.
|
||
```shell
|
||
CUDA_VISIBLE_DEVICES=0,1 swift sft \
|
||
--model_type minicpm-v-v2_5-chat \
|
||
--dataset coco-en-2-mini \
|
||
--lora_target_modules ALL \
|
||
--eval_steps 200000
|
||
```
|
||
|
||
## LoRA Merge and Infer
|
||
The LoRA weight can be merge to the base model and then load to infer.
|
||
|
||
1. Load the LoRA weight to infer run the follow code:
|
||
```shell
|
||
CUDA_VISIBLE_DEVICES=0 swift infer \
|
||
--ckpt_dir /your/lora/save/checkpoint
|
||
```
|
||
2. Merge the LoRA weight to the base model:
|
||
|
||
The code will load and merge the LoRA weight to the base model, save the merge model to the LoRA save path and load the merge model to infer
|
||
```shell
|
||
CUDA_VISIBLE_DEVICES=0 swift infer \
|
||
--ckpt_dir your/lora/save/checkpoint \
|
||
--merge_lora true
|
||
``` |