mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-04 17:59:19 +08:00
Compare commits
68 Commits
v0.0.1.dev
...
stoc_dur
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4c35836fa5 | ||
|
|
294c6b1327 | ||
|
|
ad76016916 | ||
|
|
05c8f9b4a8 | ||
|
|
4d5b62cea9 | ||
|
|
8e87111a98 | ||
|
|
def0855608 | ||
|
|
6976a91348 | ||
|
|
256adc55d3 | ||
|
|
bfcbdbc82e | ||
|
|
fb7b954de5 | ||
|
|
5a52a67cf7 | ||
|
|
39cbd85236 | ||
|
|
47a629f128 | ||
|
|
95ec24b599 | ||
|
|
5a2a893750 | ||
|
|
13ca33fbe5 | ||
|
|
19bea20928 | ||
|
|
8268360674 | ||
|
|
a0bf4e9e9a | ||
|
|
458e9df236 | ||
|
|
d03bba82bb | ||
|
|
f1e8efdec2 | ||
|
|
4ec245e61e | ||
|
|
dc035a09f2 | ||
|
|
a58bab5403 | ||
|
|
254a8e05ce | ||
|
|
0ed9290c31 | ||
|
|
f39ee6cf3b | ||
|
|
6e71dc8b8f | ||
|
|
ae2417c175 | ||
|
|
6c7a82a516 | ||
|
|
009b09a8b2 | ||
|
|
a18db17330 | ||
|
|
263d5c4d4e | ||
|
|
df896301ca | ||
|
|
c8d0d60f87 | ||
|
|
e540794e7e | ||
|
|
b756809a32 | ||
|
|
1ead4303f3 | ||
|
|
7a29fef719 | ||
|
|
9ace522249 | ||
|
|
ed6e6bbf6c | ||
|
|
51ea36d271 | ||
|
|
269609003b | ||
|
|
2a81800825 | ||
|
|
336dd20d5b | ||
|
|
01c99161c4 | ||
|
|
2c21a0edac | ||
|
|
25767f76a8 | ||
|
|
1b204ed42c | ||
|
|
2cd057187b | ||
|
|
d373e9a5b1 | ||
|
|
f12be190a4 | ||
|
|
be998ae31f | ||
|
|
a49af19f48 | ||
|
|
7850aa0910 | ||
|
|
309739b7cc | ||
|
|
0aaabf90c4 | ||
|
|
c5dab67d9f | ||
|
|
d098f32730 | ||
|
|
281a098337 | ||
|
|
db95158043 | ||
|
|
267bf96651 | ||
|
|
72635012b0 | ||
|
|
9ceee279f0 | ||
|
|
d7b9a37359 | ||
|
|
ec43ef0732 |
1
.github/dependabot.yml
vendored
1
.github/dependabot.yml
vendored
@@ -7,6 +7,7 @@ version: 2
|
||||
updates:
|
||||
- package-ecosystem: "pip" # See documentation for possible values
|
||||
directory: "/" # Location of package manifests
|
||||
target-branch: "dev"
|
||||
schedule:
|
||||
interval: "daily"
|
||||
ignore:
|
||||
|
||||
@@ -3,7 +3,7 @@ default_language_version:
|
||||
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.4.0
|
||||
rev: v4.5.0
|
||||
hooks:
|
||||
# list of supported hooks: https://pre-commit.com/hooks.html
|
||||
- id: trailing-whitespace
|
||||
@@ -18,28 +18,28 @@ repos:
|
||||
|
||||
# python code formatting
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 23.1.0
|
||||
rev: 23.12.1
|
||||
hooks:
|
||||
- id: black
|
||||
args: [--line-length, "120"]
|
||||
|
||||
# python import sorting
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.12.0
|
||||
rev: 5.13.2
|
||||
hooks:
|
||||
- id: isort
|
||||
args: ["--profile", "black", "--filter-files"]
|
||||
|
||||
# python upgrading syntax to newer version
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v3.3.1
|
||||
rev: v3.15.0
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
args: [--py38-plus]
|
||||
|
||||
# python check (PEP8), programming errors and code complexity
|
||||
- repo: https://github.com/PyCQA/flake8
|
||||
rev: 6.0.0
|
||||
rev: 7.0.0
|
||||
hooks:
|
||||
- id: flake8
|
||||
args:
|
||||
@@ -54,6 +54,6 @@ repos:
|
||||
|
||||
# pylint
|
||||
- repo: https://github.com/pycqa/pylint
|
||||
rev: v2.8.2
|
||||
rev: v3.0.3
|
||||
hooks:
|
||||
- id: pylint
|
||||
|
||||
82
.pylintrc
82
.pylintrc
@@ -82,16 +82,6 @@ disable=missing-docstring,
|
||||
no-name-in-module,
|
||||
no-member,
|
||||
unsubscriptable-object,
|
||||
print-statement,
|
||||
parameter-unpacking,
|
||||
unpacking-in-except,
|
||||
old-raise-syntax,
|
||||
backtick,
|
||||
long-suffix,
|
||||
old-ne-operator,
|
||||
old-octal-literal,
|
||||
import-star-module-level,
|
||||
non-ascii-bytes-literal,
|
||||
raw-checker-failed,
|
||||
bad-inline-option,
|
||||
locally-disabled,
|
||||
@@ -106,67 +96,6 @@ disable=missing-docstring,
|
||||
too-many-arguments,
|
||||
too-many-locals,
|
||||
too-many-statements,
|
||||
apply-builtin,
|
||||
basestring-builtin,
|
||||
buffer-builtin,
|
||||
cmp-builtin,
|
||||
coerce-builtin,
|
||||
execfile-builtin,
|
||||
file-builtin,
|
||||
long-builtin,
|
||||
raw_input-builtin,
|
||||
reduce-builtin,
|
||||
standarderror-builtin,
|
||||
unicode-builtin,
|
||||
xrange-builtin,
|
||||
coerce-method,
|
||||
delslice-method,
|
||||
getslice-method,
|
||||
setslice-method,
|
||||
no-absolute-import,
|
||||
old-division,
|
||||
dict-iter-method,
|
||||
dict-view-method,
|
||||
next-method-called,
|
||||
metaclass-assignment,
|
||||
indexing-exception,
|
||||
raising-string,
|
||||
reload-builtin,
|
||||
oct-method,
|
||||
hex-method,
|
||||
nonzero-method,
|
||||
cmp-method,
|
||||
input-builtin,
|
||||
round-builtin,
|
||||
intern-builtin,
|
||||
unichr-builtin,
|
||||
map-builtin-not-iterating,
|
||||
zip-builtin-not-iterating,
|
||||
range-builtin-not-iterating,
|
||||
filter-builtin-not-iterating,
|
||||
using-cmp-argument,
|
||||
eq-without-hash,
|
||||
div-method,
|
||||
idiv-method,
|
||||
rdiv-method,
|
||||
exception-message-attribute,
|
||||
invalid-str-codec,
|
||||
sys-max-int,
|
||||
bad-python3-import,
|
||||
deprecated-string-function,
|
||||
deprecated-str-translate-call,
|
||||
deprecated-itertools-function,
|
||||
deprecated-types-field,
|
||||
next-method-defined,
|
||||
dict-items-not-iterating,
|
||||
dict-keys-not-iterating,
|
||||
dict-values-not-iterating,
|
||||
deprecated-operator-function,
|
||||
deprecated-urllib-function,
|
||||
xreadlines-attribute,
|
||||
deprecated-sys-function,
|
||||
exception-escape,
|
||||
comprehension-escape,
|
||||
duplicate-code,
|
||||
not-callable,
|
||||
import-outside-toplevel,
|
||||
@@ -363,13 +292,6 @@ max-line-length=120
|
||||
# Maximum number of lines in a module.
|
||||
max-module-lines=1000
|
||||
|
||||
# List of optional constructs for which whitespace checking is disabled. `dict-
|
||||
# separator` is used to allow tabulation in dicts, etc.: {1 : 1,\n222: 2}.
|
||||
# `trailing-comma` allows a space between comma and closing bracket: (a, ).
|
||||
# `empty-line` allows space-only lines.
|
||||
no-space-check=trailing-comma,
|
||||
dict-separator
|
||||
|
||||
# Allow the body of a class to be on the same line as the declaration if body
|
||||
# contains single statement.
|
||||
single-line-class-stmt=no
|
||||
@@ -599,5 +521,5 @@ min-public-methods=2
|
||||
|
||||
# Exceptions that will emit a warning when being caught. Defaults to
|
||||
# "BaseException, Exception".
|
||||
overgeneral-exceptions=BaseException,
|
||||
Exception
|
||||
overgeneral-exceptions=builtins.BaseException,
|
||||
builtins.Exception
|
||||
|
||||
2
Makefile
2
Makefile
@@ -17,7 +17,7 @@ create-package: ## Create wheel and tar gz
|
||||
rm -rf dist/
|
||||
python setup.py bdist_wheel --plat-name=manylinux1_x86_64
|
||||
python setup.py sdist
|
||||
python -m twine upload dist/* --verbose
|
||||
python -m twine upload dist/* --verbose --skip-existing
|
||||
|
||||
format: ## Run pre-commit hooks
|
||||
pre-commit run -a
|
||||
|
||||
128
README.md
128
README.md
@@ -17,22 +17,24 @@
|
||||
|
||||
</div>
|
||||
|
||||
> This is the official code implementation of 🍵 Matcha-TTS.
|
||||
> This is the official code implementation of 🍵 Matcha-TTS [ICASSP 2024].
|
||||
|
||||
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
|
||||
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:
|
||||
|
||||
- Is probabilistic
|
||||
- Has compact memory footprint
|
||||
- Sounds highly natural
|
||||
- Is very fast to synthesise from
|
||||
|
||||
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
|
||||
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our ICASSP 2024 paper](https://arxiv.org/abs/2309.03199) for more details.
|
||||
|
||||
[Pretrained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be auto downloaded with the CLI or gradio interface.
|
||||
[Pre-trained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be automatically downloaded with the CLI or gradio interface.
|
||||
|
||||
[Try 🍵 Matcha-TTS on HuggingFace 🤗 spaces!](https://huggingface.co/spaces/shivammehta25/Matcha-TTS)
|
||||
You can also [try 🍵 Matcha-TTS in your browser on HuggingFace 🤗 spaces](https://huggingface.co/spaces/shivammehta25/Matcha-TTS).
|
||||
|
||||
<br>
|
||||
## Teaser video
|
||||
|
||||
[](https://youtu.be/xmvJkz3bqw0)
|
||||
|
||||
## Installation
|
||||
|
||||
@@ -43,7 +45,7 @@ conda create -n matcha-tts python=3.10 -y
|
||||
conda activate matcha-tts
|
||||
```
|
||||
|
||||
2. Install Matcha TTS using pip or from source
|
||||
2. Install Matcha TTS using pip or from source
|
||||
|
||||
```bash
|
||||
pip install matcha-tts
|
||||
@@ -53,6 +55,8 @@ from source
|
||||
|
||||
```bash
|
||||
pip install git+https://github.com/shivammehta25/Matcha-TTS.git
|
||||
cd Matcha-TTS
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
3. Run CLI / gradio app / jupyter notebook
|
||||
@@ -110,26 +114,13 @@ matcha-tts --text "<INPUT TEXT>" --temperature 0.667
|
||||
matcha-tts --text "<INPUT TEXT>" --steps 10
|
||||
```
|
||||
|
||||
## Citation information
|
||||
|
||||
If you find this work useful, please cite our paper:
|
||||
|
||||
```text
|
||||
@article{mehta2023matcha,
|
||||
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
|
||||
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
|
||||
journal={arXiv preprint arXiv:2309.03199},
|
||||
year={2023}
|
||||
}
|
||||
```
|
||||
|
||||
## Train with your own dataset
|
||||
|
||||
Let's assume we are training with LJSpeech
|
||||
Let's assume we are training with LJ Speech
|
||||
|
||||
1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the filelists to point to the extracted data like the [5th point of setup in Tacotron2 repo](https://github.com/NVIDIA/tacotron2#setup).
