mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-04 09:49:21 +08:00
Compare commits
12 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
77804265f8 | ||
|
|
d31cd92a61 | ||
|
|
068d135e20 | ||
|
|
bd37d03b62 | ||
|
|
ac0b258f80 | ||
|
|
de910380bc | ||
|
|
aa496aa13f | ||
|
|
e658aee6a5 | ||
|
|
d816c40e3d | ||
|
|
4b39f6cad0 | ||
|
|
dd9105b34b | ||
|
|
7d9d4cfd40 |
@@ -1,5 +1,5 @@
|
||||
default_language_version:
|
||||
python: python3.10
|
||||
python: python3.11
|
||||
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
|
||||
37
README.md
37
README.md
@@ -252,6 +252,43 @@ python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --vo
|
||||
|
||||
This will write `.wav` audio files to the output directory.
|
||||
|
||||
## Extract phoneme alignments from Matcha-TTS
|
||||
|
||||
If the dataset is structured as
|
||||
|
||||
```bash
|
||||
data/
|
||||
└── LJSpeech-1.1
|
||||
├── metadata.csv
|
||||
├── README
|
||||
├── test.txt
|
||||
├── train.txt
|
||||
├── val.txt
|
||||
└── wavs
|
||||
```
|
||||
Then you can extract the phoneme level alignments from a Trained Matcha-TTS model using:
|
||||
```bash
|
||||
python matcha/utils/get_durations_from_trained_model.py -i dataset_yaml -c <checkpoint>
|
||||
```
|
||||
Example:
|
||||
```bash
|
||||
python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c matcha_ljspeech.ckpt
|
||||
```
|
||||
or simply:
|
||||
```bash
|
||||
matcha-tts-get-durations -i ljspeech.yaml -c matcha_ljspeech.ckpt
|
||||
```
|
||||
---
|
||||
## Train using extracted alignments
|
||||
|
||||
In the datasetconfig turn on load duration.
|
||||
Example: `ljspeech.yaml`
|
||||
```
|
||||
load_durations: True
|
||||
```
|
||||
or see an examples in configs/experiment/ljspeech_from_durations.yaml
|
||||
|
||||
|
||||
## Citation information
|
||||
|
||||
If you use our code or otherwise find this work useful, please cite our paper:
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
_target_: matcha.data.text_mel_datamodule.TextMelDataModule
|
||||
name: ljspeech
|
||||
train_filelist_path: data/filelists/ljs_audio_text_train_filelist.txt
|
||||
valid_filelist_path: data/filelists/ljs_audio_text_val_filelist.txt
|
||||
train_filelist_path: data/LJSpeech-1.1/train.txt
|
||||
valid_filelist_path: data/LJSpeech-1.1/val.txt
|
||||
batch_size: 32
|
||||
num_workers: 20
|
||||
pin_memory: True
|
||||
@@ -19,3 +19,4 @@ data_statistics: # Computed for ljspeech dataset
|
||||
mel_mean: -5.536622
|
||||
mel_std: 2.116101
|
||||
seed: ${seed}
|
||||
load_durations: false
|
||||
|
||||
19
configs/experiment/ljspeech_from_durations.yaml
Normal file
19
configs/experiment/ljspeech_from_durations.yaml
Normal file
@@ -0,0 +1,19 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: ljspeech.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["ljspeech"]
|
||||
|
||||
run_name: ljspeech
|
||||
|
||||
|
||||
data:
|
||||
load_durations: True
|
||||
batch_size: 64
|
||||
@@ -13,3 +13,4 @@ n_feats: 80
|
||||
data_statistics: ${data.data_statistics}
|
||||
out_size: null # Must be divisible by 4
|
||||
prior_loss: true
|
||||
use_precomputed_durations: ${data.load_durations}
|
||||
|
||||
@@ -1 +1 @@
|
||||
0.0.5.1
|
||||
0.0.7.0
|
||||
|
||||
@@ -48,7 +48,7 @@ def plot_spectrogram_to_numpy(spectrogram, filename):
|
||||
def process_text(i: int, text: str, device: torch.device):
|
||||
print(f"[{i}] - Input text: {text}")
|
||||
x = torch.tensor(
|
||||
intersperse(text_to_sequence(text, ["english_cleaners2"]), 0),
|
||||
intersperse(text_to_sequence(text, ["english_cleaners2"])[0], 0),
|
||||
dtype=torch.long,
|
||||
device=device,
|
||||
)[None]
|
||||
