This commit is contained in:
yiranyyu
2024-08-09 10:19:33 +08:00
13 changed files with 469 additions and 47 deletions

78
.github/ISSUE_TEMPLATE/llamacpp.yaml vendored Normal file
View File

@@ -0,0 +1,78 @@
name: "llamacpp issue"
description: 创建新功能请求 | Create a new ticket for a new feature request
title: "[llamacpp] - <title>"
labels: [
"question"
]
body:
- type: input
id: start_date
attributes:
label: "起始日期 | Start Date"
description: |
起始开发日期
Start of development
placeholder: "month/day/year"
validations:
required: false
- type: textarea
id: implementation_pr
attributes:
label: "实现PR | Implementation PR"
description: |
实现该功能的Pull request
Pull request used
placeholder: "#Pull Request ID"
validations:
required: false
- type: textarea
id: reference_issues
attributes:
label: "相关Issues | Reference Issues"
description: |
与该功能相关的issues
Common issues
placeholder: "#Issues IDs"
validations:
required: false
- type: textarea
id: summary
attributes:
label: "摘要 | Summary"
description: |
简要描述新功能的特点
Provide a brief explanation of the feature
placeholder: |
Describe in a few lines your feature request
validations:
required: true
- type: textarea
id: basic_example
attributes:
label: "基本示例 | Basic Example"
description: Indicate here some basic examples of your feature.
placeholder: A few specific words about your feature request.
validations:
required: true
- type: textarea
id: drawbacks
attributes:
label: "缺陷 | Drawbacks"
description: |
该新功能有哪些缺陷/可能造成哪些影响?
What are the drawbacks/impacts of your feature request ?
placeholder: |
Identify the drawbacks and impacts while being neutral on your feature request
validations:
required: true
- type: textarea
id: unresolved_question
attributes:
label: "未解决问题 | Unresolved questions"
description: |
有哪些尚未解决的问题?
What questions still remain unresolved ?
placeholder: |
Identify any unresolved issues.
validations:
required: false

78
.github/ISSUE_TEMPLATE/ollama.yaml vendored Normal file
View File

@@ -0,0 +1,78 @@
name: "ollama issue"
description: 创建新功能请求 | Create a new ticket for a new feature request
title: "[ollama] - <title>"
labels: [
"question"
]
body:
- type: input
id: start_date
attributes:
label: "起始日期 | Start Date"
description: |
起始开发日期
Start of development
placeholder: "month/day/year"
validations:
required: false
- type: textarea
id: implementation_pr
attributes:
label: "实现PR | Implementation PR"
description: |
实现该功能的Pull request
Pull request used
placeholder: "#Pull Request ID"
validations:
required: false
- type: textarea
id: reference_issues
attributes:
label: "相关Issues | Reference Issues"
description: |
与该功能相关的issues
Common issues
placeholder: "#Issues IDs"
validations:
required: false
- type: textarea
id: summary
attributes:
label: "摘要 | Summary"
description: |
简要描述新功能的特点
Provide a brief explanation of the feature
placeholder: |
Describe in a few lines your feature request
validations:
required: true
- type: textarea
id: basic_example
attributes:
label: "基本示例 | Basic Example"
description: Indicate here some basic examples of your feature.
placeholder: A few specific words about your feature request.
validations:
required: true
- type: textarea
id: drawbacks
attributes:
label: "缺陷 | Drawbacks"
description: |
该新功能有哪些缺陷/可能造成哪些影响?
What are the drawbacks/impacts of your feature request ?
placeholder: |
Identify the drawbacks and impacts while being neutral on your feature request
validations:
required: true
- type: textarea
id: unresolved_question
attributes:
label: "未解决问题 | Unresolved questions"
description: |
有哪些尚未解决的问题?
What questions still remain unresolved ?
placeholder: |
Identify any unresolved issues.
validations:
required: false