|
||||
1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the file lists to point to the extracted data like for [item 5 in the setup of the NVIDIA Tacotron 2 repo](https://github.com/NVIDIA/tacotron2#setup).
|
||||
|
||||
2. Clone and enter this repository
|
||||
2. Clone and enter the Matcha-TTS repository
|
||||
|
||||
```bash
|
||||
git clone https://github.com/shivammehta25/Matcha-TTS.git
|
||||
@@ -167,7 +158,7 @@ data_statistics: # Computed for ljspeech dataset
|
||||
|
||||
to the paths of your train and validation filelists.
|
||||
|
||||
5. Run the training script
|
||||
6. Run the training script
|
||||
|
||||
```bash
|
||||
make train-ljspeech
|
||||
@@ -191,20 +182,97 @@ python matcha/train.py experiment=ljspeech_min_memory
|
||||
python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
|
||||
```
|
||||
|
||||
6. Synthesise from the custom trained model
|
||||
7. Synthesise from the custom trained model
|
||||
|
||||
```bash
|
||||
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
|
||||
```
|
||||
|
||||
## ONNX support
|
||||
|
||||
> Special thanks to [@mush42](https://github.com/mush42) for implementing ONNX export and inference support.
|
||||
|
||||
It is possible to export Matcha checkpoints to [ONNX](https://onnx.ai/), and run inference on the exported ONNX graph.
|
||||
|
||||
### ONNX export
|
||||
|
||||
To export a checkpoint to ONNX, first install ONNX with
|
||||
|
||||
```bash
|
||||
pip install onnx
|
||||
```
|
||||
|
||||
then run the following:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.export matcha.ckpt model.onnx --n-timesteps 5
|
||||
```
|
||||
|
||||
Optionally, the ONNX exporter accepts **vocoder-name** and **vocoder-checkpoint** arguments. This enables you to embed the vocoder in the exported graph and generate waveforms in a single run (similar to end-to-end TTS systems).
|
||||
|
||||
**Note** that `n_timesteps` is treated as a hyper-parameter rather than a model input. This means you should specify it during export (not during inference). If not specified, `n_timesteps` is set to **5**.
|
||||
|
||||
**Important**: for now, torch>=2.1.0 is needed for export since the `scaled_product_attention` operator is not exportable in older versions. Until the final version is released, those who want to export their models must install torch>=2.1.0 manually as a pre-release.
|
||||
|
||||
### ONNX Inference
|
||||
|
||||
To run inference on the exported model, first install `onnxruntime` using
|
||||
|
||||
```bash
|
||||
pip install onnxruntime
|
||||
pip install onnxruntime-gpu # for GPU inference
|
||||
```
|
||||
|
||||
then use the following:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs
|
||||
```
|
||||
|
||||
You can also control synthesis parameters:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --temperature 0.4 --speaking_rate 0.9 --spk 0
|
||||
```
|
||||
|
||||
To run inference on **GPU**, make sure to install **onnxruntime-gpu** package, and then pass `--gpu` to the inference command:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --gpu
|
||||
```
|
||||
|
||||
If you exported only Matcha to ONNX, this will write mel-spectrogram as graphs and `numpy` arrays to the output directory.
|
||||
If you embedded the vocoder in the exported graph, this will write `.wav` audio files to the output directory.
|
||||
|
||||
If you exported only Matcha to ONNX, and you want to run a full TTS pipeline, you can pass a path to a vocoder model in `ONNX` format:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --vocoder hifigan.small.onnx
|
||||
```
|
||||
|
||||
This will write `.wav` audio files to the output directory.
|
||||
|
||||
## Citation information
|
||||
|
||||
If you use our code or otherwise find this work useful, please cite our paper:
|
||||
|
||||
```text
|
||||
@inproceedings{mehta2024matcha,
|
||||
title={Matcha-{TTS}: A fast {TTS} architecture with conditional flow matching},
|
||||
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
|
||||
booktitle={Proc. ICASSP},
|
||||
year={2024}
|
||||
}
|
||||
```
|
||||
|
||||
## Acknowledgements
|
||||
|
||||
Since this code uses: [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that comes with it.
|
||||
Since this code uses [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that come with it.
|
||||
|
||||
Other source codes I would like to acknowledge:
|
||||
Other source code we would like to acknowledge:
|
||||
|
||||
- [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev) :For helping me figure out how to make cython binaries pip installable and encouragement
|
||||
- [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev): For helping me figure out how to make cython binaries pip installable and encouragement
|
||||
- [Hugging Face Diffusers](https://huggingface.co/): For their awesome diffusers library and its components
|
||||
- [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For source code of MAS
|
||||
- [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For the monotonic alignment search source code
|
||||
- [torchdyn](https://github.com/DiffEqML/torchdyn): Useful for trying other ODE solvers during research and development
|
||||
- [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For RoPE implementation
|
||||
- [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For the RoPE implementation
|
||||
|
||||
14
configs/data/hi-fi_en-US_female.yaml
Normal file
14
configs/data/hi-fi_en-US_female.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
defaults:
|
||||
- ljspeech
|
||||
- _self_
|
||||
|
||||
# Dataset URL: https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/
|
||||
_target_: matcha.data.text_mel_datamodule.TextMelDataModule
|
||||
name: hi-fi_en-US_female
|
||||
train_filelist_path: data/filelists/hi-fi-captain-en-us-female_train.txt
|
||||
valid_filelist_path: data/filelists/hi-fi-captain-en-us-female_val.txt
|
||||
batch_size: 32
|
||||
cleaners: [english_cleaners_piper]
|
||||
data_statistics: # Computed for this dataset
|
||||
mel_mean: -6.38385
|
||||
mel_std: 2.541796
|
||||
10
configs/data/joe_spont_only.yaml
Normal file
10
configs/data/joe_spont_only.yaml
Normal file
@@ -0,0 +1,10 @@
|
||||
defaults:
|
||||
- ljspeech
|
||||
- _self_
|
||||
|
||||
name: joe_spont_only
|
||||
train_filelist_path: data/filelists/joe_spontonly_train.txt
|
||||
valid_filelist_path: data/filelists/joe_spontonly_val.txt
|
||||
data_statistics:
|
||||
mel_mean: -5.882903
|
||||
mel_std: 2.458284
|
||||
10
configs/data/ryan.yaml
Normal file
10
configs/data/ryan.yaml
Normal file
@@ -0,0 +1,10 @@
|
||||
defaults:
|
||||
- ljspeech
|
||||
- _self_
|
||||
|
||||
name: ryan
|
||||
train_filelist_path: data/filelists/ryan_train.csv
|
||||
valid_filelist_path: data/filelists/ryan_val.csv
|
||||
data_statistics:
|
||||
mel_mean: -4.715779
|
||||
mel_std: 2.124502
|
||||
10
configs/data/tsg2.yaml
Normal file
10
configs/data/tsg2.yaml
Normal file
@@ -0,0 +1,10 @@
|
||||
defaults:
|
||||
- ljspeech
|
||||
- _self_
|
||||
|
||||
name: tsg2
|
||||
train_filelist_path: data/filelists/cormac_train.txt
|
||||
valid_filelist_path: data/filelists/cormac_val.txt
|
||||
data_statistics:
|
||||
mel_mean: -5.536622
|
||||
mel_std: 2.116101
|
||||
@@ -7,8 +7,8 @@
|
||||
task_name: "debug"
|
||||
|
||||
# disable callbacks and loggers during debugging
|
||||
callbacks: null
|
||||
logger: null
|
||||
# callbacks: null
|
||||
# logger: null
|
||||
|
||||
extras:
|
||||
ignore_warnings: False
|
||||
|
||||
@@ -7,6 +7,9 @@ defaults:
|
||||
|
||||
trainer:
|
||||
max_epochs: 1
|
||||
profiler: "simple"
|
||||
# profiler: "advanced"
|
||||
# profiler: "simple"
|
||||
profiler: "advanced"
|
||||
# profiler: "pytorch"
|
||||
accelerator: gpu
|
||||
|
||||
limit_train_batches: 0.02
|
||||
|
||||
14
configs/experiment/hifi_dataset_piper_phonemizer.yaml
Normal file
14
configs/experiment/hifi_dataset_piper_phonemizer.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: hi-fi_en-US_female.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["hi-fi", "single_speaker", "piper_phonemizer", "en_US", "female"]
|
||||
|
||||
run_name: hi-fi_en-US_female_piper_phonemizer
|
||||
14
configs/experiment/joe_det_dur.yaml
Normal file
14
configs/experiment/joe_det_dur.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: joe_spont_only.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["joe"]
|
||||
|
||||
run_name: joe_det_dur
|
||||
20
configs/experiment/joe_stoc_dur.yaml
Normal file
20
configs/experiment/joe_stoc_dur.yaml
Normal file
@@ -0,0 +1,20 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: joe_spont_only.yaml
|
||||
- override /model/duration_predictor: flow_matching.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["joe"]
|
||||
|
||||
|
||||
run_name: joe_stoc_dur
|
||||
|
||||
model:
|
||||
duration_predictor:
|
||||
p_dropout: 0.2
|
||||
16
configs/experiment/ljspeech_stoc_dur.yaml
Normal file
16
configs/experiment/ljspeech_stoc_dur.yaml
Normal file
@@ -0,0 +1,16 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: ljspeech.yaml
|
||||
- override /model/duration_predictor: flow_matching.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["ljspeech"]
|
||||
|
||||
|
||||
run_name: ljspeech
|
||||
18
configs/experiment/ryan_det_dur.yaml
Normal file
18
configs/experiment/ryan_det_dur.yaml
Normal file
@@ -0,0 +1,18 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: ryan.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["ryan"]
|
||||
|
||||
run_name: ryan_det_dur
|
||||
|
||||
|
||||
trainer:
|
||||
max_epochs: 3000
|
||||
24
configs/experiment/ryan_stoc_dur.yaml
Normal file
24
configs/experiment/ryan_stoc_dur.yaml
Normal file
@@ -0,0 +1,24 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: ryan.yaml
|
||||
- override /model/duration_predictor: flow_matching.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["ryan"]
|
||||
|
||||
|
||||
run_name: ryan_stoc_dur
|
||||
|
||||
model:
|
||||
duration_predictor:
|
||||
p_dropout: 0.2
|
||||
|
||||
|
||||
trainer:
|
||||
max_epochs: 3000
|
||||
14
configs/experiment/tsg2_det_dur.yaml
Normal file
14
configs/experiment/tsg2_det_dur.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: tsg2.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["tsg2"]
|
||||
|
||||
run_name: tsg2_det_dur
|
||||
20
configs/experiment/tsg2_stoc_dur.yaml
Normal file
20
configs/experiment/tsg2_stoc_dur.yaml
Normal file
@@ -0,0 +1,20 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: tsg2.yaml
|
||||
- override /model/duration_predictor: flow_matching.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["tsg2"]
|
||||
|
||||
|
||||
run_name: tsg2_stoc_dur
|
||||
|
||||
model:
|
||||
duration_predictor:
|
||||
p_dropout: 0.5
|
||||
7
configs/model/duration_predictor/deterministic.yaml
Normal file
7
configs/model/duration_predictor/deterministic.yaml
Normal file
@@ -0,0 +1,7 @@
|
||||
name: deterministic
|
||||
n_spks: ${model.n_spks}
|
||||
spk_emb_dim: ${model.spk_emb_dim}
|
||||
filter_channels: 256
|
||||
kernel_size: 3
|
||||
n_channels: ${model.encoder.encoder_params.n_channels}
|
||||
p_dropout: ${model.encoder.encoder_params.p_dropout}
|
||||
7
configs/model/duration_predictor/flow_matching.yaml
Normal file
7
configs/model/duration_predictor/flow_matching.yaml
Normal file
@@ -0,0 +1,7 @@
|
||||
defaults:
|
||||
- deterministic.yaml
|
||||
- _self_
|
||||
|
||||
sigma_min: 1e-4
|
||||
n_steps: 10
|
||||
name: flow_matching
|
||||
@@ -3,16 +3,8 @@ encoder_params:
|
||||
n_feats: ${model.n_feats}
|
||||
n_channels: 192
|
||||
filter_channels: 768
|
||||
filter_channels_dp: 256
|
||||
n_heads: 2
|
||||
n_layers: 6
|
||||
kernel_size: 3
|
||||
p_dropout: 0.1
|
||||
spk_emb_dim: 64
|
||||
n_spks: 1
|
||||
prenet: true
|
||||
|
||||
duration_predictor_params:
|
||||
filter_channels_dp: ${model.encoder.encoder_params.filter_channels_dp}
|
||||
kernel_size: 3
|
||||
p_dropout: ${model.encoder.encoder_params.p_dropout}
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
defaults:
|
||||
- _self_
|
||||
- encoder: default.yaml
|
||||
- duration_predictor: deterministic.yaml
|
||||
- decoder: default.yaml
|
||||
- cfm: default.yaml
|
||||
- optimizer: adam.yaml