@@ -326,12 +326,13 @@ def batched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
|
||||
for i, batch in enumerate(dataloader):
|
||||
i = i + 1
|
||||
start_t = dt.datetime.now()
|
||||
b = batch["x"].shape[0]
|
||||
output = model.synthesise(
|
||||
batch["x"].to(device),
|
||||
batch["x_lengths"].to(device),
|
||||
n_timesteps=args.steps,
|
||||
temperature=args.temperature,
|
||||
spks=spk,
|
||||
spks=spk.expand(b) if spk is not None else spk,
|
||||
length_scale=args.speaking_rate,
|
||||
)
|
||||
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
import random
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchaudio as ta
|
||||
from lightning import LightningDataModule
|
||||
@@ -39,6 +41,7 @@ class TextMelDataModule(LightningDataModule):
|
||||
f_max,
|
||||
data_statistics,
|
||||
seed,
|
||||
load_durations,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -68,6 +71,7 @@ class TextMelDataModule(LightningDataModule):
|
||||
self.hparams.f_max,
|
||||
self.hparams.data_statistics,
|
||||
self.hparams.seed,
|
||||
self.hparams.load_durations,
|
||||
)
|
||||
self.validset = TextMelDataset( # pylint: disable=attribute-defined-outside-init
|
||||
self.hparams.valid_filelist_path,
|
||||
@@ -83,6 +87,7 @@ class TextMelDataModule(LightningDataModule):
|
||||
self.hparams.f_max,
|
||||
self.hparams.data_statistics,
|
||||
self.hparams.seed,
|
||||
self.hparams.load_durations,
|
||||
)
|
||||
|
||||
def train_dataloader(self):
|
||||
@@ -109,7 +114,7 @@ class TextMelDataModule(LightningDataModule):
|
||||
"""Clean up after fit or test."""
|
||||
pass # pylint: disable=unnecessary-pass
|
||||
|
||||
def state_dict(self): # pylint: disable=no-self-use
|
||||
def state_dict(self):
|
||||
"""Extra things to save to checkpoint."""
|
||||
return {}
|
||||
|
||||
@@ -134,6 +139,7 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
f_max=8000,
|
||||
data_parameters=None,
|
||||
seed=None,
|
||||
load_durations=False,
|
||||
):
|
||||
self.filepaths_and_text = parse_filelist(filelist_path)
|
||||
self.n_spks = n_spks
|
||||
@@ -146,6 +152,8 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
self.win_length = win_length
|
||||
self.f_min = f_min
|
||||
self.f_max = f_max
|
||||
self.load_durations = load_durations
|
||||
|
||||
if data_parameters is not None:
|
||||
self.data_parameters = data_parameters
|
||||
else:
|
||||
@@ -164,10 +172,29 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
filepath, text = filepath_and_text[0], filepath_and_text[1]
|
||||
spk = None
|
||||
|
||||
text = self.get_text(text, add_blank=self.add_blank)
|
||||
text, cleaned_text = self.get_text(text, add_blank=self.add_blank)
|
||||
mel = self.get_mel(filepath)
|
||||
|
||||
return {"x": text, "y": mel, "spk": spk}
|
||||
durations = self.get_durations(filepath, text) if self.load_durations else None
|
||||
|
||||
return {"x": text, "y": mel, "spk": spk, "filepath": filepath, "x_text": cleaned_text, "durations": durations}
|
||||
|
||||
def get_durations(self, filepath, text):
|
||||
filepath = Path(filepath)
|
||||
data_dir, name = filepath.parent.parent, filepath.stem
|
||||
|
||||
try:
|
||||
dur_loc = data_dir / "durations" / f"{name}.npy"
|
||||
durs = torch.from_numpy(np.load(dur_loc).astype(int))
|
||||
|
||||
except FileNotFoundError as e:
|
||||
raise FileNotFoundError(
|
||||
f"Tried loading the durations but durations didn't exist at {dur_loc}, make sure you've generate the durations first using: python matcha/utils/get_durations_from_trained_model.py \n"
|
||||
) from e
|
||||
|
||||
assert len(durs) == len(text), f"Length of durations {len(durs)} and text {len(text)} do not match"
|
||||
|
||||
return durs
|
||||
|
||||
def get_mel(self, filepath):
