mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-05 02:09:21 +08:00
Compare commits
16 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4c35836fa5 | ||
|
|
294c6b1327 | ||
|
|
ad76016916 | ||
|
|
05c8f9b4a8 | ||
|
|
4d5b62cea9 | ||
|
|
8e87111a98 | ||
|
|
def0855608 | ||
|
|
6976a91348 | ||
|
|
256adc55d3 | ||
|
|
bfcbdbc82e | ||
|
|
47a629f128 | ||
|
|
5a2a893750 | ||
|
|
458e9df236 | ||
|
|
d03bba82bb | ||
|
|
dc035a09f2 | ||
|
|
a58bab5403 |
@@ -1,9 +1,9 @@
|
||||
default_language_version:
|
||||
python: python3.11
|
||||
python: python3.10
|
||||
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.4.0
|
||||
rev: v4.5.0
|
||||
hooks:
|
||||
# list of supported hooks: https://pre-commit.com/hooks.html
|
||||
- id: trailing-whitespace
|
||||
@@ -18,28 +18,28 @@ repos:
|
||||
|
||||
# python code formatting
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 23.9.1
|
||||
rev: 23.12.1
|
||||
hooks:
|
||||
- id: black
|
||||
args: [--line-length, "120"]
|
||||
|
||||
# python import sorting
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.12.0
|
||||
rev: 5.13.2
|
||||
hooks:
|
||||
- id: isort
|
||||
args: ["--profile", "black", "--filter-files"]
|
||||
|
||||
# python upgrading syntax to newer version
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v3.14.0
|
||||
rev: v3.15.0
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
args: [--py38-plus]
|
||||
|
||||
# python check (PEP8), programming errors and code complexity
|
||||
- repo: https://github.com/PyCQA/flake8
|
||||
rev: 6.1.0
|
||||
rev: 7.0.0
|
||||
hooks:
|
||||
- id: flake8
|
||||
args:
|
||||
@@ -54,6 +54,6 @@ repos:
|
||||
|
||||
# pylint
|
||||
- repo: https://github.com/pycqa/pylint
|
||||
rev: v3.0.0
|
||||
rev: v3.0.3
|
||||
hooks:
|
||||
- id: pylint
|
||||
|
||||
39
README.md
39
README.md
@@ -17,7 +17,7 @@
|
||||
|
||||
</div>
|
||||
|
||||
> This is the official code implementation of 🍵 Matcha-TTS.
|
||||
> This is the official code implementation of 🍵 Matcha-TTS [ICASSP 2024].
|
||||
|
||||
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:
|
||||
|
||||
@@ -252,43 +252,6 @@ python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --vo
|
||||
|
||||
This will write `.wav` audio files to the output directory.
|
||||
|
||||
## Extract phoneme alignments from Matcha-TTS
|
||||
|
||||
If the dataset is structured as
|
||||
|
||||
```bash
|
||||
data/
|
||||
└── LJSpeech-1.1
|
||||
├── metadata.csv
|
||||
├── README
|
||||
├── test.txt
|
||||
├── train.txt
|
||||
├── val.txt
|
||||
└── wavs
|
||||
```
|
||||
Then you can extract the phoneme level alignments from a Trained Matcha-TTS model using:
|
||||
```bash
|
||||
python matcha/utils/get_durations_from_trained_model.py -i dataset_yaml -c <checkpoint>
|
||||
```
|
||||
Example:
|
||||
```bash
|
||||
python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c matcha_ljspeech.ckpt
|
||||
```
|
||||
or simply:
|
||||
```bash
|
||||
matcha-tts-get-durations -i ljspeech.yaml -c matcha_ljspeech.ckpt
|
||||
```
|
||||
---
|
||||
## Train using extracted alignments
|
||||
|
||||
In the datasetconfig turn on load duration.