|
||||
@@ -12,3 +13,4 @@ spk_emb_dim: 64
|
||||
n_feats: 80
|
||||
data_statistics: ${data.data_statistics}
|
||||
out_size: null # Must be divisible by 4
|
||||
prior_loss: true
|
||||
|
||||
@@ -1 +1 @@
|
||||
0.0.1.dev4
|
||||
0.0.5.1
|
||||
|
||||
198
matcha/app.py
198
matcha/app.py
@@ -8,7 +8,7 @@ import torch
|
||||
|
||||
from matcha.cli import (
|
||||
MATCHA_URLS,
|
||||
VOCODER_URL,
|
||||
VOCODER_URLS,
|
||||
assert_model_downloaded,
|
||||
get_device,
|
||||
load_matcha,
|
||||
@@ -22,20 +22,80 @@ LOCATION = Path(get_user_data_dir())
|
||||
|
||||
args = Namespace(
|
||||
cpu=False,
|
||||
model="matcha_ljspeech",
|
||||
vocoder="hifigan_T2_v1",
|
||||
spk=None,
|
||||
model="matcha_vctk",
|
||||
vocoder="hifigan_univ_v1",
|
||||
spk=0,
|
||||
)
|
||||
|
||||
MATCHA_TTS_LOC = LOCATION / f"{args.model}.ckpt"
|
||||
VOCODER_LOC = LOCATION / f"{args.vocoder}"
|
||||
CURRENTLY_LOADED_MODEL = args.model
|
||||
|
||||
|
||||
def MATCHA_TTS_LOC(x):
|
||||
return LOCATION / f"{x}.ckpt"
|
||||
|
||||
|
||||
def VOCODER_LOC(x):
|
||||
return LOCATION / f"{x}"
|
||||
|
||||
|
||||
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
||||
assert_model_downloaded(MATCHA_TTS_LOC, MATCHA_URLS[args.model])
|
||||
assert_model_downloaded(VOCODER_LOC, VOCODER_URL[args.vocoder])
|
||||
RADIO_OPTIONS = {
|
||||
"Multi Speaker (VCTK)": {
|
||||
"model": "matcha_vctk",
|
||||
"vocoder": "hifigan_univ_v1",
|
||||
},
|
||||
"Single Speaker (LJ Speech)": {
|
||||
"model": "matcha_ljspeech",
|
||||
"vocoder": "hifigan_T2_v1",
|
||||
},
|
||||
}
|
||||
|
||||
# Ensure all the required models are downloaded
|
||||
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
|
||||
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
|
||||
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
|
||||
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
|
||||
|
||||
device = get_device(args)
|
||||
|
||||
model = load_matcha(args.model, MATCHA_TTS_LOC, device)
|
||||
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC, device)
|
||||
# Load default model
|
||||
model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
|
||||
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
|
||||
|
||||
|
||||
def load_model(model_name, vocoder_name):
|
||||
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device)
|
||||
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device)
|
||||
return model, vocoder, denoiser
|
||||
|
||||
|
||||
def load_model_ui(model_type, textbox):
|
||||
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"]
|
||||
|
||||
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||
if CURRENTLY_LOADED_MODEL != model_name:
|
||||
model, vocoder, denoiser = load_model(model_name, vocoder_name)
|
||||
CURRENTLY_LOADED_MODEL = model_name
|
||||
|
||||
if model_name == "matcha_ljspeech":
|
||||
spk_slider = gr.update(visible=False, value=-1)
|
||||
single_speaker_examples = gr.update(visible=True)
|
||||
multi_speaker_examples = gr.update(visible=False)
|
||||
length_scale = gr.update(value=0.95)
|
||||
else:
|
||||
spk_slider = gr.update(visible=True, value=0)
|
||||
single_speaker_examples = gr.update(visible=False)
|
||||
multi_speaker_examples = gr.update(visible=True)
|
||||
length_scale = gr.update(value=0.85)
|
||||
|
||||
return (
|
||||
textbox,
|
||||
gr.update(interactive=True),
|
||||
spk_slider,
|
||||
single_speaker_examples,
|
||||
multi_speaker_examples,
|
||||
length_scale,
|
||||
)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
@@ -45,13 +105,14 @@ def process_text_gradio(text):
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
||||
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
|
||||
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
|
||||
output = model.synthesise(
|
||||
text,
|
||||
text_length,
|
||||
n_timesteps=n_timesteps,
|
||||
temperature=temperature,
|
||||
spks=args.spk,
|
||||
spks=spk,
|
||||
length_scale=length_scale,
|
||||
)
|
||||
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
||||
@@ -61,9 +122,27 @@ def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
||||
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
||||
|
||||
|
||||
def run_full_synthesis(text, n_timesteps, mel_temp, length_scale):
|
||||
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
|
||||
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||
if CURRENTLY_LOADED_MODEL != "matcha_vctk":
|
||||
global model, vocoder, denoiser # pylint: disable=global-statement
|
||||
model, vocoder, denoiser = load_model("matcha_vctk", "hifigan_univ_v1")
|
||||
CURRENTLY_LOADED_MODEL = "matcha_vctk"
|
||||
|
||||
phones, text, text_lengths = process_text_gradio(text)
|
||||
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale)
|
||||
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
||||
return phones, audio, mel_spectrogram
|
||||
|
||||
|
||||
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
|
||||
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||
if CURRENTLY_LOADED_MODEL != "matcha_ljspeech":
|
||||
global model, vocoder, denoiser # pylint: disable=global-statement
|
||||
model, vocoder, denoiser = load_model("matcha_ljspeech", "hifigan_T2_v1")
|
||||
CURRENTLY_LOADED_MODEL = "matcha_ljspeech"
|
||||
|
||||
phones, text, text_lengths = process_text_gradio(text)
|
||||
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
||||
return phones, audio, mel_spectrogram
|
||||
|
||||
|
||||
@@ -92,20 +171,31 @@ def main():
|
||||
with gr.Box():
|
||||
with gr.Row():
|
||||
gr.Markdown(description, scale=3)
|
||||
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
|
||||
with gr.Column():
|
||||
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=50, width=50, scale=1, show_label=False)
|
||||
html = '<br><iframe width="560" height="315" src="https://www.youtube.com/embed/xmvJkz3bqw0?si=jN7ILyDsbPwJCGoa" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>'
|
||||
gr.HTML(html)
|
||||
|
||||
with gr.Box():
|
||||
radio_options = list(RADIO_OPTIONS.keys())
|
||||
model_type = gr.Radio(
|
||||
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
gr.Markdown("# Text Input")
|
||||
with gr.Row():
|
||||
text = gr.Textbox(value="", lines=2, label="Text to synthesise")
|
||||
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
|
||||
spk_slider = gr.Slider(
|
||||
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
gr.Markdown("### Hyper parameters")
|
||||
with gr.Row():
|
||||
n_timesteps = gr.Slider(
|
||||
label="Number of ODE steps",
|
||||
minimum=0,
|
||||
minimum=1,
|
||||
maximum=100,
|
||||
step=1,
|
||||
value=10,
|
||||
@@ -142,58 +232,110 @@ def main():
|
||||
# with gr.Row():
|
||||
audio = gr.Audio(interactive=False, label="Audio")
|
||||
|
||||
with gr.Row():
|
||||
with gr.Row(visible=False) as example_row_lj_speech:
|
||||
examples = gr.Examples( # pylint: disable=unused-variable
|
||||
examples=[
|
||||
[
|
||||
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
|
||||
50,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||
2,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||
4,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||
10,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||
50,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The narrative of these events is based largely on the recollections of the participants.",
|
||||
10,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
[
|
||||
"The jury did not believe him, and the verdict was for the defendants.",
|
||||
10,
|
||||
0.677,
|
||||
1.0,
|
||||
0.95,
|
||||
],
|
||||
],
|
||||
fn=run_full_synthesis,
|
||||
fn=ljspeech_example_cacher,
|
||||
inputs=[text, n_timesteps, mel_temp, length_scale],
|
||||
outputs=[phonetised_text, audio, mel_spectrogram],
|
||||
cache_examples=True,
|
||||
)
|
||||
|
||||
with gr.Row() as example_row_multispeaker:
|
||||
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
|
||||
examples=[
|
||||
[
|
||||
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
10,
|
||||
0.677,
|
||||
0.85,
|
||||
0,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
10,
|
||||
0.677,
|
||||
0.85,
|
||||
16,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
50,
|
||||
0.677,
|
||||
0.85,
|
||||
44,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
50,
|
||||
0.677,
|
||||
0.85,
|
||||
45,
|
||||
],
|
||||
[
|
||||
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
|
||||
4,
|
||||
0.677,
|
||||
0.85,
|
||||
58,
|
||||
],
|
||||
],
|
||||
fn=multispeaker_example_cacher,
|
||||
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
|
||||
outputs=[phonetised_text, audio, mel_spectrogram],
|
||||
cache_examples=True,
|
||||
label="Multi Speaker Examples",
|
||||
)
|
||||
|
||||
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
|
||||
load_model_ui,
|
||||
inputs=[model_type, text],
|
||||
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
|
||||
)
|
||||
|
||||
synth_btn.click(
|
||||
fn=process_text_gradio,
|
||||
inputs=[
|
||||
@@ -204,11 +346,11 @@ def main():
|
||||
queue=True,
|
||||
).then(
|
||||
fn=synthesise_mel,
|
||||
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale],
|
||||
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
|
||||
outputs=[audio, mel_spectrogram],
|
||||
)
|
||||
|
||||
demo.queue(concurrency_count=5).launch(share=True)
|
||||
demo.queue().launch(share=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
117
matcha/cli.py
117
matcha/cli.py
@@ -1,6 +1,7 @@
|
||||
import argparse
|
||||
import datetime as dt
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
@@ -17,13 +18,20 @@ from matcha.text import sequence_to_text, text_to_sequence
|
||||
from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse
|
||||
|
||||
MATCHA_URLS = {
|
||||
"matcha_ljspeech": "https://drive.google.com/file/d/1BBzmMU7k3a_WetDfaFblMoN18GqQeHCg/view?usp=drive_link"
|
||||
} # , "matcha_vctk": ""} # Coming soon
|
||||
"matcha_ljspeech": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_ljspeech.ckpt",
|
||||
"matcha_vctk": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_vctk.ckpt",
|
||||
}
|
||||
|
||||
MULTISPEAKER_MODEL = {"matcha_vctk"}
|
||||
SINGLESPEAKER_MODEL = {"matcha_ljspeech"}
|
||||
VOCODER_URLS = {
|
||||
"hifigan_T2_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/generator_v1", # Old url: https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link
|
||||
"hifigan_univ_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/g_02500000", # Old url: https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link
|
||||
}
|
||||
|
||||
VOCODER_URL = {"hifigan_T2_v1": "https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link"}
|
||||
MULTISPEAKER_MODEL = {
|
||||
"matcha_vctk": {"vocoder": "hifigan_univ_v1", "speaking_rate": 0.85, "spk": 0, "spk_range": (0, 107)}
|
||||
}
|
||||
|
||||
SINGLESPEAKER_MODEL = {"matcha_ljspeech": {"vocoder": "hifigan_T2_v1", "speaking_rate": 0.95, "spk": None}}
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram, filename):
|
||||
@@ -55,17 +63,21 @@ def get_texts(args):
|
||||
if args.text:
|
||||
texts = [args.text]
|
||||
else:
|
||||
with open(args.file) as f:
|
||||
with open(args.file, encoding="utf-8") as f:
|
||||
texts = f.readlines()
|
||||
return texts
|
||||
|
||||
|
||||
def assert_required_models_available(args):
|
||||
save_dir = get_user_data_dir()
|
||||
model_path = save_dir / f"{args.model}.ckpt"
|
||||
if not hasattr(args, "checkpoint_path") and args.checkpoint_path is None:
|
||||
model_path = args.checkpoint_path
|
||||
else:
|
||||
model_path = save_dir / f"{args.model}.ckpt"
|
||||
assert_model_downloaded(model_path, MATCHA_URLS[args.model])
|
||||
|
||||
vocoder_path = save_dir / f"{args.vocoder}"
|
||||
assert_model_downloaded(model_path, MATCHA_URLS[args.model])
|
||||
assert_model_downloaded(vocoder_path, VOCODER_URL[args.vocoder])
|
||||
assert_model_downloaded(vocoder_path, VOCODER_URLS[args.vocoder])
|
||||
return {"matcha": model_path, "vocoder": vocoder_path}
|
||||
|
||||
|
||||
@@ -81,7 +93,7 @@ def load_hifigan(checkpoint_path, device):
|
||||
def load_vocoder(vocoder_name, checkpoint_path, device):
|
||||
print(f"[!] Loading {vocoder_name}!")