78
.github/ISSUE_TEMPLATE/vllm.yaml vendored Normal file
View File

@@ -0,0 +1,78 @@
name: "vllm issue"
description: 创建新功能请求 | Create a new ticket for a new feature request
title: "[vllm] - <title>"
labels: [
"question"
]
body:
- type: input
id: start_date
attributes:
label: "起始日期 | Start Date"
description: |
起始开发日期
Start of development
placeholder: "month/day/year"
validations:
required: false
- type: textarea
id: implementation_pr
attributes:
label: "实现PR | Implementation PR"
description: |
实现该功能的Pull request
Pull request used
placeholder: "#Pull Request ID"
validations:
required: false
- type: textarea
id: reference_issues
attributes:
label: "相关Issues | Reference Issues"
description: |
与该功能相关的issues
Common issues
placeholder: "#Issues IDs"
validations:
required: false
- type: textarea
id: summary
attributes:
label: "摘要 | Summary"
description: |
简要描述新功能的特点
Provide a brief explanation of the feature
placeholder: |
Describe in a few lines your feature request
validations:
required: true
- type: textarea
id: basic_example
attributes:
label: "基本示例 | Basic Example"
description: Indicate here some basic examples of your feature.
placeholder: A few specific words about your feature request.
validations:
required: true
- type: textarea
id: drawbacks
attributes:
label: "缺陷 | Drawbacks"
description: |
该新功能有哪些缺陷/可能造成哪些影响?
What are the drawbacks/impacts of your feature request ?
placeholder: |
Identify the drawbacks and impacts while being neutral on your feature request
validations:
required: true
- type: textarea
id: unresolved_question
attributes:
label: "未解决问题 | Unresolved questions"
description: |
有哪些尚未解决的问题?
What questions still remain unresolved ?
placeholder: |
Identify any unresolved issues.
validations:
required: false

