diff --git a/.github/ISSUE_TEMPLATE/llamacpp.yaml b/.github/ISSUE_TEMPLATE/llamacpp.yaml new file mode 100644 index 0000000..c5e370d --- /dev/null +++ b/.github/ISSUE_TEMPLATE/llamacpp.yaml @@ -0,0 +1,78 @@ +name: "llamacpp issue" +description: 创建新功能请求 | Create a new ticket for a new feature request +title: "[llamacpp] - " +labels: [ + "question" +] +body: + - type: input + id: start_date + attributes: + label: "起始日期 | Start Date" + description: | + 起始开发日期 + Start of development + placeholder: "month/day/year" + validations: + required: false + - type: textarea + id: implementation_pr + attributes: + label: "实现PR | Implementation PR" + description: | + 实现该功能的Pull request + Pull request used + placeholder: "#Pull Request ID" + validations: + required: false + - type: textarea + id: reference_issues + attributes: + label: "相关Issues | Reference Issues" + description: | + 与该功能相关的issues + Common issues + placeholder: "#Issues IDs" + validations: + required: false + - type: textarea + id: summary + attributes: + label: "摘要 | Summary" + description: | + 简要描述新功能的特点 + Provide a brief explanation of the feature + placeholder: | + Describe in a few lines your feature request + validations: + required: true + - type: textarea + id: basic_example + attributes: + label: "基本示例 | Basic Example" + description: Indicate here some basic examples of your feature. + placeholder: A few specific words about your feature request. + validations: + required: true + - type: textarea + id: drawbacks + attributes: + label: "缺陷 | Drawbacks" + description: | + 该新功能有哪些缺陷/可能造成哪些影响? + What are the drawbacks/impacts of your feature request ? + placeholder: | + Identify the drawbacks and impacts while being neutral on your feature request + validations: + required: true + - type: textarea + id: unresolved_question + attributes: + label: "未解决问题 | Unresolved questions" + description: | + 有哪些尚未解决的问题? + What questions still remain unresolved ? + placeholder: | + Identify any unresolved issues. + validations: + required: false diff --git a/.github/ISSUE_TEMPLATE/ollama.yaml b/.github/ISSUE_TEMPLATE/ollama.yaml new file mode 100644 index 0000000..e640151 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/ollama.yaml @@ -0,0 +1,78 @@ +name: "ollama issue" +description: 创建新功能请求 | Create a new ticket for a new feature request +title: "[ollama] - <title>" +labels: [ + "question" +] +body: + - type: input + id: start_date + attributes: + label: "起始日期 | Start Date" + description: | + 起始开发日期 + Start of development + placeholder: "month/day/year" + validations: + required: false + - type: textarea + id: implementation_pr + attributes: + label: "实现PR | Implementation PR" + description: | + 实现该功能的Pull request + Pull request used + placeholder: "#Pull Request ID" + validations: + required: false + - type: textarea + id: reference_issues + attributes: + label: "相关Issues | Reference Issues" + description: | + 与该功能相关的issues + Common issues + placeholder: "#Issues IDs" + validations: + required: false + - type: textarea + id: summary + attributes: + label: "摘要 | Summary" + description: | + 简要描述新功能的特点 + Provide a brief explanation of the feature + placeholder: | + Describe in a few lines your feature request + validations: + required: true + - type: textarea + id: basic_example + attributes: + label: "基本示例 | Basic Example" + description: Indicate here some basic examples of your feature. + placeholder: A few specific words about your feature request. + validations: + required: true + - type: textarea + id: drawbacks + attributes: + label: "缺陷 | Drawbacks" + description: | + 该新功能有哪些缺陷/可能造成哪些影响? + What are the drawbacks/impacts of your feature request ? + placeholder: | + Identify the drawbacks and impacts while being neutral on your feature request + validations: + required: true + - type: textarea + id: unresolved_question + attributes: + label: "未解决问题 | Unresolved questions" + description: | + 有哪些尚未解决的问题? + What questions still remain unresolved ? + placeholder: | + Identify any unresolved issues. + validations: + required: false diff --git a/.github/ISSUE_TEMPLATE/vllm.yaml