|
||||
vocoder = None
|
||||
if vocoder_name == "hifigan_T2_v1":
|
||||
if vocoder_name in ("hifigan_T2_v1", "hifigan_univ_v1"):
|
||||
vocoder = load_hifigan(checkpoint_path, device)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
@@ -124,21 +136,70 @@ def validate_args(args):
|
||||
args.text or args.file
|
||||
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
|
||||
assert args.temperature >= 0, "Sampling temperature cannot be negative"
|
||||
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
|
||||
assert args.steps > 0, "Number of ODE steps must be greater than 0"
|
||||
if args.model in SINGLESPEAKER_MODEL:
|
||||
assert args.spk is None, f"Speaker ID is not supported for {args.model}"
|
||||
if args.spk is not None:
|
||||
assert args.spk >= 0 and args.spk < 109, "Speaker ID must be between 0 and 108"
|
||||
assert args.model in MULTISPEAKER_MODEL, "Speaker ID is only supported for multispeaker model"
|
||||
|
||||
if args.model in MULTISPEAKER_MODEL:
|
||||
if args.spk is None:
|
||||
print("[!] Speaker ID not provided! Using speaker ID 0")
|
||||
args.spk = 0
|
||||
if args.checkpoint_path is None:
|
||||
# When using pretrained models
|
||||
if args.model in SINGLESPEAKER_MODEL:
|
||||
args = validate_args_for_single_speaker_model(args)
|
||||
|
||||
if args.model in MULTISPEAKER_MODEL:
|
||||
args = validate_args_for_multispeaker_model(args)
|
||||
else:
|
||||
# When using a custom model
|
||||
if args.vocoder != "hifigan_univ_v1":
|
||||
warn_ = "[-] Using custom model checkpoint! I would suggest passing --vocoder hifigan_univ_v1, unless the custom model is trained on LJ Speech."
|
||||
warnings.warn(warn_, UserWarning)
|
||||
if args.speaking_rate is None:
|
||||
args.speaking_rate = 1.0
|
||||
|
||||
if args.batched:
|
||||
assert args.batch_size > 0, "Batch size must be greater than 0"
|
||||
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def validate_args_for_multispeaker_model(args):
|
||||
if args.vocoder is not None:
|
||||
if args.vocoder != MULTISPEAKER_MODEL[args.model]["vocoder"]:
|
||||
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {MULTISPEAKER_MODEL[args.model]['vocoder']}"
|
||||
warnings.warn(warn_, UserWarning)
|
||||
else:
|
||||
args.vocoder = MULTISPEAKER_MODEL[args.model]["vocoder"]
|
||||
|
||||
if args.speaking_rate is None:
|
||||
args.speaking_rate = MULTISPEAKER_MODEL[args.model]["speaking_rate"]
|
||||
|
||||
spk_range = MULTISPEAKER_MODEL[args.model]["spk_range"]
|
||||
if args.spk is not None:
|
||||
assert (
|
||||
args.spk >= spk_range[0] and args.spk <= spk_range[-1]
|
||||
), f"Speaker ID must be between {spk_range} for this model."
|
||||
else:
|
||||
available_spk_id = MULTISPEAKER_MODEL[args.model]["spk"]
|
||||
warn_ = f"[!] Speaker ID not provided! Using speaker ID {available_spk_id}"
|
||||
warnings.warn(warn_, UserWarning)
|
||||
args.spk = available_spk_id
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def validate_args_for_single_speaker_model(args):
|
||||
if args.vocoder is not None:
|
||||
if args.vocoder != SINGLESPEAKER_MODEL[args.model]["vocoder"]:
|
||||
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {SINGLESPEAKER_MODEL[args.model]['vocoder']}"
|
||||
warnings.warn(warn_, UserWarning)
|
||||
else:
|
||||
args.vocoder = SINGLESPEAKER_MODEL[args.model]["vocoder"]
|
||||
|
||||
if args.speaking_rate is None:
|
||||
args.speaking_rate = SINGLESPEAKER_MODEL[args.model]["speaking_rate"]
|
||||
|
||||
if args.spk != SINGLESPEAKER_MODEL[args.model]["spk"]:
|
||||
warn_ = f"[-] Ignoring speaker id {args.spk} for {args.model}"
|
||||
warnings.warn(warn_, UserWarning)
|
||||
args.spk = SINGLESPEAKER_MODEL[args.model]["spk"]
|
||||
|
||||
return args
|
||||
|
||||
@@ -166,9 +227,9 @@ def cli():
|
||||
parser.add_argument(
|
||||
"--vocoder",
|
||||
type=str,
|
||||
default="hifigan_T2_v1",
|
||||
help="Vocoder to use",
|
||||
choices=VOCODER_URL.keys(),
|
||||
default="hifigan_univ_v1",
|
||||
help="Vocoder to use (default: will use the one suggested with the pretrained model))",
|
||||
choices=VOCODER_URLS.keys(),
|
||||
)
|
||||
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
|
||||
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
|
||||
@@ -182,7 +243,7 @@ def cli():
|
||||
parser.add_argument(
|
||||
"--speaking_rate",
|
||||
type=float,
|
||||
default=1.0,
|
||||
default=None,
|
||||
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
|
||||
)
|
||||
parser.add_argument("--steps", type=int, default=10, help="Number of ODE steps (default: 10)")
|
||||
@@ -199,8 +260,10 @@ def cli():
|
||||
default=os.getcwd(),
|
||||
help="Output folder to save results (default: current dir)",
|
||||
)
|
||||
parser.add_argument("--batched", action="store_true")
|
||||
parser.add_argument("--batch_size", type=int, default=32)
|
||||
parser.add_argument("--batched", action="store_true", help="Batched inference (default: False)")
|
||||
parser.add_argument(
|
||||
"--batch_size", type=int, default=32, help="Batch size only useful when --batched (default: 32)"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -333,6 +396,8 @@ def unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
|
||||
|
||||
def print_config(args):
|
||||
print("[!] Configurations: ")
|
||||
print(f"\t- Model: {args.model}")
|
||||
print(f"\t- Vocoder: {args.vocoder}")
|
||||
print(f"\t- Temperature: {args.temperature}")
|
||||
print(f"\t- Speaking rate: {args.speaking_rate}")
|
||||
print(f"\t- Number of ODE steps: {args.steps}")
|
||||
|
||||
@@ -109,7 +109,7 @@ class TextMelDataModule(LightningDataModule):
|
||||
"""Clean up after fit or test."""
|
||||
pass # pylint: disable=unnecessary-pass
|
||||
|
||||
def state_dict(self): # pylint: disable=no-self-use
|
||||
def state_dict(self):
|
||||
"""Extra things to save to checkpoint."""