|
||||
audio, sr = ta.load(filepath)
|
||||
@@ -187,11 +214,11 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
return mel
|
||||
|
||||
def get_text(self, text, add_blank=True):
|
||||
text_norm = text_to_sequence(text, self.cleaners)
|
||||
text_norm, cleaned_text = text_to_sequence(text, self.cleaners)
|
||||
if self.add_blank:
|
||||
text_norm = intersperse(text_norm, 0)
|
||||
text_norm = torch.IntTensor(text_norm)
|
||||
return text_norm
|
||||
return text_norm, cleaned_text
|
||||
|
||||
def __getitem__(self, index):
|
||||
datapoint = self.get_datapoint(self.filepaths_and_text[index])
|
||||
@@ -214,8 +241,11 @@ class TextMelBatchCollate:
|
||||
|
||||
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
|
||||
x = torch.zeros((B, x_max_length), dtype=torch.long)
|
||||
durations = torch.zeros((B, x_max_length), dtype=torch.long)
|
||||
|
||||
y_lengths, x_lengths = [], []
|
||||
spks = []
|
||||
filepaths, x_texts = [], []
|
||||
for i, item in enumerate(batch):
|
||||
y_, x_ = item["y"], item["x"]
|
||||
y_lengths.append(y_.shape[-1])
|
||||
@@ -223,9 +253,22 @@ class TextMelBatchCollate:
|
||||
y[i, :, : y_.shape[-1]] = y_
|
||||
x[i, : x_.shape[-1]] = x_
|
||||
spks.append(item["spk"])
|
||||
filepaths.append(item["filepath"])
|
||||
x_texts.append(item["x_text"])
|
||||
if item["durations"] is not None:
|
||||
durations[i, : item["durations"].shape[-1]] = item["durations"]
|
||||
|
||||
y_lengths = torch.tensor(y_lengths, dtype=torch.long)
|
||||
x_lengths = torch.tensor(x_lengths, dtype=torch.long)
|
||||
spks = torch.tensor(spks, dtype=torch.long) if self.n_spks > 1 else None
|
||||
|
||||
return {"x": x, "x_lengths": x_lengths, "y": y, "y_lengths": y_lengths, "spks": spks}
|
||||
return {
|
||||
"x": x,
|
||||
"x_lengths": x_lengths,
|
||||
"y": y,
|
||||
"y_lengths": y_lengths,
|
||||
"spks": spks,
|
||||
"filepaths": filepaths,
|
||||
"x_texts": x_texts,
|
||||
"durations": durations if not torch.eq(durations, 0).all() else None,
|
||||
}
|
||||
|
||||
@@ -58,13 +58,14 @@ class BaseLightningClass(LightningModule, ABC):
|
||||
y, y_lengths = batch["y"], batch["y_lengths"]
|
||||
spks = batch["spks"]
|
||||
|
||||
dur_loss, prior_loss, diff_loss = self(
|
||||
dur_loss, prior_loss, diff_loss, *_ = self(
|
||||
x=x,
|
||||
x_lengths=x_lengths,
|
||||
y=y,
|
||||
y_lengths=y_lengths,
|
||||
spks=spks,
|
||||
out_size=self.out_size,
|
||||
durations=batch["durations"],
|
||||
)
|
||||
return {
|
||||
"dur_loss": dur_loss,
|
||||
|
||||
@@ -35,6 +35,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
prior_loss=True,
|
||||
use_precomputed_durations=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -46,6 +47,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
self.n_feats = n_feats
|
||||
self.out_size = out_size
|
||||
self.prior_loss = prior_loss
|
||||
self.use_precomputed_durations = use_precomputed_durations
|
||||
|
||||
if n_spks > 1:
|
||||
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
|
||||
@@ -147,7 +149,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
"rtf": rtf,
|
||||
}
|
||||
|
||||
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None):
|
||||
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None, durations=None):
|
||||
"""
|
||||
Computes 3 losses:
|
||||
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
|
||||
@@ -179,17 +181,20 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
||||
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
||||
|
||||
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
|
||||
with torch.no_grad():
|
||||
const = -0.5 * math.log(2 * math.pi) * self.n_feats
|
||||
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