|
||||
Example: `ljspeech.yaml`
|
||||
```
|
||||
load_durations: True
|
||||
```
|
||||
or see an examples in configs/experiment/ljspeech_from_durations.yaml
|
||||
|
||||
|
||||
## Citation information
|
||||
|
||||
If you use our code or otherwise find this work useful, please cite our paper:
|
||||
|
||||
10
configs/data/joe_spont_only.yaml
Normal file
10
configs/data/joe_spont_only.yaml
Normal file
@@ -0,0 +1,10 @@
|
||||
defaults:
|
||||
- ljspeech
|
||||
- _self_
|
||||
|
||||
name: joe_spont_only
|
||||
train_filelist_path: data/filelists/joe_spontonly_train.txt
|
||||
valid_filelist_path: data/filelists/joe_spontonly_val.txt
|
||||
data_statistics:
|
||||
mel_mean: -5.882903
|
||||
mel_std: 2.458284
|
||||
@@ -1,7 +1,7 @@
|
||||
_target_: matcha.data.text_mel_datamodule.TextMelDataModule
|
||||
name: ljspeech
|
||||
train_filelist_path: data/LJSpeech-1.1/train.txt
|
||||
valid_filelist_path: data/LJSpeech-1.1/val.txt
|
||||
train_filelist_path: data/filelists/ljs_audio_text_train_filelist.txt
|
||||
valid_filelist_path: data/filelists/ljs_audio_text_val_filelist.txt
|
||||
batch_size: 32
|
||||
num_workers: 20
|
||||
pin_memory: True
|
||||
@@ -19,4 +19,3 @@ data_statistics: # Computed for ljspeech dataset
|
||||
mel_mean: -5.536622
|
||||
mel_std: 2.116101
|
||||
seed: ${seed}
|
||||
load_durations: false
|
||||
|
||||
10
configs/data/ryan.yaml
Normal file
10
configs/data/ryan.yaml
Normal file
@@ -0,0 +1,10 @@
|
||||
defaults:
|
||||
- ljspeech
|
||||
- _self_
|
||||
|
||||
name: ryan
|
||||
train_filelist_path: data/filelists/ryan_train.csv
|
||||
valid_filelist_path: data/filelists/ryan_val.csv
|
||||
data_statistics:
|
||||
mel_mean: -4.715779
|
||||
mel_std: 2.124502
|
||||
10
configs/data/tsg2.yaml
Normal file
10
configs/data/tsg2.yaml
Normal file
@@ -0,0 +1,10 @@
|
||||
defaults:
|
||||
- ljspeech
|
||||
- _self_
|
||||
|
||||
name: tsg2
|
||||
train_filelist_path: data/filelists/cormac_train.txt
|
||||
valid_filelist_path: data/filelists/cormac_val.txt
|
||||
data_statistics:
|
||||
mel_mean: -5.536622
|
||||
mel_std: 2.116101
|
||||
14
configs/experiment/joe_det_dur.yaml
Normal file
14
configs/experiment/joe_det_dur.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: joe_spont_only.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["joe"]
|
||||
|
||||
run_name: joe_det_dur
|
||||
20
configs/experiment/joe_stoc_dur.yaml
Normal file
20
configs/experiment/joe_stoc_dur.yaml
Normal file
@@ -0,0 +1,20 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: joe_spont_only.yaml
|
||||
- override /model/duration_predictor: flow_matching.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["joe"]
|
||||
|
||||
|
||||
run_name: joe_stoc_dur
|
||||
|
||||
model:
|
||||
duration_predictor:
|
||||
p_dropout: 0.2
|
||||
@@ -5,15 +5,12 @@
|
||||
|
||||
defaults:
|
||||
- override /data: ljspeech.yaml
|
||||
- override /model/duration_predictor: flow_matching.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["ljspeech"]
|
||||
|
||||
|
||||
run_name: ljspeech
|
||||
|
||||
|
||||
data:
|
||||
load_durations: True
|
||||
batch_size: 64
|
||||
18