|
||||
return {}
|
||||
|
||||
@@ -164,10 +164,10 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
filepath, text = filepath_and_text[0], filepath_and_text[1]
|
||||
spk = None
|
||||
|
||||
text = self.get_text(text, add_blank=self.add_blank)
|
||||
text, cleaned_text = self.get_text(text, add_blank=self.add_blank)
|
||||
mel = self.get_mel(filepath)
|
||||
|
||||
return {"x": text, "y": mel, "spk": spk}
|
||||
return {"x": text, "y": mel, "spk": spk, "filepath": filepath, "x_text": cleaned_text}
|
||||
|
||||
def get_mel(self, filepath):
|
||||
audio, sr = ta.load(filepath)
|
||||
@@ -187,11 +187,11 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
return mel
|
||||
|
||||
def get_text(self, text, add_blank=True):
|
||||
text_norm = text_to_sequence(text, self.cleaners)
|
||||
text_norm, cleaned_text = text_to_sequence(text, self.cleaners)
|
||||
if self.add_blank:
|
||||
text_norm = intersperse(text_norm, 0)
|
||||
text_norm = torch.IntTensor(text_norm)
|
||||
return text_norm
|
||||
return text_norm, cleaned_text
|
||||
|
||||
def __getitem__(self, index):
|
||||
datapoint = self.get_datapoint(self.filepaths_and_text[index])
|
||||
@@ -207,15 +207,16 @@ class TextMelBatchCollate:
|
||||
|
||||
def __call__(self, batch):
|
||||
B = len(batch)
|
||||
y_max_length = max([item["y"].shape[-1] for item in batch])
|
||||
y_max_length = max([item["y"].shape[-1] for item in batch]) # pylint: disable=consider-using-generator
|
||||
y_max_length = fix_len_compatibility(y_max_length)
|
||||
x_max_length = max([item["x"].shape[-1] for item in batch])
|
||||
x_max_length = max([item["x"].shape[-1] for item in batch]) # pylint: disable=consider-using-generator
|
||||
n_feats = batch[0]["y"].shape[-2]
|
||||
|
||||
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
|
||||
x = torch.zeros((B, x_max_length), dtype=torch.long)
|
||||
y_lengths, x_lengths = [], []
|
||||
spks = []
|
||||
filepaths, x_texts = [], []
|
||||
for i, item in enumerate(batch):
|
||||
y_, x_ = item["y"], item["x"]
|
||||
y_lengths.append(y_.shape[-1])
|
||||
@@ -223,9 +224,19 @@ class TextMelBatchCollate:
|
||||
y[i, :, : y_.shape[-1]] = y_
|
||||
x[i, : x_.shape[-1]] = x_
|
||||
spks.append(item["spk"])
|
||||
filepaths.append(item["filepath"])
|
||||
x_texts.append(item["x_text"])
|
||||
|
||||
y_lengths = torch.tensor(y_lengths, dtype=torch.long)
|
||||
x_lengths = torch.tensor(x_lengths, dtype=torch.long)
|
||||
spks = torch.tensor(spks, dtype=torch.long) if self.n_spks > 1 else None
|
||||
|
||||
return {"x": x, "x_lengths": x_lengths, "y": y, "y_lengths": y_lengths, "spks": spks}
|
||||
return {
|
||||
"x": x,
|
||||
"x_lengths": x_lengths,
|
||||
"y": y,
|
||||
"y_lengths": y_lengths,
|
||||
"spks": spks,
|
||||
"filepaths": filepaths,
|
||||
"x_texts": x_texts,
|
||||
}
|
||||
|
||||
@@ -58,7 +58,7 @@ class BaseLightningClass(LightningModule, ABC):
|
||||
y, y_lengths = batch["y"], batch["y_lengths"]
|
||||
spks = batch["spks"]
|
||||
|
||||
dur_loss, prior_loss, diff_loss = self(
|
||||
dur_loss, prior_loss, diff_loss, *_ = self(
|
||||
x=x,
|
||||
x_lengths=x_lengths,
|
||||
y=y,
|
||||
@@ -81,7 +81,7 @@ class BaseLightningClass(LightningModule, ABC):
|
||||
"step",
|
||||
float(self.global_step),
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
|
||||
448
matcha/models/components/duration_predictors.py
Normal file
448
matcha/models/components/duration_predictors.py
Normal file
@@ -0,0 +1,448 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import pack
|
||||
|
||||
from matcha.models.components.decoder import SinusoidalPosEmb, TimestepEmbedding
|
||||
from matcha.models.components.text_encoder import LayerNorm
|
||||
|
||||
# Define available networks
|
||||
|
||||
|
||||
class DurationPredictorNetwork(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_1 = LayerNorm(filter_channels)
|
||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_2 = LayerNorm(filter_channels)
|
||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DurationPredictorNetworkWithTimeStep(nn.Module):
|
||||
"""Similar architecture but with a time embedding support"""
|
||||
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.time_embeddings = SinusoidalPosEmb(filter_channels)
|
||||
self.time_mlp = TimestepEmbedding(
|
||||
in_channels=filter_channels,
|
||||
time_embed_dim=filter_channels,
|
||||
act_fn="silu",
|
||||
)
|
||||
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_1 = LayerNorm(filter_channels)
|
||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_2 = LayerNorm(filter_channels)
|
||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
def forward(self, x, x_mask, enc_outputs, t):
|
||||
t = self.time_embeddings(t)
|
||||
t = self.time_mlp(t).unsqueeze(-1)
|
||||
|
||||
x = pack([x, enc_outputs], "b * t")[0]
|
||||
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = x + t
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = x + t
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
# Define available methods to compute loss
|
||||
|
||||
# Simple MSE deterministic
|
||||
|
||||
|
||||
class DeterministicDurationPredictor(nn.Module):
|
||||
def __init__(self, params):
|
||||
super().__init__()
|
||||
self.estimator = DurationPredictorNetwork(
|
||||
params.n_channels + (params.spk_emb_dim if params.n_spks > 1 else 0),
|
||||
params.filter_channels,
|
||||
params.kernel_size,
|
||||
params.p_dropout,
|
||||
)
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, x, x_mask):
|
||||
return self.estimator(x, x_mask)
|
||||
|
||||
def compute_loss(self, durations, enc_outputs, x_mask):
|
||||
return F.mse_loss(self.estimator(enc_outputs, x_mask), durations, reduction="sum") / torch.sum(x_mask)
|
||||
|
||||
|
||||
# Flow Matching duration predictor
|
||||
|
||||
|
||||
class FlowMatchingDurationPrediction(nn.Module):
|
||||
def __init__(self, params) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.estimator = DurationPredictorNetworkWithTimeStep(
|
||||
1
|
||||
+ params.n_channels
|
||||
+ (
|
||||
params.spk_emb_dim if params.n_spks > 1 else 0
|
||||
), # 1 for the durations and n_channels for encoder outputs
|
||||
params.filter_channels,
|
||||
params.kernel_size,
|
||||
params.p_dropout,
|
||||
)
|
||||
self.sigma_min = params.sigma_min
|
||||
self.n_steps = params.n_steps
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, enc_outputs, mask, n_timesteps=500, temperature=1):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): output_mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
n_timesteps (int): number of diffusion steps
|
||||
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
||||
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
cond: Not used but kept for future purposes
|
||||
|
||||
Returns:
|
||||
sample: generated mel-spectrogram
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
if n_timesteps is None:
|
||||
n_timesteps = self.n_steps
|
||||
|
||||
b, _, t = enc_outputs.shape
|
||||
z = torch.randn((b, 1, t), device=enc_outputs.device, dtype=enc_outputs.dtype) * temperature
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=enc_outputs.device)
|
||||
return self.solve_euler(z, t_span=t_span, enc_outputs=enc_outputs, mask=mask)
|
||||
|
||||
def solve_euler(self, x, t_span, enc_outputs, mask):
|
||||
"""
|
||||
Fixed euler solver for ODEs.
|
||||
Args:
|
||||
x (torch.Tensor): random noise
|
||||
t_span (torch.Tensor): n_timesteps interpolated
|
||||
shape: (n_timesteps + 1,)
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): output_mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
"""
|
||||
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||
|
||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||
# Or in future might add like a return_all_steps flag
|
||||
sol = []
|
||||
|
||||
for step in range(1, len(t_span)):
|
||||
dphi_dt = self.estimator(x, mask, enc_outputs, t)
|
||||
|
||||
x = x + dt * dphi_dt
|
||||
t = t + dt
|
||||
sol.append(x)
|
||||
if step < len(t_span) - 1:
|
||||
dt = t_span[step + 1] - t
|
||||
|
||||
return sol[-1]
|
||||
|
||||
def compute_loss(self, x1, enc_outputs, mask):
|
||||
"""Computes diffusion loss
|
||||
|
||||
Args:
|
||||
x1 (torch.Tensor): Target
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): target mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
|
||||
Returns:
|
||||
loss: conditional flow matching loss
|
||||
y: conditional flow
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
enc_outputs = enc_outputs.detach() # don't update encoder from the duration predictor
|
||||
b, _, t = enc_outputs.shape
|
||||
|
||||
# random timestep
|
||||
t = torch.rand([b, 1, 1], device=enc_outputs.device, dtype=enc_outputs.dtype)
|
||||
# sample noise p(x_0)
|
||||
z = torch.randn_like(x1)
|
||||
|
||||
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
||||
u = x1 - (1 - self.sigma_min) * z
|
||||
|
||||
loss = F.mse_loss(self.estimator(y, mask, enc_outputs, t.squeeze()), u, reduction="sum") / (
|
||||
torch.sum(mask) * u.shape[1]
|
||||
)
|
||||
return loss
|
||||
|
||||
|
||||
# VITS discrete normalising flow based duration predictor
|
||||
|
||||
|
||||
class Log(nn.Module):
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
||||
logdet = torch.sum(-y, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = torch.exp(x) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class ElementwiseAffine(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.m = nn.Parameter(torch.zeros(channels, 1))
|
||||
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
||||
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = self.m + torch.exp(self.logs) * x
|
||||
y = y * x_mask
|
||||
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class DDSConv(nn.Module):
|
||||
"""
|
||||
Dialted and Depth-Separable Convolution
|
||||
"""
|
||||
|
||||
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.convs_sep = nn.ModuleList()
|
||||
self.convs_1x1 = nn.ModuleList()
|
||||
self.norms_1 = nn.ModuleList()
|
||||
self.norms_2 = nn.ModuleList()
|
||||
for i in range(n_layers):
|
||||
dilation = kernel_size**i
|
||||
padding = (kernel_size * dilation - dilation) // 2
|
||||
self.convs_sep.append(
|
||||
nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding)
|
||||
)
|
||||
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||||
self.norms_1.append(LayerNorm(channels))
|
||||
self.norms_2.append(LayerNorm(channels))
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
if g is not None:
|
||||
x = x + g
|
||||
for i in range(self.n_layers):
|
||||
y = self.convs_sep[i](x * x_mask)
|
||||
y = self.norms_1[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.convs_1x1[i](y)
|
||||
y = self.norms_2[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.drop(y)
|
||||
x = x + y
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class ConvFlow(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.num_bins = num_bins
|
||||
self.tail_bound = tail_bound
|
||||
self.half_channels = in_channels // 2
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||||
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
||||
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0)
|
||||
h = self.convs(h, x_mask, g=g)
|
||||
h = self.proj(h) * x_mask
|
||||
|
||||
b, c, t = x0.shape
|
||||
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||||
|
||||
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
||||
|
||||
x1, logabsdet = piecewise_rational_quadratic_transform(
|
||||
x1,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=reverse,
|
||||
tails="linear",
|
||||
tail_bound=self.tail_bound,
|
||||
)
|
||||
|
||||
x = torch.cat([x0, x1], 1) * x_mask
|
||||
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
||||
if not reverse:
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class StochasticDurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
||||
super().__init__()
|
||||
filter_channels = in_channels # it needs to be removed from future version.
