mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 09:49:20 +08:00
change quan doc to cookbook
This commit is contained in:
@@ -1,81 +0,0 @@
|
||||
"""
|
||||
the script will use bitandbytes to quantize the MiniCPM-Llama3-V-2_5 model.
|
||||
the be quantized model can be finetuned by MiniCPM-Llama3-V-2_5 or not.
|
||||
you only need to set the model_path 、save_path and run bash code
|
||||
|
||||
cd MiniCPM-V
|
||||
python quantize/bnb_quantize.py
|
||||
|
||||
you will get the quantized model in save_path、quantized_model test time and gpu usage
|
||||
"""
|
||||
|
||||
|
||||
import torch
|
||||
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
|
||||
from PIL import Image
|
||||
import time
|
||||
import torch
|
||||
import GPUtil
|
||||
import os
|
||||
|
||||
assert torch.cuda.is_available(),"CUDA is not available, but this code requires a GPU."
|
||||
|
||||
device = 'cuda' # Select GPU to use
|
||||
model_path = '/root/ld/ld_model_pretrained/MiniCPM-Llama3-V-2_5' # Model download path
|
||||
save_path = '/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5_int4' # Quantized model save path
|
||||
image_path = './assets/airplane.jpeg'
|
||||
|
||||
|
||||
# Create a configuration object to specify quantization parameters
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True, # Whether to perform 4-bit quantization
|
||||
load_in_8bit=False, # Whether to perform 8-bit quantization
|
||||
bnb_4bit_compute_dtype=torch.float16, # Computation precision setting
|
||||
bnb_4bit_quant_storage=torch.uint8, # Storage format for quantized weights
|
||||
bnb_4bit_quant_type="nf4", # Quantization format, here using normally distributed int4
|
||||
bnb_4bit_use_double_quant=True, # Whether to use double quantization, i.e., quantizing zeropoint and scaling parameters
|
||||
llm_int8_enable_fp32_cpu_offload=False, # Whether LLM uses int8, with fp32 parameters stored on the CPU
|
||||
llm_int8_has_fp16_weight=False, # Whether mixed precision is enabled
|
||||
llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # Modules not to be quantized
|
||||
llm_int8_threshold=6.0 # Outlier value in the llm.int8() algorithm, distinguishing whether to perform quantization based on this value
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained(
|
||||
model_path,
|
||||
device_map=device, # Allocate model to device
|
||||
quantization_config=quantization_config,
|
||||
trust_remote_code=True
|
||||
)
|
||||
|
||||
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
|
||||
start=time.time()
|
||||
response = model.chat(
|
||||
image=Image.open(image_path).convert("RGB"),
|
||||
msgs=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What is in this picture?"
|
||||
}
|
||||
],
|
||||
tokenizer=tokenizer
|
||||
) # 模型推理
|
||||
print('Output after quantization:',response)
|
||||
print('Inference time after quantization:',time.time()-start)
|
||||
print(f"GPU memory usage after quantization: {round(gpu_usage/1024,2)}GB")
|
||||
|
||||
"""
|
||||
Expected output:
|
||||
|
||||
Output after quantization: This picture contains specific parts of an airplane, including wings, engines, and tail sections. These components are key parts of large commercial aircraft.
|
||||
The wings support lift during flight, while the engines provide thrust to move the plane forward. The tail section is typically used for stabilizing flight and plays a role in airline branding.
|
||||
The design and color of the airplane indicate that it belongs to Air China, likely a passenger aircraft due to its large size and twin-engine configuration.
|
||||
There are no markings or insignia on the airplane indicating the specific model or registration number; such information may require additional context or a clearer perspective to discern.
|
||||
Inference time after quantization: 8.583992719650269 seconds
|
||||
GPU memory usage after quantization: 6.41 GB
|
||||
"""
|
||||
|
||||
# Save the model and tokenizer
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
model.save_pretrained(save_path, safe_serialization=True)
|
||||
tokenizer.save_pretrained(save_path)
|
||||
Reference in New Issue
Block a user