View File

@@ -30,7 +30,7 @@ Join our <a href="docs/wechat.md" target="_blank"> 💬 WeChat</a>
#### 📌 Pinned
* [2024.08.06] 🔥🔥🔥 We open-source MiniCPM-V 2.6, which outperforms GPT-4V on single image, multi-image and video understanding. It advances popular features of MiniCPM-Llama3-V 2.5, and can support real-time video understanding on iPad. Try it now!
* [2024.08.03] MiniCPM-Llama3-V 2.5 technical report is released! See [here](https://arxiv.org/abs/2408.01800).
* [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#vllm).
* [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#inference-with-vllm).
* [2024.05.28] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 now fully supports its feature in llama.cpp and ollama! Please pull the latest code **of our provided forks** ([llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md), [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)). GGUF models in various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main). MiniCPM-Llama3-V 2.5 series is **not supported by the official repositories yet**, and we are working hard to merge PRs. Please stay tuned!
* [2024.05.28] 💫 We now support LoRA fine-tuning for MiniCPM-Llama3-V 2.5, using only 2 V100 GPUs! See more statistics [here](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics).
* [2024.05.23] 🔍 We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmarks evaluations, multilingual capabilities, and inference efficiency 🌟📊🌍🚀. Click [here](./docs/compare_with_phi-3_vision.md) to view more details.
@@ -45,7 +45,7 @@ Join our <a href="docs/wechat.md" target="_blank"> 💬 WeChat</a>
* [2024.05.25] MiniCPM-Llama3-V 2.5 now supports streaming outputs and customized system prompts. Try it [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)!
* [2024.05.24] We release the MiniCPM-Llama3-V 2.5 [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf), which supports [llama.cpp](#inference-with-llamacpp) inference and provides a 6~8 token/s smooth decoding on mobile phones. Try it now!
* [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide [efficient inference](#deployment-on-mobile-phone) and [simple fine-tuning](./finetune/readme.md). Try it now!
* [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click [here](#vllm) to view more details.
* [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click [here](#inference-with-vllm) to view more details.
* [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)!
* [2024.04.17] MiniCPM-V-2.0 supports deploying [WebUI Demo](#webui-demo) now!
* [2024.04.15] MiniCPM-V-2.0 now also supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) with the SWIFT framework!
@@ -1504,7 +1504,7 @@ PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py
</details>
### Deployment on Mobile Phone
MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.0 can be deployed on mobile phones with Android operating systems. 🚀 Click [MiniCPM-Llama3-V 2.5](http://minicpm.modelbest.cn/android/modelbest-release-20240528_182155.apk) / [MiniCPM-V 2.0](https://github.com/OpenBMB/mlc-MiniCPM) to install apk.
MiniCPM-V 2.0 can be deployed on mobile phones with Android operating systems. 🚀 Click [MiniCPM-V 2.0](https://github.com/OpenBMB/mlc-MiniCPM) to install apk.
### Inference with llama.cpp
MiniCPM-V 2.6 can run with llama.cpp now! See [our fork of llama.cpp](https://github.com/OpenBMB/llama.cpp/tree/minicpmv-main/examples/llava/README-minicpmv2.6.md) for more detail. This implementation supports smooth inference of 16~18 token/s on iPad (test environmentiPad Pro + M4).
@@ -1515,25 +1515,89 @@ MiniCPM-V 2.6 can run with ollama now! See [our fork of ollama](https://github.c
### Inference with vLLM
<details>
<summary> vLLM now officially supports MiniCPM-V 2.0, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.6, Click to see. </summary>
<summary> vLLM now officially supports MiniCPM-V 2.6, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.0, Click to see. </summary>
1. Clone the official vLLM:
1. Install vLLM(>=0.5.4):
```shell
git clone https://github.com/vllm-project/vllm.git
pip install vllm
```
2. Install vLLM:
```shell
cd vllm
pip install -e .
```
3. Install timm: (optional, MiniCPM-V 2.0 need timm)
2. Install timm: (optional, MiniCPM-V 2.0 need timm)
```shell
pip install timm==0.9.10
```
4. Run the example:Attention: If you use model in local path, please update the model code to the latest version on Hugging Face.)
```shell
python examples/minicpmv_example.py
3. Run the example(for image):
```python
from transformers import AutoTokenizer
from PIL import Image
from vllm import LLM, SamplingParams
MODEL_NAME = "openbmb/MiniCPM-V-2_6"
# Also available for previous models
# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5"
# MODEL_NAME = "HwwwH/MiniCPM-V-2"
image = Image.open("xxx.png").convert("RGB")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
llm = LLM(
model=MODEL_NAME,
trust_remote_code=True,
gpu_memory_utilization=1,
max_model_len=2048
)
messages = [{
"role":
"user",
"content":
# Number of images
"(<image>./</image>)" + \
"\nWhat is the content of this image?"
}]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Single Inference
inputs = {
"prompt": prompt,
"multi_modal_data": {
"image": image
# Multi images, the number of images should be equal to that of `(<image>./</image>)`
# "image": [image, image]
},
}
# Batch Inference
# inputs = [{
# "prompt": prompt,
# "multi_modal_data": {
# "image": image
# },
# } for _ in 2]
# 2.6
stop_tokens = ['<|im_end|>', '<|endoftext|>']
