mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-04 09:49:21 +08:00
Adding option to do flow matching based duration prediction
This commit is contained in:
16
configs/experiment/ljspeech_stoc_dur.yaml
Normal file
16
configs/experiment/ljspeech_stoc_dur.yaml
Normal file
@@ -0,0 +1,16 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: ljspeech.yaml
|
||||
- override /model/duration_predictor: flow_matching.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["ljspeech"]
|
||||
|
||||
|
||||
run_name: ljspeech
|
||||
7
configs/model/duration_predictor/deterministic.yaml
Normal file
7
configs/model/duration_predictor/deterministic.yaml
Normal file
@@ -0,0 +1,7 @@
|
||||
name: deterministic
|
||||
n_spks: ${model.n_spks}
|
||||
spk_emb_dim: ${model.spk_emb_dim}
|
||||
filter_channels: 256
|
||||
kernel_size: 3
|
||||
n_channels: ${model.encoder.encoder_params.n_channels}
|
||||
p_dropout: ${model.encoder.encoder_params.p_dropout}
|
||||
7
configs/model/duration_predictor/flow_matching.yaml
Normal file
7
configs/model/duration_predictor/flow_matching.yaml
Normal file
@@ -0,0 +1,7 @@
|
||||
defaults:
|
||||
- deterministic.yaml
|
||||
- _self_
|
||||
|
||||
sigma_min: 1e-4
|
||||
n_steps: 10
|
||||
name: flow_matching
|
||||
@@ -3,16 +3,8 @@ encoder_params:
|
||||
n_feats: ${model.n_feats}
|
||||
n_channels: 192
|
||||
filter_channels: 768
|
||||
filter_channels_dp: 256
|
||||
n_heads: 2
|
||||
n_layers: 6
|
||||
kernel_size: 3
|
||||
p_dropout: 0.1
|
||||
spk_emb_dim: 64
|
||||
n_spks: 1
|
||||
prenet: true
|
||||
|
||||
duration_predictor_params:
|
||||
filter_channels_dp: ${model.encoder.encoder_params.filter_channels_dp}
|
||||
kernel_size: 3
|
||||
p_dropout: ${model.encoder.encoder_params.p_dropout}
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
defaults:
|
||||
- _self_
|
||||
- encoder: default.yaml
|
||||
- duration_predictor: deterministic.yaml
|
||||
- decoder: default.yaml
|
||||
- cfm: default.yaml
|
||||
- optimizer: adam.yaml
|
||||
|
||||
243
matcha/models/components/duration_predictors.py
Normal file
243
matcha/models/components/duration_predictors.py
Normal file
@@ -0,0 +1,243 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import pack
|
||||
|
||||
from matcha.models.components.decoder import SinusoidalPosEmb, TimestepEmbedding
|
||||
from matcha.models.components.text_encoder import LayerNorm
|
||||
|
||||
# Define available networks
|
||||
|
||||
|
||||
class DurationPredictorNetwork(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_1 = LayerNorm(filter_channels)
|
||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_2 = LayerNorm(filter_channels)
|
||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DurationPredictorNetworkWithTimeStep(nn.Module):
|
||||
"""Similar architecture but with a time embedding support"""
|
||||
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.time_embeddings = SinusoidalPosEmb(filter_channels)
|
||||
self.time_mlp = TimestepEmbedding(
|
||||
in_channels=filter_channels,
|
||||
time_embed_dim=filter_channels,
|
||||
act_fn="silu",
|
||||
)
|
||||
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_1 = LayerNorm(filter_channels)
|
||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_2 = LayerNorm(filter_channels)
|
||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
def forward(self, x, x_mask, enc_outputs, t):
|
||||
t = self.time_embeddings(t)
|
||||
t = self.time_mlp(t).unsqueeze(-1)
|
||||
|
||||
x = pack([x, enc_outputs], "b * t")[0]
|
||||
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = x + t
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = x + t
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
# Define available methods to compute loss
|
||||
|
||||
# Simple MSE deterministic
|
||||
|
||||
|
||||
class DeterministicDurationPredictor(nn.Module):
|
||||
def __init__(self, params):
|
||||
super().__init__()
|
||||
self.estimator = DurationPredictorNetwork(
|
||||
params.n_channels + (params.spk_emb_dim if params.n_spks > 1 else 0),
|
||||
params.filter_channels,
|
||||
params.kernel_size,
|
||||
params.p_dropout,
|
||||
)
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, x, x_mask):
|
||||
return self.estimator(x, x_mask)
|
||||
|
||||
def compute_loss(self, durations, enc_outputs, x_mask):
