Merge pull request #947 from ZMXJJ/minicpmv-4

Update README
This commit is contained in:
tc-mb
2025-08-06 14:55:20 +08:00
committed by GitHub
4 changed files with 13 additions and 13 deletions

View File

@@ -20,7 +20,7 @@
</span>
<br>
<p align="center">
MiniCPM-V 4.0 <a href="https://huggingface.co/openbmb/MiniCPM-V-4">🤗</a> <a href="https://minicpm-v.openbmb.cn/"> 🤖</a> | MiniCPM-o 2.6 <a href="https://huggingface.co/openbmb/MiniCPM-o-2_6">🤗</a> <a href="https://minicpm-omni-webdemo-us.modelbest.cn/"> 🤖</a> | MiniCPM-V 2.6 <a href="https://huggingface.co/openbmb/MiniCPM-V-2_6">🤗</a> <a href="http://120.92.209.146:8887/">🤖</a> | <a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook">🍳 Cookbook</a> |
📄 Technical Blog [<a href="https://openbmb.notion.site/MiniCPM-o-2-6-A-GPT-4o-Level-MLLM-for-Vision-Speech-and-Multimodal-Live-Streaming-on-Your-Phone-185ede1b7a558042b5d5e45e6b237da9">English</a>/<a href="https://openbmb.notion.site/MiniCPM-o-2-6-GPT-4o-188ede1b7a558084b3aedd669cb80730">中文</a>]
@@ -3122,7 +3122,7 @@ pip install vllm
### Simple Fine-tuning <!-- omit in toc -->
We support simple fine-tuning with Hugging Face for MiniCPM-o 2.6, MiniCPM-V 2.6, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.0.
We support simple fine-tuning with Hugging Face for MiniCPM-V 4.0, MiniCPM-o 2.6, MiniCPM-V 2.6, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.0.
[Reference Document](./finetune/readme.md)
@@ -3139,7 +3139,7 @@ Best Practices: [MiniCPM-o 2.6](https://github.com/PKU-Alignment/align-anything/
We support fine-tuning MiniCPM-o 2.6 and MiniCPM-V 2.6 with the LLaMA-Factory framework. LLaMA-Factory provides a solution for flexibly customizing the fine-tuning (Lora/Full/Qlora) of 200+ LLMs without the need for coding through the built-in web UI LLaMABoard. It supports various training methods like sft/ppo/dpo/kto and advanced algorithms like Galore/BAdam/LLaMA-Pro/Pissa/LongLoRA.
Best Practices: [MiniCPM-o 2.6 | MiniCPM-V 2.6](./docs/llamafactory_train_and_infer.md).
Best Practices: [MiniCPM-V 4.0 | MiniCPM-o 2.6 | MiniCPM-V 2.6](./docs/llamafactory_train_and_infer.md).
### With the SWIFT Framework <!-- omit in toc -->