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.n_flows = n_flows
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.log_flow = Log()
|
||||
self.flows = nn.ModuleList()
|
||||
self.flows.append(ElementwiseAffine(2))
|
||||
for i in range(n_flows):
|
||||
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||
self.flows.append(modules.Flip())
|
||||
|
||||
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
||||
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||
self.post_flows = nn.ModuleList()
|
||||
self.post_flows.append(modules.ElementwiseAffine(2))
|
||||
for i in range(4):
|
||||
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||
self.post_flows.append(modules.Flip())
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
||||
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
||||
|
||||
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
||||
x = torch.detach(x)
|
||||
x = self.pre(x)
|
||||
if g is not None:
|
||||
g = torch.detach(g)
|
||||
x = x + self.cond(g)
|
||||
x = self.convs(x, x_mask)
|
||||
x = self.proj(x) * x_mask
|
||||
|
||||
if not reverse:
|
||||
flows = self.flows
|
||||
assert w is not None
|
||||
|
||||
logdet_tot_q = 0
|
||||
h_w = self.post_pre(w)
|
||||
h_w = self.post_convs(h_w, x_mask)
|
||||
h_w = self.post_proj(h_w) * x_mask
|
||||
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
||||
z_q = e_q
|
||||
for flow in self.post_flows:
|
||||
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
||||
logdet_tot_q += logdet_q
|
||||
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
||||
u = torch.sigmoid(z_u) * x_mask
|
||||
z0 = (w - u) * x_mask
|
||||
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
||||
logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2]) - logdet_tot_q
|
||||
|
||||
logdet_tot = 0
|
||||
z0, logdet = self.log_flow(z0, x_mask)
|
||||
logdet_tot += logdet
|
||||
z = torch.cat([z0, z1], 1)
|
||||
for flow in flows:
|
||||
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
||||
logdet_tot = logdet_tot + logdet
|
||||
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) - logdet_tot
|
||||
return nll + logq # [b]
|
||||
else:
|
||||
flows = list(reversed(self.flows))
|
||||
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
||||
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
||||
for flow in flows:
|
||||
z = flow(z, x_mask, g=x, reverse=reverse)
|
||||
z0, z1 = torch.split(z, [1, 1], 1)
|
||||
logw = z0
|
||||
return logw
|
||||
|
||||
|
||||
# Meta class to wrap all duration predictors
|
||||
|
||||
|
||||
class DP(nn.Module):
|
||||
def __init__(self, params):
|
||||
super().__init__()
|
||||
self.name = params.name
|
||||
|
||||
if params.name == "deterministic":
|
||||
self.dp = DeterministicDurationPredictor(
|
||||
params,
|
||||
)
|
||||
elif params.name == "flow_matching":
|
||||
self.dp = FlowMatchingDurationPrediction(
|
||||
params,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Invalid duration predictor configuration: {params.name}")
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, enc_outputs, mask):
|
||||
return self.dp(enc_outputs, mask)
|
||||
|
||||
def compute_loss(self, durations, enc_outputs, mask):
|
||||
return self.dp.compute_loss(durations, enc_outputs, mask)
|
||||
@@ -73,16 +73,14 @@ class BASECFM(torch.nn.Module, ABC):
|
||||
# Or in future might add like a return_all_steps flag
|
||||
sol = []
|
||||
|
||||
steps = 1
|
||||
while steps <= len(t_span) - 1:
|
||||
for step in range(1, len(t_span)):
|
||||
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
||||
|
||||
x = x + dt * dphi_dt
|
||||
t = t + dt
|
||||
sol.append(x)
|
||||
if steps < len(t_span) - 1:
|
||||
dt = t_span[steps + 1] - t
|
||||
steps += 1
|
||||
if step < len(t_span) - 1:
|
||||
dt = t_span[step + 1] - t
|
||||
|
||||
return sol[-1]
|
||||
|
||||
|
||||
@@ -67,33 +67,6 @@ class ConvReluNorm(nn.Module):
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_1 = LayerNorm(filter_channels)
|
||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_2 = LayerNorm(filter_channels)
|
||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class RotaryPositionalEmbeddings(nn.Module):
|
||||
"""
|
||||
## RoPE module
|
||||
@@ -330,7 +303,6 @@ class TextEncoder(nn.Module):
|
||||
self,
|
||||
encoder_type,
|
||||
encoder_params,
|
||||
duration_predictor_params,
|
||||
n_vocab,
|
||||
n_spks=1,
|
||||
spk_emb_dim=128,
|
||||
@@ -368,12 +340,6 @@ class TextEncoder(nn.Module):
|
||||
)
|
||||
|
||||
self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
|
||||
self.proj_w = DurationPredictor(
|
||||
self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
|
||||
duration_predictor_params.filter_channels_dp,
|
||||
duration_predictor_params.kernel_size,
|
||||
duration_predictor_params.p_dropout,
|
||||
)
|
||||
|
||||
def forward(self, x, x_lengths, spks=None):
|
||||
"""Run forward pass to the transformer based encoder and duration predictor
|
||||
@@ -404,7 +370,7 @@ class TextEncoder(nn.Module):
|
||||
x = self.encoder(x, x_mask)
|
||||
mu = self.proj_m(x) * x_mask
|
||||
|
||||
x_dp = torch.detach(x)
|
||||
logw = self.proj_w(x_dp, x_mask)
|
||||
# x_dp = torch.detach(x)
|
||||
# logw = self.proj_w(x_dp, x_mask)
|
||||
|
||||
return mu, logw, x_mask
|
||||
return mu, x, x_mask
|
||||
|
||||
@@ -4,14 +4,14 @@ import random
|
||||
|
||||
import torch
|
||||
|
||||
import matcha.utils.monotonic_align as monotonic_align
|
||||
import matcha.utils.monotonic_align as monotonic_align # pylint: disable=consider-using-from-import
|
||||
from matcha import utils
|
||||
from matcha.models.baselightningmodule import BaseLightningClass
|
||||
from matcha.models.components.duration_predictors import DP
|
||||
from matcha.models.components.flow_matching import CFM
|
||||
from matcha.models.components.text_encoder import TextEncoder
|
||||
from matcha.utils.model import (
|
||||
denormalize,
|
||||
duration_loss,
|
||||
fix_len_compatibility,
|
||||
generate_path,
|
||||
sequence_mask,
|
||||
@@ -28,12 +28,14 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
spk_emb_dim,
|
||||
n_feats,
|
||||
encoder,
|
||||
duration_predictor,
|
||||
decoder,
|
||||
cfm,
|
||||
data_statistics,
|
||||
out_size,
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
prior_loss=True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -44,6 +46,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
self.spk_emb_dim = spk_emb_dim
|
||||
self.n_feats = n_feats
|
||||
self.out_size = out_size
|
||||
self.prior_loss = prior_loss
|
||||
|
||||
if n_spks > 1:
|
||||
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
|
||||
@@ -51,12 +54,13 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
self.encoder = TextEncoder(
|
||||
encoder.encoder_type,
|
||||
encoder.encoder_params,
|
||||
encoder.duration_predictor_params,
|
||||
n_vocab,
|
||||
n_spks,
|
||||
spk_emb_dim,
|
||||
)
|
||||
|
||||
self.dp = DP(duration_predictor)
|
||||
|
||||
self.decoder = CFM(
|
||||
in_channels=2 * encoder.encoder_params.n_feats,
|
||||
out_channel=encoder.encoder_params.n_feats,
|
||||
@@ -110,13 +114,17 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
# Get speaker embedding
|
||||
spks = self.spk_emb(spks.long())
|
||||
|
||||
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
||||
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
||||
# Get encoder_outputs `mu_x` and encoded text `enc_output`
|
||||
mu_x, enc_output, x_mask = self.encoder(x, x_lengths, spks)
|
||||
|
||||
# Get log-scaled token durations `logw`
|
||||
logw = self.dp(enc_output, x_mask)
|
||||
|
||||
w = torch.exp(logw) * x_mask
|
||||
w_ceil = torch.ceil(w) * length_scale
|
||||
# print(w_ceil)
|
||||
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
||||
y_max_length = int(y_lengths.max())
|
||||
y_max_length = y_lengths.max()
|
||||
y_max_length_ = fix_len_compatibility(y_max_length)
|
||||
|
||||
# Using obtained durations `w` construct alignment map `attn`
|
||||
@@ -171,7 +179,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
spks = self.spk_emb(spks)
|
||||
|
||||
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
||||
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
||||
mu_x, enc_output, x_mask = self.encoder(x, x_lengths, spks)
|
||||
y_max_length = y.shape[-1]
|
||||
|
||||
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
||||
@@ -190,9 +198,8 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
attn = attn.detach()
|
||||
|
||||
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
||||
# refered to as prior loss in the paper
|
||||
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
|
||||
dur_loss = duration_loss(logw, logw_, x_lengths)
|
||||
dur_loss = self.dp.compute_loss(logw_, enc_output, x_mask)
|
||||
|
||||
# Cut a small segment of mel-spectrogram in order to increase batch size
|
||||
# - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it
|
||||
@@ -228,7 +235,10 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
# Compute loss of the decoder
|
||||
diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond)
|
||||
|
||||
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
|
||||
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
|
||||
if self.prior_loss:
|
||||
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
|
||||
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
|
||||
else:
|
||||
prior_loss = 0
|
||||
|
||||
return dur_loss, prior_loss, diff_loss
|
||||
return dur_loss, prior_loss, diff_loss, attn
|
||||
|
||||
0
matcha/onnx/__init__.py
Normal file
0
matcha/onnx/__init__.py
Normal file
181
matcha/onnx/export.py
Normal file
181
matcha/onnx/export.py
Normal file
@@ -0,0 +1,181 @@
|
||||
import argparse
|
||||
import random
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from lightning import LightningModule
|
||||
|
||||
from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder
|
||||
|
||||
DEFAULT_OPSET = 15
|
||||
|
||||
SEED = 1234
|
||||
random.seed(SEED)
|
||||
np.random.seed(SEED)
|
||||
torch.manual_seed(SEED)
|
||||
torch.cuda.manual_seed(SEED)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
||||
|
||||
class MatchaWithVocoder(LightningModule):
|
||||
def __init__(self, matcha, vocoder):
|
||||
super().__init__()
|
||||
self.matcha = matcha
|
||||
self.vocoder = vocoder
|
||||
|
||||
def forward(self, x, x_lengths, scales, spks=None):
|
||||
mel, mel_lengths = self.matcha(x, x_lengths, scales, spks)
|
||||
wavs = self.vocoder(mel).clamp(-1, 1)
|
||||
lengths = mel_lengths * 256
|
||||
return wavs.squeeze(1), lengths
|
||||
|
||||
|
||||
def get_exportable_module(matcha, vocoder, n_timesteps):
|
||||
"""
|
||||
Return an appropriate `LighteningModule` and output-node names
|
||||
based on whether the vocoder is embedded in the final graph
|
||||
"""
|
||||
|
||||
def onnx_forward_func(x, x_lengths, scales, spks=None):
|
||||
"""
|
||||
Custom forward function for accepting
|
||||
scaler parameters as tensors
|
||||
"""
|
||||
# Extract scaler parameters from tensors
|
||||
temperature = scales[0]
|
||||
length_scale = scales[1]
|
||||
output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale)
|
||||
return output["mel"], output["mel_lengths"]
|
||||
|
||||
# Monkey-patch Matcha's forward function
|
||||
matcha.forward = onnx_forward_func
|
||||
|
||||
if vocoder is None:
|
||||
model, output_names = matcha, ["mel", "mel_lengths"]
|
||||
else:
|
||||
model = MatchaWithVocoder(matcha, vocoder)
|
||||
output_names = ["wav", "wav_lengths"]
|
||||
return model, output_names
|
||||
|
||||
|
||||
def get_inputs(is_multi_speaker):
|
||||
"""
|
||||
Create dummy inputs for tracing
|
||||
"""
|
||||
dummy_input_length = 50
|
||||
x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long)
|
||||
x_lengths = torch.LongTensor([dummy_input_length])
|
||||
|
||||
# Scales
|
||||
temperature = 0.667
|
||||
length_scale = 1.0
|
||||
scales = torch.Tensor([temperature, length_scale])
|
||||
|
||||
model_inputs = [x, x_lengths, scales]
|
||||
input_names = [
|
||||
"x",
|
||||
"x_lengths",
|
||||
"scales",
|
||||
]
|
||||
|
||||
if is_multi_speaker:
|
||||
spks = torch.LongTensor([1])
|
||||
model_inputs.append(spks)
|
||||
input_names.append("spks")
|
||||
|
||||
return tuple(model_inputs), input_names
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX")
|
||||
|
||||
parser.add_argument(
|
||||
"checkpoint_path",
|
||||
type=str,
|
||||
help="Path to the model checkpoint",
|
||||
)
|
||||
parser.add_argument("output", type=str, help="Path to output `.onnx` file")
|
||||
parser.add_argument(
|
||||
"--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocoder-name",
|
||||
type=str,
|
||||
choices=list(VOCODER_URLS.keys()),
|
||||
default=None,
|
||||
help="Name of the vocoder to embed in the ONNX graph",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocoder-checkpoint-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience",
|
||||
)
|
||||
parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}")
|
||||
print(f"Setting n_timesteps to {args.n_timesteps}")
|
||||
|
||||
checkpoint_path = Path(args.checkpoint_path)
|
||||
matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu")
|
||||
|
||||
if args.vocoder_name or args.vocoder_checkpoint_path:
|
||||
assert (
|
||||
args.vocoder_name and args.vocoder_checkpoint_path
|
||||
), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph."
|
||||
vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu")
|
||||
else:
|
||||
vocoder = None
|
||||
|
||||
is_multi_speaker = matcha.n_spks > 1
|
||||
|
||||
dummy_input, input_names = get_inputs(is_multi_speaker)
|
||||
model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps)
|
||||
|
||||
# Set dynamic shape for inputs/outputs
|
||||
dynamic_axes = {
|
||||
"x": {0: "batch_size", 1: "time"},
|
||||
"x_lengths": {0: "batch_size"},
|
||||
}
|
||||
|
||||
if vocoder is None:
|
||||
dynamic_axes.update(
|
||||
{
|
||||
"mel": {0: "batch_size", 2: "time"},
|
||||
"mel_lengths": {0: "batch_size"},
|
||||
}
|
||||
)
|
||||
else:
|
||||
print("Embedding the vocoder in the ONNX graph")
|
||||
dynamic_axes.update(
|
||||
{
|
||||
"wav": {0: "batch_size", 1: "time"},
|
||||
"wav_lengths": {0: "batch_size"},
|
||||
}
|
||||
)
|
||||
|
||||
if is_multi_speaker:
|
||||
dynamic_axes["spks"] = {0: "batch_size"}
|
||||
|
||||
# Create the output directory (if not exists)
|
||||
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
model.to_onnx(
|
||||
args.output,
|
||||
dummy_input,
|
||||
input_names=input_names,
|
||||
output_names=output_names,
|
||||
dynamic_axes=dynamic_axes,
|
||||
opset_version=args.opset,
|
||||
export_params=True,
|
||||
do_constant_folding=True,
|
||||
)
|
||||
print(f"[🍵] ONNX model exported to {args.output}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
168
matcha/onnx/infer.py
Normal file
168
matcha/onnx/infer.py
Normal file
@@ -0,0 +1,168 @@
|
||||
import argparse
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from time import perf_counter
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
from matcha.cli import plot_spectrogram_to_numpy, process_text
|
||||
|
||||
|
||||
def validate_args(args):
|
||||
assert (
|
||||
args.text or args.file
|
||||
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
|
||||
assert args.temperature >= 0, "Sampling temperature cannot be negative"
|
||||
assert args.speaking_rate >= 0, "Speaking rate must be greater than 0"
|
||||
return args
|
||||
|
||||
|
||||
def write_wavs(model, inputs, output_dir, external_vocoder=None):
|
||||
if external_vocoder is None:
|
||||
print("The provided model has the vocoder embedded in the graph.\nGenerating waveform directly")
|
||||
t0 = perf_counter()
|
||||
wavs, wav_lengths = model.run(None, inputs)
|
||||
infer_secs = perf_counter() - t0
|
||||
mel_infer_secs = vocoder_infer_secs = None
|
||||
else:
|
||||
print("[🍵] Generating mel using Matcha")
|
||||
mel_t0 = perf_counter()
|
||||
mels, mel_lengths = model.run(None, inputs)
|
||||
mel_infer_secs = perf_counter() - mel_t0
|
||||
print("Generating waveform from mel using external vocoder")
|
||||
vocoder_inputs = {external_vocoder.get_inputs()[0].name: mels}
|
||||
vocoder_t0 = perf_counter()
|
||||
wavs = external_vocoder.run(None, vocoder_inputs)[0]
|
||||
vocoder_infer_secs = perf_counter() - vocoder_t0
|
||||
wavs = wavs.squeeze(1)
|
||||
wav_lengths = mel_lengths * 256
|
||||
infer_secs = mel_infer_secs + vocoder_infer_secs
|
||||
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
for i, (wav, wav_length) in enumerate(zip(wavs, wav_lengths)):
|
||||
output_filename = output_dir.joinpath(f"output_{i + 1}.wav")
|
||||
audio = wav[:wav_length]
|
||||
print(f"Writing audio to {output_filename}")
|
||||
sf.write(output_filename, audio, 22050, "PCM_24")
|
||||
|
||||
wav_secs = wav_lengths.sum() / 22050
|
||||
print(f"Inference seconds: {infer_secs}")
|
||||
print(f"Generated wav seconds: {wav_secs}")
|
||||
rtf = infer_secs / wav_secs
|
||||
if mel_infer_secs is not None:
|
||||
mel_rtf = mel_infer_secs / wav_secs
|
||||
print(f"Matcha RTF: {mel_rtf}")
|
||||
if vocoder_infer_secs is not None:
|
||||
vocoder_rtf = vocoder_infer_secs / wav_secs
|
||||
print(f"Vocoder RTF: {vocoder_rtf}")
|
||||
print(f"Overall RTF: {rtf}")
|
||||
|
||||
|
||||
def write_mels(model, inputs, output_dir):
|
||||
t0 = perf_counter()
|
||||
mels, mel_lengths = model.run(None, inputs)
|
||||
infer_secs = perf_counter() - t0
|
||||
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
for i, mel in enumerate(mels):
|
||||
output_stem = output_dir.joinpath(f"output_{i + 1}")
|
||||
plot_spectrogram_to_numpy(mel.squeeze(), output_stem.with_suffix(".png"))
|
||||
np.save(output_stem.with_suffix(".numpy"), mel)
|
||||
|
||||
wav_secs = (mel_lengths * 256).sum() / 22050
|
||||
print(f"Inference seconds: {infer_secs}")
|
||||
print(f"Generated wav seconds: {wav_secs}")
|
||||
rtf = infer_secs / wav_secs
|
||||
print(f"RTF: {rtf}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description=" 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching"
|
||||
)
|
||||
parser.add_argument(
|
||||
"model",
|
||||
type=str,
|
||||
help="ONNX model to use",
|
||||
)
|
||||
parser.add_argument("--vocoder", type=str, default=None, help="Vocoder to use (defaults to None)")
|
||||
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
|
||||
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
|
||||
parser.add_argument("--spk", type=int, default=None, help="Speaker ID")
|
||||
parser.add_argument(
|
||||
"--temperature",
|
||||
type=float,
|
||||
default=0.667,
|
||||
help="Variance of the x0 noise (default: 0.667)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--speaking-rate",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
|
||||
)
|
||||
parser.add_argument("--gpu", action="store_true", help="Use CPU for inference (default: use GPU if available)")
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=str,
|
||||
default=os.getcwd(),
|
||||
help="Output folder to save results (default: current dir)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
args = validate_args(args)
|
||||
|
||||
if args.gpu:
|
||||
providers = ["GPUExecutionProvider"]
|
||||
else:
|
||||
providers = ["CPUExecutionProvider"]
|
||||
model = ort.InferenceSession(args.model, providers=providers)
|
||||
|
||||
model_inputs = model.get_inputs()
|
||||
model_outputs = list(model.get_outputs())
|
||||
|
||||
if args.text:
|
||||
text_lines = args.text.splitlines()
|
||||
else:
|
||||
with open(args.file, encoding="utf-8") as file:
|
||||
text_lines = file.read().splitlines()
|
||||
|
||||
processed_lines = [process_text(0, line, "cpu") for line in text_lines]
|
||||
x = [line["x"].squeeze() for line in processed_lines]
|
||||
# Pad
|
||||
x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True)
|
||||
x = x.detach().cpu().numpy()
|
||||
x_lengths = np.array([line["x_lengths"].item() for line in processed_lines], dtype=np.int64)
|
||||
inputs = {
|
||||
"x": x,
|
||||
"x_lengths": x_lengths,
|
||||
"scales": np.array([args.temperature, args.speaking_rate], dtype=np.float32),
|
||||
}
|
||||
is_multi_speaker = len(model_inputs) == 4
|
||||
if is_multi_speaker:
|
||||
if args.spk is None:
|
||||
args.spk = 0
|
||||
warn = "[!] Speaker ID not provided! Using speaker ID 0"
|
||||
warnings.warn(warn, UserWarning)
|
||||
inputs["spks"] = np.repeat(args.spk, x.shape[0]).astype(np.int64)
|
||||
|
||||
has_vocoder_embedded = model_outputs[0].name == "wav"
|
||||
if has_vocoder_embedded:
|
||||
write_wavs(model, inputs, args.output_dir)
|
||||
elif args.vocoder:
|
||||
external_vocoder = ort.InferenceSession(args.vocoder, providers=providers)
|
||||
write_wavs(model, inputs, args.output_dir, external_vocoder=external_vocoder)
|
||||
else:
|
||||
warn = "[!] A vocoder is not embedded in the graph nor an external vocoder is provided. The mel output will be written as numpy arrays to `*.npy` files in the output directory"
|
||||
warnings.warn(warn, UserWarning)
|
||||
write_mels(model, inputs, args.output_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -21,7 +21,7 @@ def text_to_sequence(text, cleaner_names):
|
||||
for symbol in clean_text:
|
||||
symbol_id = _symbol_to_id[symbol]
|
||||
sequence += [symbol_id]
|
||||
return sequence
|
||||
return sequence, clean_text
|
||||
|
||||
|
||||
def cleaned_text_to_sequence(cleaned_text):
|
||||
|
||||
@@ -15,6 +15,7 @@ import logging
|
||||
import re
|
||||
|
||||
import phonemizer
|
||||
import piper_phonemize
|
||||
from unidecode import unidecode
|
||||
|
||||
# To avoid excessive logging we set the log level of the phonemizer package to Critical
|
||||
@@ -103,3 +104,13 @@ def english_cleaners2(text):
|
||||
phonemes = global_phonemizer.phonemize([text], strip=True, njobs=1)[0]
|
||||
phonemes = collapse_whitespace(phonemes)
|
||||
return phonemes
|
||||
|
||||
|
||||
def english_cleaners_piper(text):
|
||||
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
|
||||
text = convert_to_ascii(text)
|
||||
text = lowercase(text)
|
||||
text = expand_abbreviations(text)
|
||||
phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0])
|
||||
phonemes = collapse_whitespace(phonemes)
|
||||
return phonemes
|
||||
|
||||
192
matcha/utils/get_durations_from_trained_model.py
Normal file
192
matcha/utils/get_durations_from_trained_model.py
Normal file
@@ -0,0 +1,192 @@
|
||||
r"""
|
||||
The file creates a pickle file where the values needed for loading of dataset is stored and the model can load it
|
||||
when needed.