|
||||
return F.mse_loss(self.estimator(enc_outputs, x_mask), durations, reduction="sum") / torch.sum(x_mask)
|
||||
|
||||
|
||||
# Flow Matching duration predictor
|
||||
|
||||
|
||||
class FlowMatchingDurationPrediction(nn.Module):
|
||||
def __init__(self, params) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.estimator = DurationPredictorNetworkWithTimeStep(
|
||||
1
|
||||
+ params.n_channels
|
||||
+ (
|
||||
params.spk_emb_dim if params.n_spks > 1 else 0
|
||||
), # 1 for the durations and n_channels for encoder outputs
|
||||
params.filter_channels,
|
||||
params.kernel_size,
|
||||
params.p_dropout,
|
||||
)
|
||||
self.sigma_min = params.sigma_min
|
||||
self.n_steps = params.n_steps
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, enc_outputs, mask, n_timesteps=None, temperature=1):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): output_mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
n_timesteps (int): number of diffusion steps
|
||||
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
||||
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
cond: Not used but kept for future purposes
|
||||
|
||||
Returns:
|
||||
sample: generated mel-spectrogram
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
if n_timesteps is None:
|
||||
n_timesteps = self.n_steps
|
||||
|
||||
b, _, t = enc_outputs.shape
|
||||
z = torch.randn((b, 1, t), device=enc_outputs.device, dtype=enc_outputs.dtype) * temperature
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=enc_outputs.device)
|
||||
return self.solve_euler(z, t_span=t_span, enc_outputs=enc_outputs, mask=mask)
|
||||
|
||||
def solve_euler(self, x, t_span, enc_outputs, mask):
|
||||
"""
|
||||
Fixed euler solver for ODEs.
|
||||
Args:
|
||||
x (torch.Tensor): random noise
|
||||
t_span (torch.Tensor): n_timesteps interpolated
|
||||
shape: (n_timesteps + 1,)
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): output_mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
"""
|
||||
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||
|
||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||
# Or in future might add like a return_all_steps flag
|
||||
sol = []
|
||||
|
||||
for step in range(1, len(t_span)):
|
||||
dphi_dt = self.estimator(x, mask, enc_outputs, t)
|
||||
|
||||
x = x + dt * dphi_dt
|
||||
t = t + dt
|
||||
sol.append(x)
|
||||
if step < len(t_span) - 1:
|
||||
dt = t_span[step + 1] - t
|
||||
|
||||
return sol[-1]
|
||||
|
||||
def compute_loss(self, x1, enc_outputs, mask):
|
||||
"""Computes diffusion loss
|
||||
|
||||
Args:
|
||||
x1 (torch.Tensor): Target
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): target mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
|
||||
Returns:
|
||||
loss: conditional flow matching loss
|
||||
y: conditional flow
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
enc_outputs = enc_outputs.detach() # don't update encoder from the duration predictor
|
||||
b, _, t = enc_outputs.shape
|
||||
|
||||
# random timestep
|
||||
t = torch.rand([b, 1, 1], device=enc_outputs.device, dtype=enc_outputs.dtype)
|
||||
# sample noise p(x_0)
|
||||
z = torch.randn_like(x1)
|
||||
|
||||
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
||||
u = x1 - (1 - self.sigma_min) * z
|
||||
|
||||
loss = F.mse_loss(self.estimator(y, mask, enc_outputs, t.squeeze()), u, reduction="sum") / (
|
||||
torch.sum(mask) * u.shape[1]
|
||||
)
|
||||
return loss
|
||||
|
||||
|
||||
# Meta class to wrap all duration predictors
|
||||
|
||||
|
||||
class DP(nn.Module):
|
||||
def __init__(self, params):
|
||||
super().__init__()
|
||||
self.name = params.name
|
||||
|
||||
if params.name == "deterministic":
|
||||
self.dp = DeterministicDurationPredictor(
|
||||
params,
|
||||
)
|
||||
elif params.name == "flow_matching":
|
||||
self.dp = FlowMatchingDurationPrediction(
|
||||
params,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Invalid duration predictor configuration: {params.name}")
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, enc_outputs, mask):
|
||||
return self.dp(enc_outputs, mask)
|
||||
|
||||
def compute_loss(self, durations, enc_outputs, mask):
|
||||
return self.dp.compute_loss(durations, enc_outputs, mask)
|
||||
@@ -67,33 +67,6 @@ class ConvReluNorm(nn.Module):
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_1 = LayerNorm(filter_channels)
|
||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_2 = LayerNorm(filter_channels)
|
||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class RotaryPositionalEmbeddings(nn.Module):
|
||||
"""
|
||||
## RoPE module
|
||||
@@ -330,7 +303,6 @@ class TextEncoder(nn.Module):
|
||||
self,
|
||||
encoder_type,
|
||||
encoder_params,
|
||||
duration_predictor_params,
|
||||
n_vocab,
|
||||
n_spks=1,
|
||||
spk_emb_dim=128,
|
||||
@@ -368,12 +340,6 @@ class TextEncoder(nn.Module):
|
||||
)
|
||||
|
||||
self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
|
||||
self.proj_w = DurationPredictor(
|
||||
self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
|
||||
duration_predictor_params.filter_channels_dp,
|
||||
duration_predictor_params.kernel_size,
|
||||
duration_predictor_params.p_dropout,
|
||||
)
|
||||
|
||||
def forward(self, x, x_lengths, spks=None):
|
||||
"""Run forward pass to the transformer based encoder and duration predictor
|
||||
@@ -404,7 +370,7 @@ class TextEncoder(nn.Module):
|
||||
x = self.encoder(x, x_mask)
|
||||
mu = self.proj_m(x) * x_mask
|
||||
|
||||
x_dp = torch.detach(x)
|
||||
logw = self.proj_w(x_dp, x_mask)
|
||||
# x_dp = torch.detach(x)
|
||||
# logw = self.proj_w(x_dp, x_mask)
|
||||
|
||||
return mu, logw, x_mask
|
||||
return mu, x, x_mask
|
||||
|
||||
@@ -7,11 +7,11 @@ import torch
|
||||
import matcha.utils.monotonic_align as monotonic_align
|
||||
from matcha import utils
|
||||
from matcha.models.baselightningmodule import BaseLightningClass
|
||||
from matcha.models.components.duration_predictors import DP
|
||||
from matcha.models.components.flow_matching import CFM
|
||||
from matcha.models.components.text_encoder import TextEncoder
|
||||
from matcha.utils.model import (
|
||||
denormalize,
|
||||
duration_loss,
|
||||
fix_len_compatibility,
|
||||
generate_path,
|
||||
sequence_mask,
|
||||
@@ -28,6 +28,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
spk_emb_dim,
|
||||
n_feats,
|
||||
encoder,
|
||||
duration_predictor,
|
||||
decoder,
|
||||
cfm,
|
||||
data_statistics,
|
||||
@@ -53,12 +54,13 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
self.encoder = TextEncoder(
|
||||
encoder.encoder_type,
|
||||
encoder.encoder_params,
|
||||
encoder.duration_predictor_params,
|
||||
n_vocab,
|
||||
n_spks,
|
||||
spk_emb_dim,
|
||||
)
|
||||
|
||||
self.dp = DP(duration_predictor)
|
||||
|
||||
self.decoder = CFM(
|
||||
in_channels=2 * encoder.encoder_params.n_feats,
|
||||
out_channel=encoder.encoder_params.n_feats,
|
||||
@@ -112,8 +114,11 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
# Get speaker embedding
|
||||
spks = self.spk_emb(spks.long())
|
||||
|
||||
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
||||
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
||||
# Get encoder_outputs `mu_x` and encoded text `enc_output`
|
||||
mu_x, enc_output, x_mask = self.encoder(x, x_lengths, spks)
|
||||
|
||||
# Get log-scaled token durations `logw`
|
||||
logw = self.dp(enc_output, x_mask)
|
||||
|
||||
w = torch.exp(logw) * x_mask
|
||||
w_ceil = torch.ceil(w) * length_scale
|
||||
@@ -173,7 +178,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
spks = self.spk_emb(spks)
|
||||
|
||||
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
||||
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
||||
mu_x, enc_output, x_mask = self.encoder(x, x_lengths, spks)
|
||||
y_max_length = y.shape[-1]
|
||||
|
||||
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
||||
@@ -192,9 +197,8 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
attn = attn.detach()
|
||||
|
||||
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
||||
# refered to as prior loss in the paper
|
||||
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
|
||||
dur_loss = duration_loss(logw, logw_, x_lengths)
|
||||
dur_loss = self.dp.compute_loss(logw_, enc_output, x_mask)
|
||||
|
||||
# Cut a small segment of mel-spectrogram in order to increase batch size
|
||||
# - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it
|
||||
|
||||
Reference in New Issue
Block a user