mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-05 02:09:21 +08:00
Compare commits
11 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4c35836fa5 | ||
|
|
294c6b1327 | ||
|
|
ad76016916 | ||
|
|
05c8f9b4a8 | ||
|
|
4d5b62cea9 | ||
|
|
8e87111a98 | ||
|
|
def0855608 | ||
|
|
6976a91348 | ||
|
|
458e9df236 | ||
|
|
d03bba82bb | ||
|
|
a58bab5403 |
10
configs/data/joe_spont_only.yaml
Normal file
10
configs/data/joe_spont_only.yaml
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
defaults:
|
||||||
|
- ljspeech
|
||||||
|
- _self_
|
||||||
|
|
||||||
|
name: joe_spont_only
|
||||||
|
train_filelist_path: data/filelists/joe_spontonly_train.txt
|
||||||
|
valid_filelist_path: data/filelists/joe_spontonly_val.txt
|
||||||
|
data_statistics:
|
||||||
|
mel_mean: -5.882903
|
||||||
|
mel_std: 2.458284
|
||||||
10
configs/data/ryan.yaml
Normal file
10
configs/data/ryan.yaml
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
defaults:
|
||||||
|
- ljspeech
|
||||||
|
- _self_
|
||||||
|
|
||||||
|
name: ryan
|
||||||
|
train_filelist_path: data/filelists/ryan_train.csv
|
||||||
|
valid_filelist_path: data/filelists/ryan_val.csv
|
||||||
|
data_statistics:
|
||||||
|
mel_mean: -4.715779
|
||||||
|
mel_std: 2.124502
|
||||||
10
configs/data/tsg2.yaml
Normal file
10
configs/data/tsg2.yaml
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
defaults:
|
||||||
|
- ljspeech
|
||||||
|
- _self_
|
||||||
|
|
||||||
|
name: tsg2
|
||||||
|
train_filelist_path: data/filelists/cormac_train.txt
|
||||||
|
valid_filelist_path: data/filelists/cormac_val.txt
|
||||||
|
data_statistics:
|
||||||
|
mel_mean: -5.536622
|
||||||
|
mel_std: 2.116101
|
||||||
14
configs/experiment/joe_det_dur.yaml
Normal file
14
configs/experiment/joe_det_dur.yaml
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
# @package _global_
|
||||||
|
|
||||||
|
# to execute this experiment run:
|
||||||
|
# python train.py experiment=multispeaker
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
- override /data: joe_spont_only.yaml
|
||||||
|
|
||||||
|
# all parameters below will be merged with parameters from default configurations set above
|
||||||
|
# this allows you to overwrite only specified parameters
|
||||||
|
|
||||||
|
tags: ["joe"]
|
||||||
|
|
||||||
|
run_name: joe_det_dur
|
||||||
20
configs/experiment/joe_stoc_dur.yaml
Normal file
20
configs/experiment/joe_stoc_dur.yaml
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
# @package _global_
|
||||||
|
|
||||||
|
# to execute this experiment run:
|
||||||
|
# python train.py experiment=multispeaker
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
- override /data: joe_spont_only.yaml
|
||||||
|
- override /model/duration_predictor: flow_matching.yaml
|
||||||
|
|
||||||
|
# all parameters below will be merged with parameters from default configurations set above
|
||||||
|
# this allows you to overwrite only specified parameters
|
||||||
|
|
||||||
|
tags: ["joe"]
|
||||||
|
|
||||||
|
|
||||||
|
run_name: joe_stoc_dur
|
||||||
|
|
||||||
|
model:
|
||||||
|
duration_predictor:
|
||||||
|
p_dropout: 0.2
|
||||||
16
configs/experiment/ljspeech_stoc_dur.yaml
Normal file
16
configs/experiment/ljspeech_stoc_dur.yaml
Normal file
@@ -0,0 +1,16 @@
|
|||||||
|
# @package _global_
|
||||||
|
|
||||||
|
# to execute this experiment run:
|
||||||
|
# python train.py experiment=multispeaker
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
- override /data: ljspeech.yaml
|
||||||
|
- override /model/duration_predictor: flow_matching.yaml
|
||||||
|
|
||||||
|
# all parameters below will be merged with parameters from default configurations set above
|
||||||
|
# this allows you to overwrite only specified parameters
|
||||||
|
|
||||||
|
tags: ["ljspeech"]
|
||||||
|
|
||||||
|
|
||||||
|
run_name: ljspeech
|
||||||
18
configs/experiment/ryan_det_dur.yaml
Normal file
18
configs/experiment/ryan_det_dur.yaml
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
# @package _global_
|
||||||
|
|
||||||
|
# to execute this experiment run:
|
||||||
|
# python train.py experiment=multispeaker
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
- override /data: ryan.yaml
|
||||||
|
|
||||||
|
# all parameters below will be merged with parameters from default configurations set above
|
||||||
|
# this allows you to overwrite only specified parameters
|
||||||
|
|
||||||
|
tags: ["ryan"]
|
||||||
|
|
||||||
|
run_name: ryan_det_dur
|
||||||
|
|
||||||
|
|
||||||
|
trainer:
|
||||||
|
max_epochs: 3000
|
||||||
24
configs/experiment/ryan_stoc_dur.yaml
Normal file
24
configs/experiment/ryan_stoc_dur.yaml
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
# @package _global_
|
||||||
|
|
||||||
|
# to execute this experiment run:
|
||||||
|
# python train.py experiment=multispeaker
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
- override /data: ryan.yaml
|
||||||
|
- override /model/duration_predictor: flow_matching.yaml
|
||||||
|
|
||||||
|
# all parameters below will be merged with parameters from default configurations set above
|
||||||
|
# this allows you to overwrite only specified parameters
|
||||||
|
|
||||||
|
tags: ["ryan"]
|
||||||
|
|
||||||
|
|
||||||
|
run_name: ryan_stoc_dur
|
||||||
|
|
||||||
|
model:
|
||||||
|
duration_predictor:
|
||||||
|
p_dropout: 0.2
|
||||||
|
|
||||||
|
|
||||||
|
trainer:
|
||||||
|
max_epochs: 3000
|
||||||
14
configs/experiment/tsg2_det_dur.yaml
Normal file
14
configs/experiment/tsg2_det_dur.yaml
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
# @package _global_
|
||||||
|
|
||||||
|
# to execute this experiment run:
|
||||||
|
# python train.py experiment=multispeaker
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
- override /data: tsg2.yaml
|
||||||
|
|
||||||
|
# all parameters below will be merged with parameters from default configurations set above
|
||||||
|
# this allows you to overwrite only specified parameters
|
||||||
|
|
||||||
|
tags: ["tsg2"]
|
||||||
|
|
||||||
|
run_name: tsg2_det_dur
|
||||||
20
configs/experiment/tsg2_stoc_dur.yaml
Normal file
20
configs/experiment/tsg2_stoc_dur.yaml
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
# @package _global_
|
||||||
|
|
||||||
|
# to execute this experiment run:
|
||||||
|
# python train.py experiment=multispeaker
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
- override /data: tsg2.yaml
|
||||||
|
- override /model/duration_predictor: flow_matching.yaml
|
||||||
|
|