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
# 2.0
# stop_token_ids = [tokenizer.eos_id]
# 2.5
# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
sampling_params = SamplingParams(
stop_token_ids=stop_token_ids,
use_beam_search=True,
temperature=0,
best_of=3,
max_tokens=1024
)
outputs = llm.generate(inputs, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
```
4. click [here](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink) if you want to use it with *video*, or get more details about `vLLM`.
</details>
## Fine-tuning

View File

@@ -30,7 +30,7 @@ Join our <a href="docs/wechat.md" target="_blank"> 💬 WeChat</a>
#### 📌 Pinned
* [2024.08.06] 🔥🔥🔥 We open-source MiniCPM-V 2.6, which outperforms GPT-4V on single image, multi-image and video understanding. It advances popular features of MiniCPM-Llama3-V 2.5, and can support real-time video understanding on iPad. Try it now!
* [2024.08.03] MiniCPM-Llama3-V 2.5 technical report is released! See [here](https://arxiv.org/abs/2408.01800).
* [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#vllm).
* [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#inference-with-vllm).
* [2024.05.28] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 now fully supports its feature in llama.cpp and ollama! Please pull the latest code **of our provided forks** ([llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md), [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)). GGUF models in various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main). MiniCPM-Llama3-V 2.5 series is **not supported by the official repositories yet**, and we are working hard to merge PRs. Please stay tuned!
* [2024.05.28] 💫 We now support LoRA fine-tuning for MiniCPM-Llama3-V 2.5, using only 2 V100 GPUs! See more statistics [here](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics).
* [2024.05.23] 🔍 We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmarks evaluations, multilingual capabilities, and inference efficiency 🌟📊🌍🚀. Click [here](./docs/compare_with_phi-3_vision.md) to view more details.
@@ -45,7 +45,7 @@ Join our <a href="docs/wechat.md" target="_blank"> 💬 WeChat</a>
* [2024.05.25] MiniCPM-Llama3-V 2.5 now supports streaming outputs and customized system prompts. Try it [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)!
* [2024.05.24] We release the MiniCPM-Llama3-V 2.5 [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf), which supports [llama.cpp](#inference-with-llamacpp) inference and provides a 6~8 token/s smooth decoding on mobile phones. Try it now!
* [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide [efficient inference](#deployment-on-mobile-phone) and [simple fine-tuning](./finetune/readme.md). Try it now!
* [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click [here](#vllm) to view more details.
* [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click [here](#inference-with-vllm) to view more details.
* [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)!
* [2024.04.17] MiniCPM-V-2.0 supports deploying [WebUI Demo](#webui-demo) now!
* [2024.04.15] MiniCPM-V-2.0 now also supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) with the SWIFT framework!
@@ -1517,23 +1517,87 @@ MiniCPM-V 2.6 can run with ollama now! See [our fork of ollama](https://github.c
<details>
<summary> vLLM now officially supports MiniCPM-V 2.0, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.6, Click to see. </summary>
1. Clone the official vLLM:
1. Install vLLM(==0.5.4):
```shell
git clone https://github.com/vllm-project/vllm.git
pip install vllm
```
2. Install vLLM:
```shell
cd vllm
pip install -e .
```
3. Install timm: (optional, MiniCPM-V 2.0 need timm)
2. Install timm: (optional, MiniCPM-V 2.0 need timm)
```shell
pip install timm==0.9.10
```
4. Run the example:Attention: If you use model in local path, please update the model code to the latest version on Hugging Face.)
```shell
python examples/minicpmv_example.py
3. Run the example(for image):
```python
from transformers import AutoTokenizer
from PIL import Image
from vllm import LLM, SamplingParams
MODEL_NAME = "openbmb/MiniCPM-V-2_6"
# Also available for previous models
# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5"
# MODEL_NAME = "HwwwH/MiniCPM-V-2"
image = Image.open("xxx.png").convert("RGB")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
llm = LLM(
model=MODEL_NAME,
trust_remote_code=True,
gpu_memory_utilization=1,
max_model_len=2048
)
messages = [{
"role":
"user",
"content":
# Number of images
"(<image>./</image>)" + \
"\nWhat is the content of this image?"
}]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Single Inference
inputs = {
"prompt": prompt,
"multi_modal_data": {
"image": image
# Multi images, the number of images should be equal to that of `(<image>./</image>)`
# "image": [image, image]
},
}
# Batch Inference
# inputs = [{
# "prompt": prompt,
# "multi_modal_data": {
# "image": image
# },
# } for _ in 2]
# 2.6
stop_tokens = ['<|im_end|>', '<|endoftext|>']
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
# 2.0
# stop_token_ids = [tokenizer.eos_id]
# 2.5
# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
sampling_params = SamplingParams(
stop_token_ids=stop_token_ids,
use_beam_search=True,
temperature=0,
best_of=3,
max_tokens=1024
)
outputs = llm.generate(inputs, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
```
4. click [here](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink) if you want to use it with *video*, or get more details about `vLLM`.
</details>
## Fine-tuning