|
||||
|
||||
Parameters from hparam.py will be used
|
||||
"""
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import lightning
|
||||
import numpy as np
|
||||
import rootutils
|
||||
import torch
|
||||
from hydra import compose, initialize
|
||||
from omegaconf import open_dict
|
||||
from torch import nn
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from matcha.cli import get_device
|
||||
from matcha.data.text_mel_datamodule import TextMelDataModule
|
||||
from matcha.models.matcha_tts import MatchaTTS
|
||||
from matcha.utils.logging_utils import pylogger
|
||||
from matcha.utils.utils import get_phoneme_durations
|
||||
|
||||
log = pylogger.get_pylogger(__name__)
|
||||
|
||||
|
||||
def save_durations_to_folder(
|
||||
attn: torch.Tensor, x_length: int, y_length: int, filepath: str, output_folder: Path, text: str
|
||||
):
|
||||
durations = attn.squeeze().sum(1)[:x_length].numpy()
|
||||
durations_json = get_phoneme_durations(durations, text)
|
||||
output = output_folder / Path(filepath).name.replace(".wav", ".npy")
|
||||
with open(output.with_suffix(".json"), "w", encoding="utf-8") as f:
|
||||
json.dump(durations_json, f, indent=4, ensure_ascii=False)
|
||||
|
||||
np.save(output, durations)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def compute_durations(data_loader: torch.utils.data.DataLoader, model: nn.Module, device: torch.device, output_folder):
|
||||
"""Generate durations from the model for each datapoint and save it in a folder
|
||||
|
||||
Args:
|
||||
data_loader (torch.utils.data.DataLoader): Dataloader
|
||||
model (nn.Module): MatchaTTS model
|
||||
device (torch.device): GPU or CPU
|
||||
"""
|
||||
|
||||
for batch in tqdm(data_loader, desc="🍵 Computing durations 🍵:"):
|
||||
x, x_lengths = batch["x"], batch["x_lengths"]
|
||||
y, y_lengths = batch["y"], batch["y_lengths"]
|
||||
spks = batch["spks"]
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
x_lengths = x_lengths.to(device)
|
||||
y_lengths = y_lengths.to(device)
|
||||
spks = spks.to(device) if spks is not None else None
|
||||
|
||||
_, _, _, attn = model(
|
||||
x=x,
|
||||
x_lengths=x_lengths,
|
||||
y=y,
|
||||
y_lengths=y_lengths,
|
||||
spks=spks,
|
||||
)
|
||||
attn = attn.cpu()
|
||||
for i in range(attn.shape[0]):
|
||||
save_durations_to_folder(
|
||||
attn[i],
|
||||
x_lengths[i].item(),
|
||||
y_lengths[i].item(),
|
||||
batch["filepaths"][i],
|
||||
output_folder,
|
||||
batch["x_texts"][i],
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"-i",
|
||||
"--input-config",
|
||||
type=str,
|
||||
default="vctk.yaml",
|
||||
help="The name of the yaml config file under configs/data",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-b",
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default="32",
|
||||
help="Can have increased batch size for faster computation",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-f",
|
||||
"--force",
|
||||
action="store_true",
|
||||
default=False,
|
||||
required=False,
|
||||
help="force overwrite the file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--checkpoint_path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint file to load the model from",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output-folder",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Output folder to save the data statistics",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--cpu", action="store_true", help="Use CPU for inference, not recommended (default: use GPU if available)"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
with initialize(version_base="1.3", config_path="../../configs/data"):
|
||||
cfg = compose(config_name=args.input_config, return_hydra_config=True, overrides=[])
|
||||
|
||||
root_path = rootutils.find_root(search_from=__file__, indicator=".project-root")
|
||||
|
||||
with open_dict(cfg):
|
||||
del cfg["hydra"]
|
||||
del cfg["_target_"]
|
||||
cfg["seed"] = 1234
|
||||
cfg["batch_size"] = args.batch_size
|
||||
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
|
||||
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
|
||||
|
||||
if args.output_folder is not None:
|
||||
output_folder = Path(args.output_folder)
|
||||
else:
|
||||
output_folder = Path("data") / "processed_data" / cfg["name"] / "durations"
|
||||
|
||||
if os.path.exists(output_folder) and not args.force:
|
||||
print("Folder already exists. Use -f to force overwrite")
|
||||
sys.exit(1)
|
||||
|
||||
output_folder.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"Preprocessing: {cfg['name']} from training filelist: {cfg['train_filelist_path']}")
|
||||
print("Loading model...")
|
||||
device = get_device(args)
|
||||
model = MatchaTTS.load_from_checkpoint(args.checkpoint_path, map_location=device)
|
||||
|
||||
text_mel_datamodule = TextMelDataModule(**cfg)
|
||||
text_mel_datamodule.setup()
|
||||
try:
|
||||
print("Computing stats for training set if exists...")
|
||||
train_dataloader = text_mel_datamodule.train_dataloader()
|
||||
compute_durations(train_dataloader, model, device, output_folder)
|
||||
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||
print("No training set found")
|
||||
|
||||
try:
|
||||
print("Computing stats for validation set if exists...")
|
||||
val_dataloader = text_mel_datamodule.val_dataloader()
|
||||
compute_durations(val_dataloader, model, device, output_folder)
|
||||
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||
print("No validation set found")
|
||||
|
||||
try:
|
||||
print("Computing stats for test set if exists...")
|
||||
test_dataloader = text_mel_datamodule.test_dataloader()
|
||||
compute_durations(test_dataloader, model, device, output_folder)
|
||||
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||
print("No test set found")
|
||||
|
||||
print(f"[+] Done! Data statistics saved to: {output_folder}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Helps with generating durations for the dataset to train other architectures
|
||||
# that cannot learn to align due to limited size of dataset
|
||||
# Example usage:
|
||||
# python python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c pretrained_model
|
||||
# This will create a folder in data/processed_data/durations/ljspeech with the durations
|
||||
main()
|
||||
@@ -7,15 +7,17 @@ import torch
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(int(max_length), dtype=length.dtype, device=length.device)
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
|
||||
while True:
|
||||
if length % (2**num_downsamplings_in_unet) == 0:
|
||||
return length
|
||||
length += 1
|
||||
factor = torch.scalar_tensor(2).pow(num_downsamplings_in_unet)
|
||||
length = (length / factor).ceil() * factor
|
||||
if not torch.onnx.is_in_onnx_export():
|
||||
return length.int().item()
|
||||
else:
|
||||
return length
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
|
||||
@@ -2,6 +2,7 @@ import os
|
||||
import sys
|
||||
import warnings
|
||||
from importlib.util import find_spec
|
||||
from math import ceil
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Tuple
|
||||
|
||||
@@ -115,7 +116,7 @@ def get_metric_value(metric_dict: Dict[str, Any], metric_name: str) -> float:
|
||||
return None
|
||||
|
||||
if metric_name not in metric_dict:
|
||||
raise Exception(
|
||||
raise ValueError(
|
||||
f"Metric value not found! <metric_name={metric_name}>\n"
|
||||
"Make sure metric name logged in LightningModule is correct!\n"
|
||||
"Make sure `optimized_metric` name in `hparams_search` config is correct!"
|
||||
@@ -205,13 +206,54 @@ def get_user_data_dir(appname="matcha_tts"):
|
||||
return final_path
|
||||
|
||||
|
||||
def assert_model_downloaded(checkpoint_path, url, use_wget=False):
|
||||
def assert_model_downloaded(checkpoint_path, url, use_wget=True):
|
||||
if Path(checkpoint_path).exists():
|
||||
log.debug(f"[+] Model already present at {checkpoint_path}!")
|
||||
print(f"[+] Model already present at {checkpoint_path}!")
|
||||
return
|
||||
log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
|
||||
print(f"[-] Model not found at {checkpoint_path}! Will download it")
|
||||
checkpoint_path = str(checkpoint_path)
|
||||
if not use_wget:
|
||||
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
|
||||
else:
|
||||
wget.download(url=url, out=checkpoint_path)
|
||||
|
||||
|
||||
def get_phoneme_durations(durations, phones):
|
||||
prev = durations[0]
|
||||
merged_durations = []
|
||||
# Convolve with stride 2
|
||||
for i in range(1, len(durations), 2):
|
||||
if i == len(durations) - 2:
|
||||
# if it is last take full value
|
||||
next_half = durations[i + 1]
|
||||
else:
|
||||
next_half = ceil(durations[i + 1] / 2)
|
||||
|
||||
curr = prev + durations[i] + next_half
|
||||
prev = durations[i + 1] - next_half
|
||||
merged_durations.append(curr)
|
||||
|
||||
assert len(phones) == len(merged_durations)
|
||||
assert len(merged_durations) == (len(durations) - 1) // 2
|
||||
|
||||
merged_durations = torch.cumsum(torch.tensor(merged_durations), 0, dtype=torch.long)
|
||||
start = torch.tensor(0)
|
||||
duration_json = []
|
||||
for i, duration in enumerate(merged_durations):
|
||||
duration_json.append(
|
||||
{
|
||||
phones[i]: {
|
||||
"starttime": start.item(),
|
||||
"endtime": duration.item(),
|
||||
"duration": duration.item() - start.item(),
|
||||
}
|
||||
}
|
||||
)
|
||||
start = duration
|
||||
|
||||
assert list(duration_json[-1].values())[0]["endtime"] == sum(
|
||||
durations
|
||||
), f"{list(duration_json[-1].values())[0]['endtime'], sum(durations)}"
|
||||
return duration_json
|
||||
|
||||
@@ -35,10 +35,11 @@ torchaudio
|
||||
matplotlib
|
||||
pandas
|
||||
conformer==0.3.2
|
||||
diffusers==0.21.1
|
||||
diffusers==0.25.0
|
||||
notebook
|
||||
ipywidgets
|
||||
gradio
|
||||
gdown
|
||||
wget
|
||||
seaborn
|
||||
piper_phonemize
|
||||
|
||||
15
scripts/get_durations.sh
Normal file
15
scripts/get_durations.sh
Normal file
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "Starting script"
|
||||
|
||||
echo "Getting LJ Speech durations"
|
||||
python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c logs/train/lj_det/runs/2024-01-12_12-05-00/checkpoints/last.ckpt -f
|
||||
|
||||
echo "Getting TSG2 durations"
|
||||
python matcha/utils/get_durations_from_trained_model.py -i tsg2.yaml -c logs/train/tsg2_det_dur/runs/2024-01-05_12-33-35/checkpoints/last.ckpt -f
|
||||
|
||||
echo "Getting Joe Spont durations"
|
||||
python matcha/utils/get_durations_from_trained_model.py -i joe_spont_only.yaml -c logs/train/joe_det_dur/runs/2024-02-20_14-01-01/checkpoints/last.ckpt -f
|
||||
|
||||
echo "Getting Ryan durations"
|
||||
python matcha/utils/get_durations_from_trained_model.py -i ryan.yaml -c logs/train/matcha_ryan_det/runs/2024-02-26_09-28-09/checkpoints/last.ckpt -f
|
||||
7
scripts/transcribe.sh
Normal file
7
scripts/transcribe.sh
Normal file
@@ -0,0 +1,7 @@
|
||||
echo "Transcribing"
|
||||
|
||||
whispertranscriber -i lj_det_output -o lj_det_output_transcriptions -f
|
||||
|
||||
whispertranscriber -i lj_fm_output -o lj_fm_output_transcriptions -f
|
||||
wercompute -r dur_wer_computation/reference_transcripts/ -i lj_det_output_transcriptions
|
||||
wercompute -r dur_wer_computation/reference_transcripts/ -i lj_fm_output_transcriptions
|
||||
30
scripts/wer_computer.sh
Normal file
30
scripts/wer_computer.sh
Normal file
@@ -0,0 +1,30 @@
|
||||
#!/bin/bash
|
||||
# Run from root folder with: bash scripts/wer_computer.sh
|
||||
|
||||
|
||||
root_folder=${1:-"dur_wer_computation"}
|
||||
echo "Running WER computation for Duration predictors"
|
||||
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/lj_fm_output_transcriptions/"
|
||||
# echo $cmd
|
||||
echo "LJ"
|
||||
echo "==================================="
|
||||
echo "Flow Matching"
|
||||
$cmd
|
||||
echo "-----------------------------------"
|
||||
|
||||
echo "LJ Determinstic"
|
||||
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/lj_det_output_transcriptions/"
|
||||
$cmd
|
||||
echo "-----------------------------------"
|
||||
|
||||
echo "Cormac"
|
||||
echo "==================================="
|
||||
echo "Cormac Flow Matching"
|
||||
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/fm_output_transcriptions/"
|
||||
$cmd
|
||||
echo "-----------------------------------"
|
||||
|
||||
echo "Cormac Determinstic"
|
||||
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/det_output_transcriptions/"
|
||||
$cmd
|
||||
echo "-----------------------------------"
|
||||
1265
synthesis.ipynb
1265
synthesis.ipynb
File diff suppressed because one or more lines are too long
Reference in New Issue
Block a user