||||||
|
# all parameters below will be merged with parameters from default configurations set above
|
||||||
|
# this allows you to overwrite only specified parameters
|
||||||
|
|
||||||
|
tags: ["tsg2"]
|
||||||
|
|
||||||
|
|
||||||
|
run_name: tsg2_stoc_dur
|
||||||
|
|
||||||
|
model:
|
||||||
|
duration_predictor:
|
||||||
|
p_dropout: 0.5
|
||||||
7
configs/model/duration_predictor/deterministic.yaml
Normal file
7
configs/model/duration_predictor/deterministic.yaml
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
name: deterministic
|
||||||
|
n_spks: ${model.n_spks}
|
||||||
|
spk_emb_dim: ${model.spk_emb_dim}
|
||||||
|
filter_channels: 256
|
||||||
|
kernel_size: 3
|
||||||
|
n_channels: ${model.encoder.encoder_params.n_channels}
|
||||||
|
p_dropout: ${model.encoder.encoder_params.p_dropout}
|
||||||
7
configs/model/duration_predictor/flow_matching.yaml
Normal file
7
configs/model/duration_predictor/flow_matching.yaml
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
defaults:
|
||||||
|
- deterministic.yaml
|
||||||
|
- _self_
|
||||||
|
|
||||||
|
sigma_min: 1e-4
|
||||||
|
n_steps: 10
|
||||||
|
name: flow_matching
|
||||||
@@ -3,16 +3,8 @@ encoder_params:
|
|||||||
n_feats: ${model.n_feats}
|
n_feats: ${model.n_feats}
|
||||||
n_channels: 192
|
n_channels: 192
|
||||||
filter_channels: 768
|
filter_channels: 768
|
||||||
filter_channels_dp: 256
|
|
||||||
n_heads: 2
|
n_heads: 2
|
||||||
n_layers: 6
|
n_layers: 6
|
||||||
kernel_size: 3
|
kernel_size: 3
|
||||||
p_dropout: 0.1
|
p_dropout: 0.1
|
||||||
spk_emb_dim: 64
|
|
||||||
n_spks: 1
|
|
||||||
prenet: true
|
prenet: true
|
||||||
|
|
||||||
duration_predictor_params:
|
|
||||||
filter_channels_dp: ${model.encoder.encoder_params.filter_channels_dp}
|
|
||||||
kernel_size: 3
|
|
||||||
p_dropout: ${model.encoder.encoder_params.p_dropout}
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
defaults:
|
defaults:
|
||||||
- _self_
|
- _self_
|
||||||
- encoder: default.yaml
|
- encoder: default.yaml
|
||||||
|
- duration_predictor: deterministic.yaml
|
||||||
- decoder: default.yaml
|
- decoder: default.yaml
|
||||||
- cfm: default.yaml
|
- cfm: default.yaml
|
||||||
- optimizer: adam.yaml
|
- optimizer: adam.yaml
|
||||||
|
|||||||
@@ -227,7 +227,7 @@ def cli():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--vocoder",
|
"--vocoder",
|
||||||
type=str,
|
type=str,
|
||||||
default=None,
|
default="hifigan_univ_v1",
|
||||||
help="Vocoder to use (default: will use the one suggested with the pretrained model))",
|
help="Vocoder to use (default: will use the one suggested with the pretrained model))",
|
||||||
choices=VOCODER_URLS.keys(),
|
choices=VOCODER_URLS.keys(),
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -109,7 +109,7 @@ class TextMelDataModule(LightningDataModule):
|
|||||||
"""Clean up after fit or test."""
|
"""Clean up after fit or test."""
|
||||||
pass # pylint: disable=unnecessary-pass
|
pass # pylint: disable=unnecessary-pass
|
||||||
|
|
||||||
def state_dict(self): # pylint: disable=no-self-use
|
def state_dict(self):
|
||||||
"""Extra things to save to checkpoint."""
|
"""Extra things to save to checkpoint."""
|
||||||
return {}
|
return {}
|
||||||
|
|
||||||
@@ -164,10 +164,10 @@ class TextMelDataset(torch.utils.data.Dataset):
|
|||||||
filepath, text = filepath_and_text[0], filepath_and_text[1]
|
filepath, text = filepath_and_text[0], filepath_and_text[1]
|
||||||
spk = None
|
spk = None
|
||||||
|
|
||||||
text = self.get_text(text, add_blank=self.add_blank)
|
text, cleaned_text = self.get_text(text, add_blank=self.add_blank)
|
||||||
mel = self.get_mel(filepath)
|
mel = self.get_mel(filepath)
|
||||||
|
|
||||||
return {"x": text, "y": mel, "spk": spk}
|
return {"x": text, "y": mel, "spk": spk, "filepath": filepath, "x_text": cleaned_text}
|
||||||
|
|
||||||
def get_mel(self, filepath):
|
def get_mel(self, filepath):
|
||||||
audio, sr = ta.load(filepath)
|
audio, sr = ta.load(filepath)
|
||||||
@@ -187,11 +187,11 @@ class TextMelDataset(torch.utils.data.Dataset):
|
|||||||
return mel
|
return mel
|
||||||
|
|
||||||
def get_text(self, text, add_blank=True):
|
def get_text(self, text, add_blank=True):
|
||||||
text_norm = text_to_sequence(text, self.cleaners)
|
text_norm, cleaned_text = text_to_sequence(text, self.cleaners)
|
||||||
if self.add_blank:
|
if self.add_blank:
|
||||||
text_norm = intersperse(text_norm, 0)
|
text_norm = intersperse(text_norm, 0)
|
||||||
text_norm = torch.IntTensor(text_norm)
|
text_norm = torch.IntTensor(text_norm)
|
||||||
return text_norm
|
return text_norm, cleaned_text
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
datapoint = self.get_datapoint(self.filepaths_and_text[index])
|
datapoint = self.get_datapoint(self.filepaths_and_text[index])
|
||||||
@@ -207,15 +207,16 @@ class TextMelBatchCollate:
|
|||||||
|
|
||||||
def __call__(self, batch):
|
def __call__(self, batch):
|
||||||
B = len(batch)
|
B = len(batch)
|
||||||
y_max_length = max([item["y"].shape[-1] for item in batch])
|
y_max_length = max([item["y"].shape[-1] for item in batch]) # pylint: disable=consider-using-generator
|
||||||
y_max_length = fix_len_compatibility(y_max_length)
|
y_max_length = fix_len_compatibility(y_max_length)
|
||||||
x_max_length = max([item["x"].shape[-1] for item in batch])
|
x_max_length = max([item["x"].shape[-1] for item in batch]) # pylint: disable=consider-using-generator
|
||||||
n_feats = batch[0]["y"].shape[-2]
|
n_feats = batch[0]["y"].shape[-2]
|
||||||
|
|
||||||
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
|
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
|
||||||
x = torch.zeros((B, x_max_length), dtype=torch.long)
|
x = torch.zeros((B, x_max_length), dtype=torch.long)
|
||||||
y_lengths, x_lengths = [], []
|
y_lengths, x_lengths = [], []
|
||||||
spks = []
|
spks = []
|
||||||
|
filepaths, x_texts = [], []
|
||||||
for i, item in enumerate(batch):
|
for i, item in enumerate(batch):
|
||||||
y_, x_ = item["y"], item["x"]
|
y_, x_ = item["y"], item["x"]
|
||||||
y_lengths.append(y_.shape[-1])
|
y_lengths.append(y_.shape[-1])
|
||||||
@@ -223,9 +224,19 @@ class TextMelBatchCollate:
|
|||||||
y[i, :, : y_.shape[-1]] = y_
|
y[i, :, : y_.shape[-1]] = y_
|
||||||
x[i, : x_.shape[-1]] = x_
|
x[i, : x_.shape[-1]] = x_
|
||||||
spks.append(item["spk"])
|
spks.append(item["spk"])
|
||||||
|
filepaths.append(item["filepath"])
|
||||||
|
x_texts.append(item["x_text"])
|
||||||
|
|
||||||