|
||||
y_square = torch.matmul(factor.transpose(1, 2), y**2)
|
||||
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
|
||||
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
|
||||
log_prior = y_square - y_mu_double + mu_square + const
|
||||
if self.use_precomputed_durations:
|
||||
attn = generate_path(durations.squeeze(1), attn_mask.squeeze(1))
|
||||
else:
|
||||
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
|
||||
with torch.no_grad():
|
||||
const = -0.5 * math.log(2 * math.pi) * self.n_feats
|
||||
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
|
||||
y_square = torch.matmul(factor.transpose(1, 2), y**2)
|
||||
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
|
||||
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
|
||||
log_prior = y_square - y_mu_double + mu_square + const
|
||||
|
||||
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
|
||||
attn = attn.detach()
|
||||
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
|
||||
attn = attn.detach() # b, t_text, T_mel
|
||||
|
||||
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
||||
# refered to as prior loss in the paper
|
||||
@@ -236,4 +241,4 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
else:
|
||||
prior_loss = 0
|
||||
|
||||
return dur_loss, prior_loss, diff_loss
|
||||
return dur_loss, prior_loss, diff_loss, attn
|
||||
|
||||
@@ -21,7 +21,7 @@ def text_to_sequence(text, cleaner_names):
|
||||
for symbol in clean_text:
|
||||
symbol_id = _symbol_to_id[symbol]
|
||||
sequence += [symbol_id]
|
||||
return sequence
|
||||
return sequence, clean_text
|
||||
|
||||
|
||||
def cleaned_text_to_sequence(cleaned_text):
|
||||
|
||||
@@ -15,7 +15,6 @@ import logging
|
||||
import re
|
||||
|
||||
import phonemizer
|
||||
import piper_phonemize
|
||||
from unidecode import unidecode
|
||||
|
||||
# To avoid excessive logging we set the log level of the phonemizer package to Critical
|
||||
@@ -106,11 +105,17 @@ def english_cleaners2(text):
|
||||
return phonemes
|
||||
|
||||
|
||||
def english_cleaners_piper(text):
|
||||
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
|
||||
text = convert_to_ascii(text)
|
||||
text = lowercase(text)
|
||||
text = expand_abbreviations(text)
|
||||
phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0])
|
||||
phonemes = collapse_whitespace(phonemes)
|
||||
return phonemes
|
||||
# I am removing this due to incompatibility with several version of python
|
||||
# However, if you want to use it, you can uncomment it
|
||||
# and install piper-phonemize with the following command:
|
||||
# pip install piper-phonemize
|
||||
|
||||
# import piper_phonemize
|
||||
# def english_cleaners_piper(text):
|
||||
# """Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
|
||||
# text = convert_to_ascii(text)
|
||||
# text = lowercase(text)
|
||||
# text = expand_abbreviations(text)
|
||||
# phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0])
|
||||
# phonemes = collapse_whitespace(phonemes)
|
||||
# return phonemes
|
||||
|
||||
@@ -94,6 +94,7 @@ def main():
|
||||
cfg["batch_size"] = args.batch_size
|
||||
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
|
||||
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
|
||||
cfg["load_durations"] = False
|
||||
|
||||
text_mel_datamodule = TextMelDataModule(**cfg)
|
||||
text_mel_datamodule.setup()
|
||||
|
||||
195
matcha/utils/get_durations_from_trained_model.py
Normal file
195
matcha/utils/get_durations_from_trained_model.py
Normal file
@@ -0,0 +1,195 @@
|
||||
r"""
|
||||
The file creates a pickle file where the values needed for loading of dataset is stored and the model can load it
|
||||
when needed.
