Removing the option for configuring prior loss, the durations predicted are not so good then

This commit is contained in:
Shivam Mehta
2023-12-04 10:12:39 +00:00
parent 263d5c4d4e
commit a18db17330
2 changed files with 2 additions and 8 deletions

View File

@@ -12,4 +12,3 @@ spk_emb_dim: 64
n_feats: 80
data_statistics: ${data.data_statistics}
out_size: null # Must be divisible by 4
prior_loss: true

View File

@@ -34,7 +34,6 @@ class MatchaTTS(BaseLightningClass): # 🍵
out_size,
optimizer=None,
scheduler=None,
prior_loss=True,
):
super().__init__()
@@ -45,7 +44,6 @@ class MatchaTTS(BaseLightningClass): # 🍵
self.spk_emb_dim = spk_emb_dim
self.n_feats = n_feats
self.out_size = out_size
self.prior_loss = prior_loss
if n_spks > 1:
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
@@ -230,10 +228,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
# Compute loss of the decoder
diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond)
if self.prior_loss:
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
else:
prior_loss = 0
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
return dur_loss, prior_loss, diff_loss