y_lengths = torch.tensor(y_lengths, dtype=torch.long)
|
y_lengths = torch.tensor(y_lengths, dtype=torch.long)
|
||||||
x_lengths = torch.tensor(x_lengths, dtype=torch.long)
|
x_lengths = torch.tensor(x_lengths, dtype=torch.long)
|
||||||
spks = torch.tensor(spks, dtype=torch.long) if self.n_spks > 1 else None
|
spks = torch.tensor(spks, dtype=torch.long) if self.n_spks > 1 else None
|
||||||
|
|
||||||
return {"x": x, "x_lengths": x_lengths, "y": y, "y_lengths": y_lengths, "spks": spks}
|
return {
|
||||||
|
"x": x,
|
||||||
|
"x_lengths": x_lengths,
|
||||||
|
"y": y,
|
||||||
|
"y_lengths": y_lengths,
|
||||||
|
"spks": spks,
|
||||||
|
"filepaths": filepaths,
|
||||||
|
"x_texts": x_texts,
|
||||||
|
}
|
||||||
|
|||||||
@@ -58,7 +58,7 @@ class BaseLightningClass(LightningModule, ABC):
|
|||||||
y, y_lengths = batch["y"], batch["y_lengths"]
|
y, y_lengths = batch["y"], batch["y_lengths"]
|
||||||
spks = batch["spks"]
|
spks = batch["spks"]
|
||||||
|
|
||||||
dur_loss, prior_loss, diff_loss = self(
|
dur_loss, prior_loss, diff_loss, *_ = self(
|
||||||
x=x,
|
x=x,
|
||||||
x_lengths=x_lengths,
|
x_lengths=x_lengths,
|
||||||
y=y,
|
y=y,
|
||||||
|
|||||||
448
matcha/models/components/duration_predictors.py
Normal file
448
matcha/models/components/duration_predictors.py
Normal file
@@ -0,0 +1,448 @@
|
|||||||
|
import math
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from einops import pack
|
||||||
|
|
||||||
|
from matcha.models.components.decoder import SinusoidalPosEmb, TimestepEmbedding
|
||||||
|
from matcha.models.components.text_encoder import LayerNorm
|
||||||
|
|
||||||
|
# Define available networks
|
||||||
|
|
||||||
|
|
||||||
|
class DurationPredictorNetwork(nn.Module):
|
||||||
|
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
|
||||||
|
self.drop = torch.nn.Dropout(p_dropout)
|
||||||
|
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||||
|
self.norm_1 = LayerNorm(filter_channels)
|
||||||
|
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||||
|
self.norm_2 = LayerNorm(filter_channels)
|
||||||
|
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask):
|
||||||
|
x = self.conv_1(x * x_mask)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.norm_1(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.conv_2(x * x_mask)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.norm_2(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.proj(x * x_mask)
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class DurationPredictorNetworkWithTimeStep(nn.Module):
|
||||||
|
"""Similar architecture but with a time embedding support"""
|
||||||
|
|
||||||
|
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
|
||||||
|
self.time_embeddings = SinusoidalPosEmb(filter_channels)
|
||||||
|
self.time_mlp = TimestepEmbedding(
|
||||||
|
in_channels=filter_channels,
|
||||||
|
time_embed_dim=filter_channels,
|
||||||
|
act_fn="silu",
|
||||||
|
)
|
||||||
|
|
||||||
|
self.drop = torch.nn.Dropout(p_dropout)
|
||||||
|
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||||
|
self.norm_1 = LayerNorm(filter_channels)
|
||||||
|
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||||
|
self.norm_2 = LayerNorm(filter_channels)
|
||||||
|
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, enc_outputs, t):
|
||||||
|
t = self.time_embeddings(t)
|
||||||
|
t = self.time_mlp(t).unsqueeze(-1)
|
||||||
|
|
||||||
|
x = pack([x, enc_outputs], "b * t")[0]
|
||||||
|
|
||||||
|
x = self.conv_1(x * x_mask)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = x + t
|
||||||
|
x = self.norm_1(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.conv_2(x * x_mask)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = x + t
|
||||||
|
x = self.norm_2(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.proj(x * x_mask)
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
|
# Define available methods to compute loss
|
||||||
|
|
||||||
|
# Simple MSE deterministic
|
||||||
|
|
||||||
|
|
||||||
|
class DeterministicDurationPredictor(nn.Module):
|
||||||
|
def __init__(self, params):
|
||||||
|
super().__init__()
|
||||||
|
self.estimator = DurationPredictorNetwork(
|
||||||
|
params.n_channels + (params.spk_emb_dim if params.n_spks > 1 else 0),
|
||||||
|
params.filter_channels,
|
||||||
|
params.kernel_size,
|
||||||
|
params.p_dropout,
|
||||||
|
)
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def forward(self, x, x_mask):
|
||||||
|
return self.estimator(x, x_mask)
|
||||||
|
|
||||||
|
def compute_loss(self, durations, enc_outputs, x_mask):
|
||||||
|
return F.mse_loss(self.estimator(enc_outputs, x_mask), durations, reduction="sum") / torch.sum(x_mask)
|
||||||
|
|
||||||
|
|
||||||
|
# Flow Matching duration predictor
|
||||||
|
|
||||||
|
|
||||||
|
class FlowMatchingDurationPrediction(nn.Module):
|
||||||
|
def __init__(self, params) -> None:
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.estimator = DurationPredictorNetworkWithTimeStep(
|
||||||
|
1
|
||||||
|
+ params.n_channels
|
||||||
|
+ (
|
||||||
|
params.spk_emb_dim if params.n_spks > 1 else 0
|
||||||
|
), # 1 for the durations and n_channels for encoder outputs
|
||||||
|
params.filter_channels,
|
||||||
|
params.kernel_size,
|
||||||
|
params.p_dropout,
|
||||||
|
)
|
||||||
|
self.sigma_min = params.sigma_min
|
||||||
|
self.n_steps = params.n_steps
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def forward(self, enc_outputs, mask, n_timesteps=500, temperature=1):
|
||||||
|
"""Forward diffusion
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mu (torch.Tensor): output of encoder
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
mask (torch.Tensor): output_mask
|
||||||
|
shape: (batch_size, 1, mel_timesteps)
|
||||||
|
n_timesteps (int): number of diffusion steps
|
||||||
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
||||||
|
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||||
|
shape: (batch_size, spk_emb_dim)
|
||||||
|
cond: Not used but kept for future purposes
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
sample: generated mel-spectrogram
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
"""
|
||||||
|
if n_timesteps is None:
|
||||||
|
n_timesteps = self.n_steps
|
||||||
|
|
||||||
|
b, _, t = enc_outputs.shape
|
||||||
|
z = torch.randn((b, 1, t), device=enc_outputs.device, dtype=enc_outputs.dtype) * temperature
|
||||||
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=enc_outputs.device)
|
||||||
|
return self.solve_euler(z, t_span=t_span, enc_outputs=enc_outputs, mask=mask)
|
||||||
|
|
||||||
|
def solve_euler(self, x, t_span, enc_outputs, mask):
|
||||||
|
"""
|
||||||
|
Fixed euler solver for ODEs.
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): random noise
|
||||||
|
t_span (torch.Tensor): n_timesteps interpolated
|
||||||
|
shape: (n_timesteps + 1,)
|
||||||
|
mu (torch.Tensor): output of encoder
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
mask (torch.Tensor): output_mask
|
||||||
|
shape: (batch_size, 1, mel_timesteps)
|
||||||
|
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||||
|
shape: (batch_size, spk_emb_dim)
|
||||||
|
"""
|
||||||
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||||
|
|
||||||
|
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||||
|
# Or in future might add like a return_all_steps flag
|
||||||
|
sol = []
|
||||||
|
|
||||||
|
for step in range(1, len(t_span)):
|
||||||
|
dphi_dt = self.estimator(x, mask, enc_outputs, t)
|
||||||
|
|
||||||
|
x = x + dt * dphi_dt
|
||||||
|
t = t + dt
|
||||||
|
sol.append(x)
|
||||||
|
if step < len(t_span) - 1:
|
||||||
|
dt = t_span[step + 1] - t
|
||||||
|
|
||||||
|
return sol[-1]
|
||||||
|
|
||||||
|
def compute_loss(self, x1, enc_outputs, mask):
|
||||||
|
"""Computes diffusion loss
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x1 (torch.Tensor): Target
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
mask (torch.Tensor): target mask
|
||||||
|
shape: (batch_size, 1, mel_timesteps)
|
||||||
|
mu (torch.Tensor): output of encoder
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
||||||
|
shape: (batch_size, spk_emb_dim)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
loss: conditional flow matching loss
|
||||||
|
y: conditional flow
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
"""
|
||||||
|
enc_outputs = enc_outputs.detach() # don't update encoder from the duration predictor
|
||||||
|
b, _, t = enc_outputs.shape
|
||||||
|
|
||||||
|
# random timestep
|
||||||
|
t = torch.rand([b, 1, 1], device=enc_outputs.device, dtype=enc_outputs.dtype)
|
||||||
|
# sample noise p(x_0)
|
||||||
|
z = torch.randn_like(x1)
|
||||||
|
|
||||||
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
||||||
|
u = x1 - (1 - self.sigma_min) * z
|
||||||
|
|
||||||
|
loss = F.mse_loss(self.estimator(y, mask, enc_outputs, t.squeeze()), u, reduction="sum") / (
|
||||||
|
torch.sum(mask) * u.shape[1]
|
||||||
|
)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
# VITS discrete normalising flow based duration predictor
|
||||||
|
|
||||||
|
|
||||||
|
class Log(nn.Module):
|
||||||
|
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||||
|
if not reverse:
|
||||||
|
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
||||||
|
logdet = torch.sum(-y, [1, 2])
|
||||||
|
return y, logdet
|
||||||
|
else:
|
||||||
|
x = torch.exp(x) * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ElementwiseAffine(nn.Module):
|
||||||
|
def __init__(self, channels):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.m = nn.Parameter(torch.zeros(channels, 1))
|
||||||
|
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||||
|
if not reverse:
|
||||||
|
y = self.m + torch.exp(self.logs) * x
|
||||||
|
y = y * x_mask
|
||||||
|
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
||||||
|
return y, logdet
|
||||||
|
else:
|
||||||
|
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class DDSConv(nn.Module):
|
||||||
|
"""
|
||||||
|
Dialted and Depth-Separable Convolution
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
self.convs_sep = nn.ModuleList()
|
||||||
|
self.convs_1x1 = nn.ModuleList()
|
||||||
|
self.norms_1 = nn.ModuleList()
|
||||||
|
self.norms_2 = nn.ModuleList()
|
||||||
|
for i in range(n_layers):
|
||||||
|
dilation = kernel_size**i
|
||||||
|
padding = (kernel_size * dilation - dilation) // 2
|
||||||
|
self.convs_sep.append(
|
||||||
|
nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding)
|
||||||
|
)
|
||||||
|
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||||||
|
self.norms_1.append(LayerNorm(channels))
|
||||||
|
self.norms_2.append(LayerNorm(channels))
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None):
|
||||||
|
if g is not None:
|
||||||
|
x = x + g
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
y = self.convs_sep[i](x * x_mask)
|
||||||
|
y = self.norms_1[i](y)
|
||||||
|
y = F.gelu(y)
|
||||||
|
y = self.convs_1x1[i](y)
|
||||||
|
y = self.norms_2[i](y)
|
||||||
|
y = F.gelu(y)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = x + y
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class ConvFlow(nn.Module):
|
||||||
|
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.num_bins = num_bins
|
||||||
|
self.tail_bound = tail_bound
|
||||||
|
self.half_channels = in_channels // 2
|
||||||
|
|
||||||
|
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||||||
|
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
||||||
|
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
||||||
|
self.proj.weight.data.zero_()
|
||||||
|
self.proj.bias.data.zero_()
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None, reverse=False):
|
||||||
|
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||||
|
h = self.pre(x0)
|
||||||
|
h = self.convs(h, x_mask, g=g)
|
||||||
|
h = self.proj(h) * x_mask
|
||||||
|
|
||||||
|
b, c, t = x0.shape
|
||||||
|
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||||||
|
|
||||||
|
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
||||||
|
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels)
|
||||||
|
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
||||||
|
|
||||||
|
x1, logabsdet = piecewise_rational_quadratic_transform(
|
||||||
|
x1,
|
||||||
|
unnormalized_widths,
|
||||||
|
unnormalized_heights,
|
||||||
|
unnormalized_derivatives,
|
||||||
|
inverse=reverse,
|
||||||
|
tails="linear",
|
||||||
|
tail_bound=self.tail_bound,
|
||||||
|
)
|
||||||
|
|
||||||
|
x = torch.cat([x0, x1], 1) * x_mask
|
||||||
|
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
||||||
|
if not reverse:
|
||||||
|
return x, logdet
|
||||||
|
else:
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class StochasticDurationPredictor(nn.Module):
|
||||||
|
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
||||||
|
super().__init__()
|
||||||
|
filter_channels = in_channels # it needs to be removed from future version.
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.n_flows = n_flows
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
|
||||||
|
self.log_flow = Log()
|
||||||
|
self.flows = nn.ModuleList()
|
||||||
|
self.flows.append(ElementwiseAffine(2))
|
||||||
|
for i in range(n_flows):
|
||||||
|
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||||
|
self.flows.append(modules.Flip())
|
||||||
|
|
||||||
|
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
||||||
|
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||||
|
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||||
|
self.post_flows = nn.ModuleList()
|
||||||
|
self.post_flows.append(modules.ElementwiseAffine(2))
|
||||||
|
for i in range(4):
|
||||||
|
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||||
|
self.post_flows.append(modules.Flip())
|
||||||
|
|
||||||
|
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
||||||
|
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||||
|
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||||
|
if gin_channels != 0:
|
||||||
|
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
||||||
|
x = torch.detach(x)
|
||||||
|
x = self.pre(x)
|
||||||
|
if g is not None:
|
||||||
|
g = torch.detach(g)
|
||||||
|
x = x + self.cond(g)
|
||||||
|
x = self.convs(x, x_mask)
|
||||||
|
x = self.proj(x) * x_mask
|
||||||
|
|
||||||
|
if not reverse:
|
||||||
|
flows = self.flows
|
||||||
|
assert w is not None
|
||||||
|
|
||||||
|
logdet_tot_q = 0
|
||||||
|
h_w = self.post_pre(w)
|
||||||
|
h_w = self.post_convs(h_w, x_mask)
|
||||||
|
h_w = self.post_proj(h_w) * x_mask
|
||||||
|
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
||||||
|
z_q = e_q
|
||||||
|
for flow in self.post_flows:
|
||||||
|
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
||||||
|
logdet_tot_q += logdet_q
|
||||||
|
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
||||||
|
u = torch.sigmoid(z_u) * x_mask
|
||||||
|
z0 = (w - u) * x_mask
|
||||||
|
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
||||||
|
logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2]) - logdet_tot_q
|
||||||
|
|
||||||
|
logdet_tot = 0
|
||||||
|
z0, logdet = self.log_flow(z0, x_mask)
|
||||||
|
logdet_tot += logdet
|
||||||
|
z = torch.cat([z0, z1], 1)
|
||||||
|
for flow in flows:
|
||||||
|
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
||||||
|
logdet_tot = logdet_tot + logdet
|
||||||
|
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) - logdet_tot
|
||||||
|
return nll + logq # [b]
|
||||||
|
else:
|
||||||
|
flows = list(reversed(self.flows))
|
||||||
|
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
||||||
|
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
||||||
|
for flow in flows:
|
||||||
|
z = flow(z, x_mask, g=x, reverse=reverse)
|
||||||
|
z0, z1 = torch.split(z, [1, 1], 1)
|
||||||
|
logw = z0
|
||||||
|
return logw
|
||||||
|
|
||||||
|
|
||||||
|
# Meta class to wrap all duration predictors
|
||||||
|
|
||||||
|
|
||||||
|
class DP(nn.Module):
|
||||||
|
def __init__(self, params):
|
||||||
|
super().__init__()
|
||||||
|
self.name = params.name
|
||||||
|
|
||||||
|
if params.name == "deterministic":
|
||||||
|
self.dp = DeterministicDurationPredictor(
|
||||||
|
params,
|
||||||
|
)
|
||||||
|
elif params.name == "flow_matching":
|
||||||
|
self.dp = FlowMatchingDurationPrediction(
|
||||||
|
params,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Invalid duration predictor configuration: {params.name}")
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def forward(self, enc_outputs, mask):
|
||||||
|
return self.dp(enc_outputs, mask)
|
||||||
|
|
||||||
|
def compute_loss(self, durations, enc_outputs, mask):
|
||||||
|
return self.dp.compute_loss(durations, enc_outputs, mask)
|
||||||
@@ -67,33 +67,6 @@ class ConvReluNorm(nn.Module):
|
|||||||
return x * x_mask
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
class DurationPredictor(nn.Module):
|
|
||||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
|
||||||
super().__init__()
|
|
||||||
self.in_channels = in_channels
|
|
||||||
self.filter_channels = filter_channels
|
|
||||||
self.p_dropout = p_dropout
|
|
||||||
|
|
||||||
self.drop = torch.nn.Dropout(p_dropout)
|
|
||||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
|
||||||
self.norm_1 = LayerNorm(filter_channels)
|
|
||||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
|
||||||
self.norm_2 = LayerNorm(filter_channels)
|
|
||||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
|
||||||
|
|
||||||
def forward(self, x, x_mask):
|
|
||||||
x = self.conv_1(x * x_mask)
|
|
||||||
x = torch.relu(x)
|
|
||||||
x = self.norm_1(x)
|
|
||||||
x = self.drop(x)
|
|
||||||
x = self.conv_2(x * x_mask)
|
|
||||||
x = torch.relu(x)
|
|
||||||
x = self.norm_2(x)
|
|
||||||
x = self.drop(x)
|
|
||||||
x = self.proj(x * x_mask)
|
|
||||||
return x * x_mask
|
|
||||||
|
|
||||||
|
|
||||||
class RotaryPositionalEmbeddings(nn.Module):
|
class RotaryPositionalEmbeddings(nn.Module):
|
||||||
"""
|
"""
|
||||||
## RoPE module
|
## RoPE module
|
||||||
@@ -330,7 +303,6 @@ class TextEncoder(nn.Module):
|
|||||||
self,
|
self,
|
||||||
encoder_type,
|
encoder_type,
|
||||||
encoder_params,
|
encoder_params,
|
||||||
duration_predictor_params,
|
|
||||||
n_vocab,
|
n_vocab,
|
||||||
n_spks=1,
|
n_spks=1,
|
||||||
spk_emb_dim=128,
|
spk_emb_dim=128,
|
||||||
@@ -368,12 +340,6 @@ class TextEncoder(nn.Module):
|
|||||||
)
|
)
|
||||||
|
|
||||||
self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
|
self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
|
||||||
self.proj_w = DurationPredictor(
|
|
||||||
self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
|
|
||||||
duration_predictor_params.filter_channels_dp,
|
|
||||||
duration_predictor_params.kernel_size,
|
|
||||||
duration_predictor_params.p_dropout,
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x, x_lengths, spks=None):
|
def forward(self, x, x_lengths, spks=None):