View File

@@ -16,7 +16,7 @@
<a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook" target="_blank">&nbsp;🍳 使用指南</a >&nbsp;
</span>
<br>
<p align="center">
MiniCPM-V 4.0 <a href="https://huggingface.co/openbmb/MiniCPM-V-4">🤗</a> <a href="https://minicpm-v.openbmb.cn/"> 🤖</a> | MiniCPM-o 2.6 <a href="https://huggingface.co/openbmb/MiniCPM-o-2_6">🤗</a> <a href="https://minicpm-omni-webdemo-us.modelbest.cn/"> 🤖</a> | MiniCPM-V 2.6 <a href="https://huggingface.co/openbmb/MiniCPM-V-2_6">🤗</a> <a href="http://120.92.209.146:8887/">🤖</a> |
📄 技术报告 [<a href="https://openbmb.notion.site/MiniCPM-o-2-6-GPT-4o-188ede1b7a558084b3aedd669cb80730">中文</a>/<a href="https://openbmb.notion.site/MiniCPM-o-2-6-A-GPT-4o-Level-MLLM-for-Vision-Speech-and-Multimodal-Live-Streaming-on-Your-Phone-185ede1b7a558042b5d5e45e6b237da9">English</a>]
@@ -2987,7 +2987,7 @@ pip install vllm
### 简易微调 <!-- omit in toc -->
我们支持使用 Huggingface Transformers 库简易地微调 MiniCPM-o 2.6、MiniCPM-V 2.6、MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.0 模型。
我们支持使用 Huggingface Transformers 库简易地微调 MiniCPM-V 4.0、MiniCPM-o 2.6、MiniCPM-V 2.6、MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.0 模型。
[参考文档](./finetune/readme.md)
@@ -3003,7 +3003,7 @@ pip install vllm
我们支持使用 LLaMA-Factory 微调 MiniCPM-o 2.6 和 MiniCPM-V 2.6。LLaMA-Factory 提供了一种灵活定制 200 多个大型语言模型LLM微调Lora/Full/Qlora解决方案无需编写代码通过内置的 Web 用户界面 LLaMABoard 即可实现训练/推理/评估。它支持多种训练方法,如 sft/ppo/dpo/kto并且还支持如 Galore/BAdam/LLaMA-Pro/Pissa/LongLoRA 等高级算法。
最佳实践: [MiniCPM-o 2.6 | MiniCPM-V 2.6](./docs/llamafactory_train_and_infer.md).
最佳实践: [MiniCPM-V 4.0 | MiniCPM-o 2.6 | MiniCPM-V 2.6](./docs/llamafactory_train_and_infer.md).
### 使用 SWIFT 框架 <!-- omit in toc -->

View File

@@ -13,6 +13,7 @@
- [Inference](#Inference)
## Support Models
* [openbmb/MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4)
* [openbmb/MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6)
* [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6)

View File

@@ -1,7 +1,7 @@
# MiniCPM-V Finetuning
# MiniCPM-V & o Finetuning
We offer the official scripts for easy finetuning of the pretrained **MiniCPM-o-2_6**, **MiniCPM-V-2_6**, **MiniCPM-Llama3-V 2.5** and **MiniCPM-V 2.0** on downstream tasks. Our finetune scripts use transformers Trainer and DeepSpeed by default.
We offer the official scripts for easy finetuning of the pretrained **MiniCPM-V 4.0**, **MiniCPM-o 2.6**, **MiniCPM-V 2.6**, **MiniCPM-Llama3-V 2.5** and **MiniCPM-V 2.0** on downstream tasks. Our finetune scripts use transformers Trainer and DeepSpeed by default.
### Data preparation
@@ -96,11 +96,10 @@ If the total token count exceeds `max_length`, truncation will be applied. For m
Full-parameter parameter finetuning requires updating all parameters of LLM in the whole training process. Please specify the correct MODEL path, DATA path and LLM_TYPE in the shell scripts.
```shell
MODEL="MiniCPM-o-2_6" # or "openbmb/MiniCPM-V-2_6", openbmb/MiniCPM-Llama3-V-2_5, openbmb/MiniCPM-V-2
DATA="path/to/trainging_data" # json file
EVAL_DATA="path/to/test_data" # json file
LLM_TYPE="qwen" # if use openbmb/MiniCPM-V-2, please set LLM_TYPE=minicpm, if use openbmb/MiniCPM-Llama3-V-2_5, please set LLM_TYPE="llama3",
# if use openbmb/MiniCPM-o-2_6 or openbmb/MiniCPM-V-2_6, please set LLM_TYPE=qwen
MODEL="MiniCPM-o-2_6" # or "openbmb/MiniCPM-V-2_6", "openbmb/MiniCPM-Llama3-V-2_5", "openbmb/MiniCPM-V-2"
DATA="path/to/training_data.json"
EVAL_DATA="path/to/test_data.json"
LLM_TYPE="qwen" # llama for MiniCPM-V-4, minicpm for MiniCPM-V-2, llama3 for MiniCPM-Llama3-V-2_5, qwen for MiniCPM-o-2_6/MiniCPM-V-2_6
```
To launch your training, run the following script: