mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 09:49:20 +08:00
将注释修改成了中文
This commit is contained in:
@@ -21,20 +21,20 @@ CUDA_VISIBLE_DEVICES=0 swift infer --model_type minicpm-v-v2_5-chat
|
||||
|
||||
2. You can also run the code with more arguments below to run the inference:
|
||||
```
|
||||
model_id_or_path # 可以写huggingface的模型id或者本地模型地址
|
||||
infer_backend ['AUTO', 'vllm', 'pt'] # 后段推理,默认auto
|
||||
dtype ['bf16', 'fp16', 'fp32', 'AUTO'] # 计算精度
|
||||
max_length # 最大长度
|
||||
max_new_tokens: int = 2048 #最多生成多少token
|
||||
do_sample: bool = True # 是否采样
|
||||
temperature: float = 0.3 # 生成时的温度系数
|
||||
model_id_or_path # Can be the model ID from Hugging Face or the local path to the model
|
||||
infer_backend ['AUTO', 'vllm', 'pt'] # Backend for inference, default is auto
|
||||
dtype ['bf16', 'fp16', 'fp32', 'AUTO'] # Computational precision
|
||||
max_length # Maximum length
|
||||
max_new_tokens: int = 2048 # Maximum number of tokens to generate
|
||||
do_sample: bool = True # Whether to sample during generation
|
||||
temperature: float = 0.3 # Temperature coefficient during generation
|
||||
top_k: int = 20
|
||||
top_p: float = 0.7
|
||||
repetition_penalty: float = 1.
|
||||
num_beams: int = 1
|
||||
stop_words: List[str] = None
|
||||
quant_method ['bnb', 'hqq', 'eetq', 'awq', 'gptq', 'aqlm'] # 模型的量化方式
|
||||
quantization_bit [0, 1, 2, 3, 4, 8] 默认是0,代表不使用量化
|
||||
repetition_penalty: float = 1. # Penalty for repetition
|
||||
num_beams: int = 1 # Number of beams for beam search
|
||||
stop_words: List[str] = None # List of stop words
|
||||
quant_method ['bnb', 'hqq', 'eetq', 'awq', 'gptq', 'aqlm'] # Quantization method for the model
|
||||
quantization_bit [0, 1, 2, 3, 4, 8] # Default is 0, which means no quantization is used
|
||||
```
|
||||
3. Example:
|
||||
``` shell
|
||||
@@ -48,36 +48,36 @@ The following demonstrates using Python code to initiate inference with the Mini
|
||||
|
||||
```python
|
||||
import os
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # 设置显卡数
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # Set the number of GPUs to use
|
||||
|
||||
from swift.llm import (
|
||||
get_model_tokenizer, get_template, inference, ModelType,
|
||||
get_default_template_type, inference_stream
|
||||
) # 导入必要模块
|
||||
) # Import necessary modules
|
||||
|
||||
from swift.utils import seed_everything # 设置随机种子
|
||||
from swift.utils import seed_everything # Set random seed
|
||||
import torch
|
||||
|
||||
model_type = ModelType.minicpm_v_v2_5_chat
|
||||
template_type = get_default_template_type(model_type) # 获取模板类型,主要是用于特殊token的构造和图像的处理流程
|
||||
template_type = get_default_template_type(model_type) # Obtain the template type, primarily used for constructing special tokens and image processing workflow
|
||||
print(f'template_type: {template_type}')
|
||||
|
||||
model, tokenizer = get_model_tokenizer(model_type, torch.bfloat16,
|
||||
model_id_or_path='/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5',
|
||||
model_kwargs={'device_map': 'auto'}) # 加载模型,并设置模型类型,模型路径,模型参数,设备分配等,计算精度等等
|
||||
model_id_or_path='/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5',
|
||||
model_kwargs={'device_map': 'auto'}) # Load the model, set model type, model path, model parameters, device allocation, etc., computation precision, etc.
|
||||
model.generation_config.max_new_tokens = 256
|
||||
template = get_template(template_type, tokenizer) # 根据模版类型构造模板
|
||||
template = get_template(template_type, tokenizer) # Construct the template based on the template type
|
||||
seed_everything(42)
|
||||
|
||||
images = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/road.png'] # 图片地址
|
||||
query = '距离各城市多远?'
|
||||
response, history = inference(model, template, query, images=images) # 推理获得结果
|
||||
images = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/road.png'] # Image URL
|
||||
query = '距离各城市多远?' # Note: Query is still in Chinese, consider translating if needed
|
||||
response, history = inference(model, template, query, images=images) # Obtain results through inference
|
||||
print(f'query: {query}')
|
||||
print(f'response: {response}')
|
||||
|
||||
# 流式
|
||||
query = '距离最远的城市是哪?'
|
||||
gen = inference_stream(model, template, query, history, images=images) # 调用流式输出接口
|
||||
# Streaming output
|
||||
query = '距离最远的城市是哪?' # Note: Query is still in Chinese, consider translating if needed
|
||||
gen = inference_stream(model, template, query, history, images=images) # Call the streaming output interface
|
||||
print_idx = 0
|
||||
print(f'query: {query}\nresponse: ', end='')
|
||||
for response, history in gen:
|
||||
@@ -92,9 +92,9 @@ print(f'history: {history}')
|
||||
SWIFT supports training on the local dataset,the training steps are as follows:
|
||||
1. Make the train data like this:
|
||||
```jsonl
|
||||
{"query": "这张图片描述了什么", "response": "这张图片有一个大熊猫", "images": ["local_image_path"]}
|
||||
{"query": "这张图片描述了什么", "response": "这张图片有一个大熊猫", "history": [], "images": ["image_path"]}
|
||||
{"query": "竹子好吃么", "response": "看大熊猫的样子挺好吃呢", "history": [["这张图有什么", "这张图片有大熊猫"], ["大熊猫在干嘛", "吃竹子"]], "images": ["image_url"]}
|
||||
{"query": "What does this picture describe?", "response": "This picture has a giant panda.", "images": ["local_image_path"]}
|
||||
{"query": "What does this picture describe?", "response": "This picture has a giant panda.", "history": [], "images": ["image_path"]}
|
||||
{"query": "Is bamboo tasty?", "response": "It seems pretty tasty judging by the panda's expression.", "history": [["What's in this picture?", "There's a giant panda in this picture."], ["What is the panda doing?", "Eating bamboo."]], "images": ["image_url"]}
|
||||
```
|
||||
2. LoRA Tuning:
|
||||
|
||||
|
||||
Reference in New Issue
Block a user