|
||||||
"""Run forward pass to the transformer based encoder and duration predictor
|
"""Run forward pass to the transformer based encoder and duration predictor
|
||||||
@@ -404,7 +370,7 @@ class TextEncoder(nn.Module):
|
|||||||
x = self.encoder(x, x_mask)
|
x = self.encoder(x, x_mask)
|
||||||
mu = self.proj_m(x) * x_mask
|
mu = self.proj_m(x) * x_mask
|
||||||
|
|
||||||
x_dp = torch.detach(x)
|
# x_dp = torch.detach(x)
|
||||||
logw = self.proj_w(x_dp, x_mask)
|
# logw = self.proj_w(x_dp, x_mask)
|
||||||
|
|
||||||
return mu, logw, x_mask
|
return mu, x, x_mask
|
||||||
|
|||||||
@@ -4,14 +4,14 @@ import random
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
import matcha.utils.monotonic_align as monotonic_align
|
import matcha.utils.monotonic_align as monotonic_align # pylint: disable=consider-using-from-import
|
||||||
from matcha import utils
|
from matcha import utils
|
||||||
from matcha.models.baselightningmodule import BaseLightningClass
|
from matcha.models.baselightningmodule import BaseLightningClass
|
||||||
|
from matcha.models.components.duration_predictors import DP
|
||||||
from matcha.models.components.flow_matching import CFM
|
from matcha.models.components.flow_matching import CFM
|
||||||
from matcha.models.components.text_encoder import TextEncoder
|
from matcha.models.components.text_encoder import TextEncoder
|
||||||
from matcha.utils.model import (
|
from matcha.utils.model import (
|
||||||
denormalize,
|
denormalize,
|
||||||
duration_loss,
|
|
||||||
fix_len_compatibility,
|
fix_len_compatibility,
|
||||||
generate_path,
|
generate_path,
|
||||||
sequence_mask,
|
sequence_mask,
|
||||||
@@ -28,6 +28,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
spk_emb_dim,
|
spk_emb_dim,
|
||||||
n_feats,
|
n_feats,
|
||||||
encoder,
|
encoder,
|
||||||
|
duration_predictor,
|
||||||
decoder,
|
decoder,
|
||||||
cfm,
|
cfm,
|
||||||
data_statistics,
|
data_statistics,
|
||||||
@@ -53,12 +54,13 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
self.encoder = TextEncoder(
|
self.encoder = TextEncoder(
|
||||||
encoder.encoder_type,
|
encoder.encoder_type,
|
||||||
encoder.encoder_params,
|
encoder.encoder_params,
|
||||||
encoder.duration_predictor_params,
|
|
||||||
n_vocab,
|
n_vocab,
|
||||||
n_spks,
|
n_spks,
|
||||||
spk_emb_dim,
|
spk_emb_dim,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.dp = DP(duration_predictor)
|
||||||
|
|
||||||
self.decoder = CFM(
|
self.decoder = CFM(
|
||||||
in_channels=2 * encoder.encoder_params.n_feats,
|
in_channels=2 * encoder.encoder_params.n_feats,
|
||||||
out_channel=encoder.encoder_params.n_feats,
|
out_channel=encoder.encoder_params.n_feats,
|
||||||
@@ -112,11 +114,15 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
# Get speaker embedding
|
# Get speaker embedding
|
||||||
spks = self.spk_emb(spks.long())
|
spks = self.spk_emb(spks.long())
|
||||||
|
|
||||||
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
# Get encoder_outputs `mu_x` and encoded text `enc_output`
|
||||||
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
mu_x, enc_output, x_mask = self.encoder(x, x_lengths, spks)
|
||||||
|
|
||||||
|
# Get log-scaled token durations `logw`
|
||||||
|
logw = self.dp(enc_output, x_mask)
|
||||||
|
|
||||||
w = torch.exp(logw) * x_mask
|
w = torch.exp(logw) * x_mask
|
||||||
w_ceil = torch.ceil(w) * length_scale
|
w_ceil = torch.ceil(w) * length_scale
|
||||||
|
# print(w_ceil)
|
||||||
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
||||||
y_max_length = y_lengths.max()
|
y_max_length = y_lengths.max()
|
||||||
y_max_length_ = fix_len_compatibility(y_max_length)
|
y_max_length_ = fix_len_compatibility(y_max_length)
|
||||||
@@ -173,7 +179,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
spks = self.spk_emb(spks)
|
spks = self.spk_emb(spks)
|
||||||
|
|
||||||
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
||||||
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
mu_x, enc_output, x_mask = self.encoder(x, x_lengths, spks)
|
||||||
y_max_length = y.shape[-1]
|
y_max_length = y.shape[-1]
|
||||||
|
|
||||||
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
||||||
@@ -192,9 +198,8 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
attn = attn.detach()
|
attn = attn.detach()
|
||||||
|
|
||||||
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
||||||
# refered to as prior loss in the paper
|
|
||||||
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
|
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
|
||||||
dur_loss = duration_loss(logw, logw_, x_lengths)
|
dur_loss = self.dp.compute_loss(logw_, enc_output, x_mask)
|
||||||
|
|
||||||
# Cut a small segment of mel-spectrogram in order to increase batch size
|
# Cut a small segment of mel-spectrogram in order to increase batch size
|
||||||
# - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it
|
# - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it
|
||||||
@@ -236,4 +241,4 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
else:
|
else:
|
||||||
prior_loss = 0
|
prior_loss = 0
|
||||||
|
|
||||||
return dur_loss, prior_loss, diff_loss
|
return dur_loss, prior_loss, diff_loss, attn
|
||||||
|
|||||||
@@ -21,7 +21,7 @@ def text_to_sequence(text, cleaner_names):
|
|||||||
for symbol in clean_text:
|
for symbol in clean_text:
|
||||||
symbol_id = _symbol_to_id[symbol]
|
symbol_id = _symbol_to_id[symbol]
|
||||||
sequence += [symbol_id]
|
sequence += [symbol_id]
|
||||||
return sequence
|
return sequence, clean_text
|
||||||
|
|
||||||
|
|
||||||
def cleaned_text_to_sequence(cleaned_text):
|
def cleaned_text_to_sequence(cleaned_text):
|
||||||
|
|||||||
192
matcha/utils/get_durations_from_trained_model.py
Normal file
192
matcha/utils/get_durations_from_trained_model.py
Normal file
@@ -0,0 +1,192 @@
|
|||||||
|
r"""
|
||||||
|
The file creates a pickle file where the values needed for loading of dataset is stored and the model can load it
|
||||||
|
when needed.