b/.github/ISSUE_TEMPLATE/vllm.yaml new file mode 100644 index 0000000..74f98a1 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/vllm.yaml @@ -0,0 +1,78 @@ +name: "vllm issue" +description: 创建新功能请求 | Create a new ticket for a new feature request +title: "[vllm] - <title>" +labels: [ + "question" +] +body: + - type: input + id: start_date + attributes: + label: "起始日期 | Start Date" + description: | + 起始开发日期 + Start of development + placeholder: "month/day/year" + validations: + required: false + - type: textarea + id: implementation_pr + attributes: + label: "实现PR | Implementation PR" + description: | + 实现该功能的Pull request + Pull request used + placeholder: "#Pull Request ID" + validations: + required: false + - type: textarea + id: reference_issues + attributes: + label: "相关Issues | Reference Issues" + description: | + 与该功能相关的issues + Common issues + placeholder: "#Issues IDs" + validations: + required: false + - type: textarea + id: summary + attributes: + label: "摘要 | Summary" + description: | + 简要描述新功能的特点 + Provide a brief explanation of the feature + placeholder: | + Describe in a few lines your feature request + validations: + required: true + - type: textarea + id: basic_example + attributes: + label: "基本示例 | Basic Example" + description: Indicate here some basic examples of your feature. + placeholder: A few specific words about your feature request. + validations: + required: true + - type: textarea + id: drawbacks + attributes: + label: "缺陷 | Drawbacks" + description: | + 该新功能有哪些缺陷/可能造成哪些影响? + What are the drawbacks/impacts of your feature request ? + placeholder: | + Identify the drawbacks and impacts while being neutral on your feature request + validations: + required: true + - type: textarea + id: unresolved_question + attributes: + label: "未解决问题 | Unresolved questions" + description: | + 有哪些尚未解决的问题? + What questions still remain unresolved ? + placeholder: | + Identify any unresolved issues. + validations: + required: false diff --git a/README.md b/README.md index 1697267..446b92e 100644 --- a/README.md +++ b/README.md @@ -30,7 +30,7 @@ Join our <a href="docs/wechat.md" target="_blank"> 💬 WeChat</a> #### 📌 Pinned * [2024.08.06] 🔥🔥🔥 We open-source MiniCPM-V 2.6, which outperforms GPT-4V on single image, multi-image and video understanding. It advances popular features of MiniCPM-Llama3-V 2.5, and can support real-time video understanding on iPad. Try it now! * [2024.08.03] MiniCPM-Llama3-V 2.5 technical report is released! See [here](https://arxiv.org/abs/2408.01800). -* [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#vllm). +* [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#inference-with-vllm). * [2024.05.28] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 now fully supports its feature in llama.cpp and ollama! Please pull the latest code **of our provided forks** ([llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md), [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)). GGUF models in various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main). MiniCPM-Llama3-V 2.5 series is **not supported by the official repositories yet**, and we are working hard to merge PRs. Please stay tuned! * [2024.05.28] 💫 We now support LoRA fine-tuning for MiniCPM-Llama3-V 2.5, using only 2 V100 GPUs! See more statistics [here](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics). * [2024.05.23] 🔍 We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmarks evaluations, multilingual capabilities, and inference efficiency 🌟📊🌍🚀. Click [here](./docs/compare_with_phi-3_vision.md) to view more details. @@ -45,7 +45,7 @@ Join our <a href="docs/wechat.md" target="_blank"> 💬 WeChat</a> * [2024.05.25] MiniCPM-Llama3-V 2.5 now supports streaming outputs and customized system prompts. Try it [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)! * [2024.05.24] We release the MiniCPM-Llama3-V 2.5 [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf), which supports [llama.cpp](#inference-with-llamacpp) inference and provides a 6~8 token/s smooth decoding on mobile phones. Try