View File

@@ -35,7 +35,7 @@
* [2024.08.06] 🔥🔥🔥 我们开源了 MiniCPM-V 2.6,该模型在单图、多图和视频理解方面取得了优于 GPT-4V 的表现。我们还进一步提升了 MiniCPM-Llama3-V 2.5 的多项亮点能力,并首次支持了 iPad 上的实时视频理解。欢迎试用!
* [2024.08.03] MiniCPM-Llama3-V 2.5 技术报告已发布!欢迎点击[这里](https://arxiv.org/abs/2408.01800)查看。
* [2024.07.19] MiniCPM-Llama3-V 2.5 现已支持[vLLM](#vllm)
* [2024.07.19] MiniCPM-Llama3-V 2.5 现已支持[vLLM](#vllm-部署-)
* [2024.05.28] 💥 MiniCPM-Llama3-V 2.5 现在在 llama.cpp 和 ollama 中完全支持其功能!**请拉取我们最新的 fork 来使用**[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) & [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)。我们还发布了各种大小的 GGUF 版本,请点击[这里](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main)查看。请注意,**目前官方仓库尚未支持 MiniCPM-Llama3-V 2.5**,我们也正积极推进将这些功能合并到 llama.cpp & ollama 官方仓库,敬请关注!
* [2024.05.28] 💫 我们现在支持 MiniCPM-Llama3-V 2.5 的 LoRA 微调,更多内存使用统计信息可以在[这里](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics)找到。
* [2024.05.23] 🔍 我们添加了Phi-3-vision-128k-instruct 与 MiniCPM-Llama3-V 2.5的全面对比,包括基准测试评估、多语言能力和推理效率 🌟📊🌍🚀。点击[这里](./docs/compare_with_phi-3_vision.md)查看详细信息。
@@ -51,7 +51,7 @@
* [2024.05.25] MiniCPM-Llama3-V 2.5 [支持流式输出和自定义系统提示词](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)了,欢迎试用!
* [2024.05.24] 我们开源了 MiniCPM-Llama3-V 2.5 [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf),支持 [llama.cpp](#llamacpp-部署) 推理!实现端侧 6-8 tokens/s 的流畅解码,欢迎试用!
* [2024.05.20] 我们开源了 MiniCPM-Llama3-V 2.5,增强了 OCR 能力,支持 30 多种语言,并首次在端侧实现了 GPT-4V 级的多模态能力!我们提供了[高效推理](#手机端部署)和[简易微调](./finetune/readme.md)的支持,欢迎试用!
* [2024.04.23] 我们增加了MiniCPM-V 2.0对 [vLLM](#vllm) 的支持,欢迎体验!
* [2024.04.23] 我们增加了MiniCPM-V 2.0对 [vLLM](#vllm-部署-) 的支持,欢迎体验!
* [2024.04.18] 我们在 HuggingFace Space 新增了 MiniCPM-V 2.0 的 [demo](https://huggingface.co/spaces/openbmb/MiniCPM-V-2),欢迎体验!
* [2024.04.17] MiniCPM-V 2.0 现在支持用户部署本地 [WebUI Demo](#本地webui-demo部署) 了,欢迎试用!
* [2024.04.15] MiniCPM-V 2.0 现在可以通过 SWIFT 框架 [微调](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) 了,支持流式输出!
@@ -1513,7 +1513,7 @@ PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py
### 手机端部署
MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.0 可运行在Android手机上点击[MiniCPM-Llama3-V 2.5](http://minicpm.modelbest.cn/android/modelbest-release-20240528_182155.apk) / [MiniCPM-V 2.0](https://github.com/OpenBMB/mlc-MiniCPM)安装apk使用;
MiniCPM-V 2.0 可运行在Android手机上点击[MiniCPM-V 2.0](https://github.com/OpenBMB/mlc-MiniCPM)安装apk使用;
### 本地WebUI Demo部署
<details>
@@ -1525,10 +1525,7 @@ pip install -r requirements.txt
```shell
# For NVIDIA GPUs, run:
python web_demo_2.5.py --device cuda
# For Mac with MPS (Apple silicon or AMD GPUs), run:
PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.5.py --device mps
python web_demo_2.6.py --device cuda
```
</details>
@@ -1540,26 +1537,89 @@ MiniCPM-V 2.6 现在支持ollama啦! 用法请参考[我们的fork ollama](https
### vLLM 部署 <a id='vllm'></a>
<details>