|
||||||
|
|
||||||
|
Parameters from hparam.py will be used
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import lightning
|
||||||
|
import numpy as np
|
||||||
|
import rootutils
|
||||||
|
import torch
|
||||||
|
from hydra import compose, initialize
|
||||||
|
from omegaconf import open_dict
|
||||||
|
from torch import nn
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
|
||||||
|
from matcha.cli import get_device
|
||||||
|
from matcha.data.text_mel_datamodule import TextMelDataModule
|
||||||
|
from matcha.models.matcha_tts import MatchaTTS
|
||||||
|
from matcha.utils.logging_utils import pylogger
|
||||||
|
from matcha.utils.utils import get_phoneme_durations
|
||||||
|
|
||||||
|
log = pylogger.get_pylogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def save_durations_to_folder(
|
||||||
|
attn: torch.Tensor, x_length: int, y_length: int, filepath: str, output_folder: Path, text: str
|
||||||
|
):
|
||||||
|
durations = attn.squeeze().sum(1)[:x_length].numpy()
|
||||||
|
durations_json = get_phoneme_durations(durations, text)
|
||||||
|
output = output_folder / Path(filepath).name.replace(".wav", ".npy")
|
||||||
|
with open(output.with_suffix(".json"), "w", encoding="utf-8") as f:
|
||||||
|
json.dump(durations_json, f, indent=4, ensure_ascii=False)
|
||||||
|
|
||||||
|
np.save(output, durations)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def compute_durations(data_loader: torch.utils.data.DataLoader, model: nn.Module, device: torch.device, output_folder):
|
||||||
|
"""Generate durations from the model for each datapoint and save it in a folder
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data_loader (torch.utils.data.DataLoader): Dataloader
|
||||||
|
model (nn.Module): MatchaTTS model
|
||||||
|
device (torch.device): GPU or CPU
|
||||||
|
"""
|
||||||
|
|
||||||
|
for batch in tqdm(data_loader, desc="🍵 Computing durations 🍵:"):
|
||||||
|
x, x_lengths = batch["x"], batch["x_lengths"]
|
||||||
|
y, y_lengths = batch["y"], batch["y_lengths"]
|
||||||
|
spks = batch["spks"]
|
||||||
|
x = x.to(device)
|
||||||
|
y = y.to(device)
|
||||||
|
x_lengths = x_lengths.to(device)
|
||||||
|
y_lengths = y_lengths.to(device)
|
||||||
|
spks = spks.to(device) if spks is not None else None
|
||||||
|
|
||||||
|
_, _, _, attn = model(
|
||||||
|
x=x,
|
||||||
|
x_lengths=x_lengths,
|
||||||
|
y=y,
|
||||||
|
y_lengths=y_lengths,
|
||||||
|
spks=spks,
|
||||||
|
)
|
||||||
|
attn = attn.cpu()
|
||||||
|
for i in range(attn.shape[0]):
|
||||||
|
save_durations_to_folder(
|
||||||
|
attn[i],
|
||||||
|
x_lengths[i].item(),
|
||||||
|
y_lengths[i].item(),
|
||||||
|
batch["filepaths"][i],
|
||||||
|
output_folder,
|
||||||
|
batch["x_texts"][i],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"-i",
|
||||||
|
"--input-config",
|
||||||
|
type=str,
|
||||||
|
default="vctk.yaml",
|
||||||
|
help="The name of the yaml config file under configs/data",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"-b",
|
||||||
|
"--batch-size",
|
||||||
|
type=int,
|
||||||
|
default="32",
|
||||||
|
help="Can have increased batch size for faster computation",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"-f",
|
||||||
|
"--force",
|
||||||
|
action="store_true",
|
||||||
|
default=False,
|
||||||
|
required=False,
|
||||||
|
help="force overwrite the file",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"-c",
|
||||||
|
"--checkpoint_path",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint file to load the model from",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"-o",
|
||||||
|
"--output-folder",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Output folder to save the data statistics",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--cpu", action="store_true", help="Use CPU for inference, not recommended (default: use GPU if available)"
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
with initialize(version_base="1.3", config_path="../../configs/data"):
|
||||||
|
cfg = compose(config_name=args.input_config, return_hydra_config=True, overrides=[])
|
||||||
|
|
||||||
|
root_path = rootutils.find_root(search_from=__file__, indicator=".project-root")
|
||||||
|
|
||||||
|
with open_dict(cfg):
|
||||||
|
del cfg["hydra"]
|
||||||
|
del cfg["_target_"]
|
||||||
|
cfg["seed"] = 1234
|
||||||
|
cfg["batch_size"] = args.batch_size
|
||||||
|
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
|
||||||
|
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
|
||||||
|
|
||||||
|
if args.output_folder is not None:
|
||||||
|
output_folder = Path(args.output_folder)
|
||||||
|
else:
|
||||||
|
output_folder = Path("data") / "processed_data" / cfg["name"] / "durations"
|
||||||
|
|
||||||
|
if os.path.exists(output_folder) and not args.force:
|
||||||
|
print("Folder already exists. Use -f to force overwrite")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
output_folder.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
print(f"Preprocessing: {cfg['name']} from training filelist: {cfg['train_filelist_path']}")
|
||||||
|
print("Loading model...")
|
||||||
|
device = get_device(args)
|
||||||
|
model = MatchaTTS.load_from_checkpoint(args.checkpoint_path, map_location=device)
|
||||||
|
|
||||||
|
text_mel_datamodule = TextMelDataModule(**cfg)
|
||||||
|
text_mel_datamodule.setup()
|
||||||
|
try:
|
||||||
|
print("Computing stats for training set if exists...")
|
||||||
|
train_dataloader = text_mel_datamodule.train_dataloader()
|
||||||
|
compute_durations(train_dataloader, model, device, output_folder)
|
||||||
|
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||||
|
print("No training set found")
|
||||||
|
|
||||||
|
try:
|
||||||
|
print("Computing stats for validation set if exists...")