it now! * [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide [efficient inference](#deployment-on-mobile-phone) and [simple fine-tuning](./finetune/readme.md). Try it now! -* [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click [here](#vllm) to view more details. +* [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click [here](#inference-with-vllm) to view more details. * [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)! * [2024.04.17] MiniCPM-V-2.0 supports deploying [WebUI Demo](#webui-demo) now! * [2024.04.15] MiniCPM-V-2.0 now also supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) with the SWIFT framework! @@ -1504,7 +1504,7 @@ PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py </details> ### Deployment on Mobile Phone -MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.0 can be deployed on mobile phones with Android operating systems. 🚀 Click [MiniCPM-Llama3-V 2.5](http://minicpm.modelbest.cn/android/modelbest-release-20240528_182155.apk) / [MiniCPM-V 2.0](https://github.com/OpenBMB/mlc-MiniCPM) to install apk. +MiniCPM-V 2.0 can be deployed on mobile phones with Android operating systems. 🚀 Click [MiniCPM-V 2.0](https://github.com/OpenBMB/mlc-MiniCPM) to install apk. ### Inference with llama.cpp MiniCPM-V 2.6 can run with llama.cpp now! See [our fork of llama.cpp](https://github.com/OpenBMB/llama.cpp/tree/minicpmv-main/examples/llava/README-minicpmv2.6.md) for more detail. This implementation supports smooth inference of 16~18 token/s on iPad (test environment:iPad Pro + M4). @@ -1515,25 +1515,89 @@ MiniCPM-V 2.6 can run with ollama now! See [our fork of ollama](https://github.c ### Inference with vLLM <details> -<summary> vLLM now officially supports MiniCPM-V 2.0, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.6, Click to see. </summary> +<summary> vLLM now officially supports MiniCPM-V 2.6, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.0, Click to see. </summary> -1. Clone the official vLLM: +1. Install vLLM(>=0.5.4): ```shell -git clone https://github.com/vllm-project/vllm.git +pip install vllm ``` -2. Install vLLM: -```shell -cd vllm -pip install -e . -``` -3. Install timm: (optional, MiniCPM-V 2.0 need timm) +2. Install timm: (optional, MiniCPM-V 2.0 need timm) ```shell pip install timm==0.9.10 ``` -4. Run the example:(Attention: If you use model in local path, please update the model code to the latest version on Hugging Face.) -```shell -python examples/minicpmv_example.py +3. Run the example(for image): +```python +from transformers import AutoTokenizer +from PIL import Image +from vllm import LLM, SamplingParams + +MODEL_NAME = "openbmb/MiniCPM-V-2_6" +# Also available for previous models +# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5" +# MODEL_NAME = "HwwwH/MiniCPM-V-2" + +image = Image.open("xxx.png").convert("RGB") +tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) +llm = LLM( + model=MODEL_NAME, + trust_remote_code=True, + gpu_memory_utilization=1, + max_model_len=2048 +) + +messages = [{ + "role": + "user", + "content": + # Number of images + "(<image>./</image>)" + \ + "\nWhat is the content of this image?" +}] +prompt = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True +) + +# Single Inference +inputs = { + "prompt": prompt, + "multi_modal_data": { + "image": image + # Multi images, the number of images should be equal to that of `(<image>./</image>)` + # "image": [image, image] + }, +} +# Batch Inference +# inputs = [{ +# "prompt": prompt, +# "multi_modal_data": { +# "image": image +# }, +# } for _ in 2] + + +# 2.6 +stop_tokens = ['<|im_end|>', '<|endoftext|>'] +stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] +# 2.0 +# stop_token_ids = [tokenizer.eos_id] +# 2.5 +# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id] + +sampling_params = SamplingParams( + stop_token_ids=stop_token_ids, + use_beam_search=True, + temperature=0, + best_of=3, + max_tokens=1024 +) + +outputs = llm.generate(inputs, sampling_params=sampling_params) + +print(outputs[0].outputs[0].text) ``` +4. click [here](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink) if you want to use it with *video*, or get more details about `vLLM`. </details> ## Fine-tuning diff --git a/README_en.md b/README_en.md index e352647..3801cd1 100644 --- a/README_en.md +++ b/README_en.md @@ -30,7 +30,7 @@ Join our <a href="docs/wechat.md" target="_blank"> 💬 WeChat</a> #### 📌 Pinned * [2024.08.06] 🔥🔥🔥 We open-source MiniCPM-V 2.6, which outperforms GPT-4V on single image, multi-image and video understanding. It advances popular features of MiniCPM-Llama3-V 2.5, and can support real-time video understanding on iPad. Try it now! * [2024.08.03] MiniCPM-Llama3-V 2.5 technical report is released! See [here](https://arxiv.org/abs/2408.01800). -* [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#vllm). +* [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](#inference-with-vllm). * [2024.05.28] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 now fully supports its feature in llama.cpp and ollama! Please pull the latest code **of our provided forks** ([llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md), [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)). GGUF models in various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main). MiniCPM-Llama3-V 2.5 series is **not supported by the official repositories yet**, and we are working hard to merge PRs. Please stay tuned! * [2024.05.28] 💫 We now support LoRA fine-tuning for MiniCPM-Llama3-V 2.5, using only 2 V100 GPUs! See more statistics [here](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics). * [2024.05.23] 🔍 We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmarks evaluations, multilingual capabilities, and inference efficiency 🌟📊🌍🚀. Click [here](./docs/compare_with_phi-3_vision.md) to view more details. @@ -45,7 +45,7 @@ Join our <a href="docs/wechat.md" target="_blank"> 💬 WeChat</a> * [2024.05.25] MiniCPM-Llama3-V 2.5 now supports streaming outputs and customized system prompts. Try it [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)! * [2024.05.24] We release the MiniCPM-Llama3-V 2.5 [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf), which supports [llama.cpp](#inference-with-llamacpp) inference and provides a 6~8 token/s smooth decoding on mobile phones. Try it now! * [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide [efficient inference](#deployment-on-mobile-phone) and [simple fine-tuning](./finetune/readme.md). Try it now! -* [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click [here](#vllm) to view more details. +* [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click [here](#inference-with-vllm) to view more details. * [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)! * [2024.04.17] MiniCPM-V-2.0 supports deploying [WebUI Demo](#webui-demo) now! * [2024.04.15] MiniCPM-V-2.0 now also supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) with the SWIFT framework! @@ -1517,23 +1517,87 @@ MiniCPM-V 2.6 can run with ollama now! See [our fork of ollama](https://github.c <details> <summary> vLLM now officially supports MiniCPM-V 2.0, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.6, Click to see. </summary> -1. Clone the official vLLM: +1. Install vLLM(==0.5.4): ```shell -git clone https://github.com/vllm-project/vllm.git +pip install vllm ``` -2. Install vLLM: -```shell -cd vllm -pip install -e . -``` -3. Install timm: (optional, MiniCPM-V 2.0 need timm) +2. Install timm: (optional, MiniCPM-V 2.0 need timm) ```shell pip install timm==0.9.10 ``` -4. Run the example:(Attention: If you use model in local path, please update the model code to the latest version on Hugging Face.) -```shell -python examples/minicpmv_example.py +3. Run the example(for image): +```python +from transformers import AutoTokenizer +from PIL import Image +from vllm import LLM, SamplingParams + +MODEL_NAME = "openbmb/MiniCPM-V-2_6" +# Also available for previous models +# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5" +# MODEL_NAME = "HwwwH/MiniCPM-V-2" + +image = Image.open("xxx.png").convert("RGB") +tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) +llm = LLM( + model=MODEL_NAME, + trust_remote_code=True, + gpu_memory_utilization=1, + max_model_len=2048 +) + +messages = [{ + "role": + "user", + "content": + # Number of images + "(<image>./</image>)" + \ + "\nWhat is the content of this image?" +}] +prompt = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True +) + +# Single Inference +inputs = { + "prompt": prompt, + "multi_modal_data": { + "image": image + # Multi images, the number of images should be equal to that of `(<image>./</image>)` + # "image": [image, image] + }, +} +# Batch Inference +# inputs = [{ +# "prompt": prompt, +# "multi_modal_data": { +# "image": image +# }, +# } for _ in 2] + + +# 2.6 +stop_tokens = ['<|im_end|>', '<|endoftext|>'] +stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] +# 2.0 +# stop_token_ids = [tokenizer.eos_id] +# 2.5 +# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id] + +sampling_params = SamplingParams( + stop_token_ids=stop_token_ids, + use_beam_search=True, + temperature=0, + best_of=3, + max_tokens=1024 +) + +outputs = llm.generate(inputs, sampling_params=sampling_params) + +print(outputs[0].outputs[0].text) ``` +4. click [here](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink) if you want to use it with *video*, or get more details about `vLLM`. </details> ## Fine-tuning diff --git a/README_zh.md b/README_zh.md index 27d29fd..20e6708 100644 --- a/README_zh.md +++ b/README_zh.md @@ -35,7 +35,7 @@ * [2024.08.06] 🔥🔥🔥 我们开源了 MiniCPM-V 2.6,该模型在单图、多图和视频理解方面取得了优于 GPT-4V 的表现。我们还进一步提升了 MiniCPM-Llama3-V 2.5 的多项亮点能力,并首次支持了 iPad 上的实时视频理解。欢迎试用! * [2024.08.03] MiniCPM-Llama3-V 2.5 技术报告已发布!欢迎点击[这里](https://arxiv.org/abs/2408.01800)查看。 -* [2024.07.19] MiniCPM-Llama3-V 2.5 现已支持[vLLM](#vllm) ! +* [2024.07.19] MiniCPM-Llama3-V 2.5 现已支持[vLLM](#vllm-部署-) ! * [2024.05.28] 💥 MiniCPM-Llama3-V 2.5 现在在 llama.cpp 和 ollama 中完全支持其功能!**请拉取我们最新的 fork 来使用**:[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) & [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)。我们还发布了各种大小的 GGUF 版本,请点击[这里](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main)查看。请注意,**目前官方仓库尚未支持 MiniCPM-Llama3-V 2.5**,我们也正积极推进将这些功能合并到 llama.cpp & ollama 官方仓库,敬请关注! * [2024.05.28] 💫 我们现在支持 MiniCPM-Llama3-V 2.5 的 LoRA 微调,更多内存使用统计信息可以在[这里](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics)找到。 * [2024.05.23] 🔍 我们添加了Phi-3-vision-128k-instruct 与 MiniCPM-Llama3-V 2.5的全面对比,包括基准测试评估、多语言能力和推理效率 🌟📊🌍🚀。点击[这里](./docs/compare_with_phi-3_vision.md)查看详细信息。 @@ -51,7 +51,7 @@ * [2024.05.25] MiniCPM-Llama3-V 2.5 [支持流式输出和自定义系统提示词](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)了,欢迎试用! * [2024.05.24] 我们开源了 MiniCPM-Llama3-V 2.5 [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf),支持 [llama.cpp](#llamacpp-部署) 推理!实现端侧 6-8 tokens/s 的流畅解码,欢迎试用! * [2024.05.20] 我们开源了 MiniCPM-Llama3-V 2.5,增强了 OCR 能力,支持 30 多种语言,并首次在端侧实现了 GPT-4V 级的多模态能力!我们提供了[高效推理](#手机端部署)和[简易微调](./finetune/readme.md)的支持,欢迎试用! -* [2024.04.23] 我们增加了MiniCPM-V 2.0对 [vLLM](#vllm) 的支持,欢迎体验! +* [2024.04.23] 我们增加了MiniCPM-V 2.0对 [vLLM](#vllm-部署-) 的支持,欢迎体验! * [2024.04.18] 我们在 HuggingFace Space 新增了 MiniCPM-V 2.0 的 [demo](https://huggingface.co/spaces/openbmb/MiniCPM-V-2),欢迎体验! * [2024.04.17] MiniCPM-V 2.0 现在支持用户部署本地 [WebUI Demo](#本地webui-demo部署) 了,欢迎试用! * [2024.04.15] MiniCPM-V 2.0 现在可以通过 SWIFT 框架 [微调](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) 了,支持流式输出! @@ -1513,7 +1513,7 @@ PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py ### 手机端部署 -MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.0 可运行在Android手机上,点击[MiniCPM-Llama3-V 2.5](http://minicpm.modelbest.cn/android/modelbest-release-20240528_182155.apk) / [MiniCPM-V 2.0](https://github.com/OpenBMB/mlc-MiniCPM)安装apk使用; +MiniCPM-V 2.0 可运行在Android手机上,点击[MiniCPM-V 2.0](https://github.com/OpenBMB/mlc-MiniCPM)安装apk使用; ### 本地WebUI Demo部署 <details> @@ -1525,10 +1525,7 @@ pip install -r requirements.txt ```shell # For NVIDIA GPUs, run: -python web_demo_2.5.py --device cuda - -# For Mac with MPS (Apple silicon or AMD GPUs), run: -PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.5.py --device mps +python web_demo_2.6.py --device cuda ``` </details> @@ -1540,26 +1537,89 @@ MiniCPM-V 2.6 现在支持ollama啦! 用法请参考[我们的fork ollama](https ### vLLM 部署 <a id='vllm'></a> <details> -<summary>点击查看, vLLM 现已官方支持MiniCPM-V 2.0 、MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.6 </summary> +<summary>点击查看, vLLM 现已官方支持MiniCPM-V 2.6、MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.0 </summary> -1. 首先克隆官方的 vLLM 库: +1. 安装 vLLM(>=0.5.4): ```shell -git clone https://github.com/vllm-project/vllm.git -``` -2. 安装 vLLM 库: -```shell -cd vllm -pip install -e . +pip install vllm ``` 3. 安装 timm 库: (可选,MiniCPM-V 2.0需安装) ```shell pip install timm=0.9.10 ``` 4. 运行示例代码:(注意:如果使用本地路径的模型,请确保模型代码已更新到Hugging Face上的最新版) -```shell -python examples/minicpmv_example.py -``` +```python +from transformers import AutoTokenizer +from PIL import Image +from vllm import LLM, SamplingParams +MODEL_NAME = "openbmb/MiniCPM-V-2_6" +# Also available for previous models +# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5" +# MODEL_NAME = "HwwwH/MiniCPM-V-2" + +image = Image.open("xxx.png").convert("RGB") +tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) +llm = LLM( + model=MODEL_NAME, + trust_remote_code=True, + gpu_memory_utilization=1, + max_model_len=2048 +) + +messages = [{ + "role": + "user", + "content": + # Number of images + "(<image>./</image>)" + \ + "\nWhat is the content of this image?" +}] +prompt = tokenizer.apply_chat_template( + messages, + tokenize=False, + add_generation_prompt=True +) + +# Single Inference +inputs = { + "prompt": prompt, + "multi_modal_data": { + "image": image + # Multi images, the number of images should be equal to that of `(<image>./</image>)` + # "image": [image, image] + }, +} +# Batch Inference +# inputs = [{ +# "prompt": prompt, +# "multi_modal_data": { +# "image": image +# }, +# } for _ in 2] + + +# 2.6 +stop_tokens = ['<|im_end|>', '<|endoftext|>'] +stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] +# 2.0 +# stop_token_ids = [tokenizer.eos_id] +# 2.5 +# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id] + +sampling_params = SamplingParams( + stop_token_ids=stop_token_ids, + use_beam_search=True, + temperature=0, + best_of=3, + max_tokens=1024 +) + +outputs = llm.generate(inputs, sampling_params=sampling_params) + +print(outputs[0].outputs[0].text) +``` +4. [点击此处](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink)查看带视频推理和其他有关 `vLLM` 的信息。 </details> @@ -1650,4 +1710,4 @@ python examples/minicpmv_example.py journal={arXiv preprint 2408.01800}, year={2024}, } -``` \ No newline at end of file +``` diff --git a/assets/minicpmv2_6/ICL-Mem.png b/assets/minicpmv2_6/ICL-Mem.png index 48453d5..e9517ba 100644 Binary files a/assets/minicpmv2_6/ICL-Mem.png and b/assets/minicpmv2_6/ICL-Mem.png differ diff --git a/assets/minicpmv2_6/ICL-elec.png b/assets/minicpmv2_6/ICL-elec.png index 39c7dcd..de32d77 100644 Binary files a/assets/minicpmv2_6/ICL-elec.png and b/assets/minicpmv2_6/ICL-elec.png differ diff --git a/assets/minicpmv2_6/multi_img-bike.png b/assets/minicpmv2_6/multi_img-bike.png index 0f89782..c19975d 100644 Binary files a/assets/minicpmv2_6/multi_img-bike.png and b/assets/minicpmv2_6/multi_img-bike.png differ diff --git a/assets/minicpmv2_6/multi_img-code.png b/assets/minicpmv2_6/multi_img-code.png index e7790a6..abc4a6c 100644 Binary files a/assets/minicpmv2_6/multi_img-code.png and b/assets/minicpmv2_6/multi_img-code.png differ diff --git a/assets/minicpmv2_6/multi_img-menu.png b/assets/minicpmv2_6/multi_img-menu.png index 90e78bf..2a0ba36 100644 Binary files a/assets/minicpmv2_6/multi_img-menu.png and b/assets/minicpmv2_6/multi_img-menu.png differ diff --git a/assets/minicpmv2_6/multiling-medal.png b/assets/minicpmv2_6/multiling-medal.png index 0aab601..af75d3d 100644 Binary files a/assets/minicpmv2_6/multiling-medal.png and b/assets/minicpmv2_6/multiling-medal.png differ diff --git a/assets/minicpmv2_6/multiling-olympic.png b/assets/minicpmv2_6/multiling-olympic.png index 0f4c594..3c869e8 100644 Binary files a/assets/minicpmv2_6/multiling-olympic.png and b/assets/minicpmv2_6/multiling-olympic.png differ