|
||||
|
||||
Parameters from hparam.py will be used
|
||||
"""
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import lightning
|
||||
import numpy as np
|
||||
import rootutils
|
||||
import torch
|
||||
from hydra import compose, initialize
|
||||
from omegaconf import open_dict
|
||||
from torch import nn
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from matcha.cli import get_device
|
||||
from matcha.data.text_mel_datamodule import TextMelDataModule
|
||||
from matcha.models.matcha_tts import MatchaTTS
|
||||
from matcha.utils.logging_utils import pylogger
|
||||
from matcha.utils.utils import get_phoneme_durations
|
||||
|
||||
log = pylogger.get_pylogger(__name__)
|
||||
|
||||
|
||||
def save_durations_to_folder(
|
||||
attn: torch.Tensor, x_length: int, y_length: int, filepath: str, output_folder: Path, text: str
|
||||
):
|
||||
durations = attn.squeeze().sum(1)[:x_length].numpy()
|
||||
durations_json = get_phoneme_durations(durations, text)
|
||||
output = output_folder / Path(filepath).name.replace(".wav", ".npy")
|
||||
with open(output.with_suffix(".json"), "w", encoding="utf-8") as f:
|
||||
json.dump(durations_json, f, indent=4, ensure_ascii=False)
|
||||
|
||||
np.save(output, durations)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def compute_durations(data_loader: torch.utils.data.DataLoader, model: nn.Module, device: torch.device, output_folder):
|
||||
"""Generate durations from the model for each datapoint and save it in a folder
|
||||
|
||||
Args:
|
||||
data_loader (torch.utils.data.DataLoader): Dataloader
|
||||
model (nn.Module): MatchaTTS model
|
||||
device (torch.device): GPU or CPU
|
||||
"""
|
||||
|
||||
for batch in tqdm(data_loader, desc="🍵 Computing durations 🍵:"):
|
||||
x, x_lengths = batch["x"], batch["x_lengths"]
|
||||
y, y_lengths = batch["y"], batch["y_lengths"]
|
||||
spks = batch["spks"]
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
x_lengths = x_lengths.to(device)
|
||||
y_lengths = y_lengths.to(device)
|
||||
spks = spks.to(device) if spks is not None else None
|
||||
|
||||
_, _, _, attn = model(
|
||||
x=x,
|
||||
x_lengths=x_lengths,
|
||||
y=y,
|
||||
y_lengths=y_lengths,
|
||||
spks=spks,
|
||||
)
|
||||
attn = attn.cpu()
|
||||
for i in range(attn.shape[0]):
|
||||
save_durations_to_folder(
|
||||
attn[i],
|
||||
x_lengths[i].item(),
|
||||
y_lengths[i].item(),
|
||||
batch["filepaths"][i],
|
||||
output_folder,
|
||||
batch["x_texts"][i],
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"-i",
|
||||
"--input-config",
|
||||
type=str,
|
||||
default="ljspeech.yaml",
|
||||
help="The name of the yaml config file under configs/data",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-b",
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default="32",
|
||||
help="Can have increased batch size for faster computation",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-f",
|
||||
"--force",
|
||||
action="store_true",
|
||||
default=False,
|
||||
required=False,
|
||||
help="force overwrite the file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--checkpoint_path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint file to load the model from",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output-folder",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Output folder to save the data statistics",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--cpu", action="store_true", help="Use CPU for inference, not recommended (default: use GPU if available)"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
with initialize(version_base="1.3", config_path="../../configs/data"):
|
||||
cfg = compose(config_name=args.input_config, return_hydra_config=True, overrides=[])
|
||||
|
||||
root_path = rootutils.find_root(search_from=__file__, indicator=".project-root")
|
||||
|
||||
with open_dict(cfg):
|
||||
del cfg["hydra"]
|
||||
del cfg["_target_"]
|
||||
cfg["seed"] = 1234
|
||||
cfg["batch_size"] = args.batch_size
|
||||
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
|
||||
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
|
||||
cfg["load_durations"] = False
|
||||
|
||||
if args.output_folder is not None:
|
||||
output_folder = Path(args.output_folder)
|
||||
else:
|
||||
output_folder = Path(cfg["train_filelist_path"]).parent / "durations"
|
||||
|
||||
print(f"Output folder set to: {output_folder}")
|
||||
|
||||
if os.path.exists(output_folder) and not args.force:
|
||||
print("Folder already exists. Use -f to force overwrite")
|
||||
sys.exit(1)
|
||||
|
||||
output_folder.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"Preprocessing: {cfg['name']} from training filelist: {cfg['train_filelist_path']}")
|
||||
print("Loading model...")
|
||||
device = get_device(args)
|
||||
model = MatchaTTS.load_from_checkpoint(args.checkpoint_path, map_location=device)
|
||||
|
||||
text_mel_datamodule = TextMelDataModule(**cfg)
|
||||
text_mel_datamodule.setup()
|
||||
try:
|
||||
print("Computing stats for training set if exists...")
|
||||
train_dataloader = text_mel_datamodule.train_dataloader()
|
||||
compute_durations(train_dataloader, model, device, output_folder)
|
||||
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||
print("No training set found")
|
||||
|
||||
try:
|
||||
print("Computing stats for validation set if exists...")
|
||||
val_dataloader = text_mel_datamodule.val_dataloader()
|
||||
compute_durations(val_dataloader, model, device, output_folder)
|
||||
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||
print("No validation set found")
|
||||
|
||||
try:
|
||||
print("Computing stats for test set if exists...")
|
||||
test_dataloader = text_mel_datamodule.test_dataloader()
|
||||
compute_durations(test_dataloader, model, device, output_folder)
|
||||
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||
print("No test set found")
|
||||
|
||||
print(f"[+] Done! Data statistics saved to: {output_folder}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Helps with generating durations for the dataset to train other architectures
|
||||
# that cannot learn to align due to limited size of dataset
|
||||
# Example usage:
|
||||
# python python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c pretrained_model
|
||||
# This will create a folder in data/processed_data/durations/ljspeech with the durations
|
||||
main()
|
||||
@@ -2,6 +2,7 @@ import os
|
||||
import sys
|
||||
import warnings
|
||||
from importlib.util import find_spec
|
||||
from math import ceil
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Tuple
|
||||
|
||||
@@ -217,3 +218,42 @@ def assert_model_downloaded(checkpoint_path, url, use_wget=True):
|
||||
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
|
||||
else:
|
||||
wget.download(url=url, out=checkpoint_path)
|
||||
|
||||
|
||||
def get_phoneme_durations(durations, phones):
|
||||
prev = durations[0]
|
||||
merged_durations = []
|
||||
# Convolve with stride 2
|
||||
for i in range(1, len(durations), 2):
|
||||
if i == len(durations) - 2:
|
||||
# if it is last take full value
|
||||
next_half = durations[i + 1]
|
||||
else:
|
||||
next_half = ceil(durations[i + 1] / 2)
|
||||
|
||||
curr = prev + durations[i] + next_half
|
||||
prev = durations[i + 1] - next_half
|
||||
merged_durations.append(curr)
|
||||
|
||||
assert len(phones) == len(merged_durations)
|
||||
assert len(merged_durations) == (len(durations) - 1) // 2
|
||||
|
||||
merged_durations = torch.cumsum(torch.tensor(merged_durations), 0, dtype=torch.long)
|
||||
start = torch.tensor(0)
|
||||
duration_json = []
|
||||
for i, duration in enumerate(merged_durations):
|
||||
duration_json.append(
|
||||
{
|
||||
phones[i]: {
|
||||
"starttime": start.item(),
|
||||
"endtime": duration.item(),
|
||||
"duration": duration.item() - start.item(),
|
||||
}
|
||||
}
|
||||
)
|
||||
start = duration
|
||||
|
||||
assert list(duration_json[-1].values())[0]["endtime"] == sum(
|
||||
durations
|
||||
), f"{list(duration_json[-1].values())[0]['endtime'], sum(durations)}"
|
||||
return duration_json
|
||||
|
||||
@@ -35,11 +35,10 @@ torchaudio
|
||||
matplotlib
|
||||
pandas
|
||||
conformer==0.3.2
|
||||
diffusers==0.25.0
|
||||
diffusers # developed using version ==0.25.0
|
||||
notebook
|
||||
ipywidgets
|
||||
gradio
|
||||
gradio==3.43.2
|
||||
gdown
|
||||
wget
|
||||
seaborn
|
||||
piper_phonemize
|
||||
|
||||
1
setup.py
1
setup.py
@@ -38,6 +38,7 @@ setup(
|
||||
"matcha-data-stats=matcha.utils.generate_data_statistics:main",
|
||||
"matcha-tts=matcha.cli:cli",
|
||||
"matcha-tts-app=matcha.app:main",
|
||||
"matcha-tts-get-durations=matcha.utils.get_durations_from_trained_model:main",
|
||||
]
|
||||
},
|
||||
ext_modules=cythonize(exts, language_level=3),
|
||||
|
||||
@@ -19,7 +19,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"id": "148f4bc0-c28e-4670-9a5e-4c7928ab8992",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -192,7 +192,7 @@
|
||||
"source": [
|
||||
"@torch.inference_mode()\n",
|
||||
"def process_text(text: str):\n",
|
||||
" x = torch.tensor(intersperse(text_to_sequence(text, ['english_cleaners2']), 0),dtype=torch.long, device=device)[None]\n",
|
||||
" x = torch.tensor(intersperse(text_to_sequence(text, ['english_cleaners2'])[0], 0),dtype=torch.long, device=device)[None]\n",
|
||||
" x_lengths = torch.tensor([x.shape[-1]],dtype=torch.long, device=device)\n",
|
||||
" x_phones = sequence_to_text(x.squeeze(0).tolist())\n",
|
||||
" return {\n",
|
||||
|
||||
Reference in New Issue
Block a user