|
||||||
|
val_dataloader = text_mel_datamodule.val_dataloader()
|
||||||
|
compute_durations(val_dataloader, model, device, output_folder)
|
||||||
|
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||||
|
print("No validation set found")
|
||||||
|
|
||||||
|
try:
|
||||||
|
print("Computing stats for test set if exists...")
|
||||||
|
test_dataloader = text_mel_datamodule.test_dataloader()
|
||||||
|
compute_durations(test_dataloader, model, device, output_folder)
|
||||||
|
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||||
|
print("No test set found")
|
||||||
|
|
||||||
|
print(f"[+] Done! Data statistics saved to: {output_folder}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Helps with generating durations for the dataset to train other architectures
|
||||||
|
# that cannot learn to align due to limited size of dataset
|
||||||
|
# Example usage:
|
||||||
|
# python python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c pretrained_model
|
||||||
|
# This will create a folder in data/processed_data/durations/ljspeech with the durations
|
||||||
|
main()
|
||||||
@@ -2,6 +2,7 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
import warnings
|
import warnings
|
||||||
from importlib.util import find_spec
|
from importlib.util import find_spec
|
||||||
|
from math import ceil
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Callable, Dict, Tuple
|
from typing import Any, Callable, Dict, Tuple
|
||||||
|
|
||||||
@@ -217,3 +218,42 @@ def assert_model_downloaded(checkpoint_path, url, use_wget=True):
|
|||||||
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
|
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
|
||||||
else:
|
else:
|
||||||
wget.download(url=url, out=checkpoint_path)
|
wget.download(url=url, out=checkpoint_path)
|
||||||
|
|
||||||
|
|
||||||
|
def get_phoneme_durations(durations, phones):
|
||||||
|
prev = durations[0]
|
||||||
|
merged_durations = []
|
||||||
|
# Convolve with stride 2
|
||||||
|
for i in range(1, len(durations), 2):
|
||||||
|
if i == len(durations) - 2:
|
||||||
|
# if it is last take full value
|
||||||
|
next_half = durations[i + 1]
|
||||||
|
else:
|
||||||
|
next_half = ceil(durations[i + 1] / 2)
|
||||||
|
|
||||||
|
curr = prev + durations[i] + next_half
|
||||||
|
prev = durations[i + 1] - next_half
|
||||||
|
merged_durations.append(curr)
|
||||||
|
|
||||||
|
assert len(phones) == len(merged_durations)
|
||||||
|
assert len(merged_durations) == (len(durations) - 1) // 2
|
||||||
|
|
||||||
|
merged_durations = torch.cumsum(torch.tensor(merged_durations), 0, dtype=torch.long)
|
||||||
|
start = torch.tensor(0)
|
||||||
|
duration_json = []
|
||||||
|
for i, duration in enumerate(merged_durations):
|
||||||
|
duration_json.append(
|
||||||
|
{
|
||||||
|
phones[i]: {
|
||||||
|
"starttime": start.item(),
|
||||||
|
"endtime": duration.item(),
|
||||||
|
"duration": duration.item() - start.item(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
start = duration
|
||||||
|
|
||||||
|
assert list(duration_json[-1].values())[0]["endtime"] == sum(
|
||||||
|
durations
|
||||||
|
), f"{list(duration_json[-1].values())[0]['endtime'], sum(durations)}"
|
||||||
|
return duration_json
|
||||||
|
|||||||
15
scripts/get_durations.sh
Normal file
15
scripts/get_durations.sh
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
echo "Starting script"
|
||||||
|
|
||||||
|
echo "Getting LJ Speech durations"
|
||||||
|
python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c logs/train/lj_det/runs/2024-01-12_12-05-00/checkpoints/last.ckpt -f
|
||||||
|
|
||||||
|
echo "Getting TSG2 durations"
|
||||||
|
python matcha/utils/get_durations_from_trained_model.py -i tsg2.yaml -c logs/train/tsg2_det_dur/runs/2024-01-05_12-33-35/checkpoints/last.ckpt -f
|
||||||
|
|
||||||
|
echo "Getting Joe Spont durations"
|
||||||
|
python matcha/utils/get_durations_from_trained_model.py -i joe_spont_only.yaml -c logs/train/joe_det_dur/runs/2024-02-20_14-01-01/checkpoints/last.ckpt -f
|
||||||
|
|
||||||
|
echo "Getting Ryan durations"
|
||||||
|
python matcha/utils/get_durations_from_trained_model.py -i ryan.yaml -c logs/train/matcha_ryan_det/runs/2024-02-26_09-28-09/checkpoints/last.ckpt -f
|
||||||
7
scripts/transcribe.sh
Normal file
7
scripts/transcribe.sh
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
echo "Transcribing"
|
||||||
|
|
||||||
|
whispertranscriber -i lj_det_output -o lj_det_output_transcriptions -f
|
||||||
|
|
||||||
|
whispertranscriber -i lj_fm_output -o lj_fm_output_transcriptions -f
|
||||||
|
wercompute -r dur_wer_computation/reference_transcripts/ -i lj_det_output_transcriptions
|
||||||
|
wercompute -r dur_wer_computation/reference_transcripts/ -i lj_fm_output_transcriptions
|
||||||
30
scripts/wer_computer.sh
Normal file
30
scripts/wer_computer.sh
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Run from root folder with: bash scripts/wer_computer.sh
|
||||||
|
|
||||||
|
|
||||||
|
root_folder=${1:-"dur_wer_computation"}
|
||||||
|
echo "Running WER computation for Duration predictors"
|
||||||
|
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/lj_fm_output_transcriptions/"
|
||||||
|
# echo $cmd
|
||||||
|
echo "LJ"
|
||||||
|
echo "==================================="
|
||||||
|
echo "Flow Matching"
|
||||||
|
$cmd
|
||||||
|
echo "-----------------------------------"
|
||||||
|
|
||||||
|
echo "LJ Determinstic"
|
||||||
|
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/lj_det_output_transcriptions/"
|
||||||
|
$cmd
|
||||||
|
echo "-----------------------------------"
|
||||||
|
|
||||||
|
echo "Cormac"
|
||||||
|
echo "==================================="
|
||||||
|
echo "Cormac Flow Matching"
|
||||||
|
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/fm_output_transcriptions/"
|
||||||
|
$cmd
|
||||||
|
echo "-----------------------------------"
|
||||||
|
|
||||||
|
echo "Cormac Determinstic"
|
||||||
|
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/det_output_transcriptions/"
|
||||||
|
$cmd
|
||||||
|
echo "-----------------------------------"
|
||||||
1265
synthesis.ipynb
1265
synthesis.ipynb
File diff suppressed because one or more lines are too long
Reference in New Issue
Block a user