<summary>点击查看, vLLM 现已官方支持MiniCPM-V 2.0 、MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.6 </summary>
<summary>点击查看, vLLM 现已官方支持MiniCPM-V 2.6、MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.0 </summary>
1. 首先克隆官方的 vLLM 库:
1. 安装 vLLM(>=0.5.4):
```shell
git clone https://github.com/vllm-project/vllm.git
```
2. 安装 vLLM 库:
```shell
cd vllm
pip install -e .
pip install vllm
```
3. 安装 timm 库: 可选MiniCPM-V 2.0需安装)
```shell
pip install timm=0.9.10
```
4. 运行示例代码:注意如果使用本地路径的模型请确保模型代码已更新到Hugging Face上的最新版)
```shell
python examples/minicpmv_example.py
```
```python
from transformers import AutoTokenizer
from PIL import Image
from vllm import LLM, SamplingParams
MODEL_NAME = "openbmb/MiniCPM-V-2_6"
# Also available for previous models
# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5"
# MODEL_NAME = "HwwwH/MiniCPM-V-2"
image = Image.open("xxx.png").convert("RGB")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
llm = LLM(
model=MODEL_NAME,
trust_remote_code=True,
gpu_memory_utilization=1,
max_model_len=2048
)
messages = [{
"role":
"user",
"content":
# Number of images
"(<image>./</image>)" + \
"\nWhat is the content of this image?"
}]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Single Inference
inputs = {
"prompt": prompt,
"multi_modal_data": {
"image": image
# Multi images, the number of images should be equal to that of `(<image>./</image>)`
# "image": [image, image]
},
}
# Batch Inference
# inputs = [{
# "prompt": prompt,
# "multi_modal_data": {
# "image": image
# },
# } for _ in 2]
# 2.6
stop_tokens = ['<|im_end|>', '<|endoftext|>']
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
# 2.0
# stop_token_ids = [tokenizer.eos_id]
# 2.5
# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
sampling_params = SamplingParams(
stop_token_ids=stop_token_ids,
use_beam_search=True,
temperature=0,
best_of=3,
max_tokens=1024
)
outputs = llm.generate(inputs, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
```
4. [点击此处](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink)查看带视频推理和其他有关 `vLLM` 的信息。
</details>
@@ -1650,4 +1710,4 @@ python examples/minicpmv_example.py
journal={arXiv preprint 2408.01800},
year={2024},
}
```
```

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.9 MiB

After

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.4 MiB

After

Width:  |  Height:  |  Size: 4.5 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.0 MiB

After

Width:  |  Height:  |  Size: 8.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 MiB

After

Width:  |  Height:  |  Size: 4.5 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.7 MiB

After

Width:  |  Height:  |  Size: 3.6 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.1 MiB

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.6 MiB

After

Width:  |  Height:  |  Size: 2.3 MiB