configs/experiment/ryan_det_dur.yaml
Normal file
18
configs/experiment/ryan_det_dur.yaml
Normal file
@@ -0,0 +1,18 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: ryan.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["ryan"]
|
||||
|
||||
run_name: ryan_det_dur
|
||||
|
||||
|
||||
trainer:
|
||||
max_epochs: 3000
|
||||
24
configs/experiment/ryan_stoc_dur.yaml
Normal file
24
configs/experiment/ryan_stoc_dur.yaml
Normal file
@@ -0,0 +1,24 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: ryan.yaml
|
||||
- override /model/duration_predictor: flow_matching.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["ryan"]
|
||||
|
||||
|
||||
run_name: ryan_stoc_dur
|
||||
|
||||
model:
|
||||
duration_predictor:
|
||||
p_dropout: 0.2
|
||||
|
||||
|
||||
trainer:
|
||||
max_epochs: 3000
|
||||
14
configs/experiment/tsg2_det_dur.yaml
Normal file
14
configs/experiment/tsg2_det_dur.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: tsg2.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["tsg2"]
|
||||
|
||||
run_name: tsg2_det_dur
|
||||
20
configs/experiment/tsg2_stoc_dur.yaml
Normal file
20
configs/experiment/tsg2_stoc_dur.yaml
Normal file
@@ -0,0 +1,20 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: tsg2.yaml
|
||||
- override /model/duration_predictor: flow_matching.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["tsg2"]
|
||||
|
||||
|
||||
run_name: tsg2_stoc_dur
|
||||
|
||||
model:
|
||||
duration_predictor:
|
||||
p_dropout: 0.5
|
||||
7
configs/model/duration_predictor/deterministic.yaml
Normal file
7
configs/model/duration_predictor/deterministic.yaml
Normal file
@@ -0,0 +1,7 @@
|
||||
name: deterministic
|
||||
n_spks: ${model.n_spks}
|
||||
spk_emb_dim: ${model.spk_emb_dim}
|
||||
filter_channels: 256
|
||||
kernel_size: 3
|
||||
n_channels: ${model.encoder.encoder_params.n_channels}
|
||||
p_dropout: ${model.encoder.encoder_params.p_dropout}
|
||||
7
configs/model/duration_predictor/flow_matching.yaml
Normal file
7
configs/model/duration_predictor/flow_matching.yaml
Normal file
@@ -0,0 +1,7 @@
|
||||
defaults:
|
||||
- deterministic.yaml
|
||||
- _self_
|
||||
|
||||
sigma_min: 1e-4
|
||||
n_steps: 10
|
||||
name: flow_matching
|
||||
@@ -3,16 +3,8 @@ encoder_params:
|
||||
n_feats: ${model.n_feats}
|
||||
n_channels: 192
|
||||
filter_channels: 768
|
||||
filter_channels_dp: 256
|
||||
n_heads: 2
|
||||
n_layers: 6
|
||||
kernel_size: 3
|
||||
p_dropout: 0.1
|
||||
spk_emb_dim: 64
|
||||
n_spks: 1
|
||||
prenet: true
|
||||
|
||||
duration_predictor_params:
|
||||
filter_channels_dp: ${model.encoder.encoder_params.filter_channels_dp}
|
||||
kernel_size: 3
|
||||
p_dropout: ${model.encoder.encoder_params.p_dropout}
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
defaults:
|
||||
- _self_
|
||||
- encoder: default.yaml
|
||||
- duration_predictor: deterministic.yaml
|
||||
- decoder: default.yaml
|
||||
- cfm: default.yaml
|
||||
- optimizer: adam.yaml
|
||||
@@ -13,4 +14,3 @@ n_feats: 80
|
||||
data_statistics: ${data.data_statistics}
|
||||
out_size: null # Must be divisible by 4
|
||||
prior_loss: true
|
||||
use_precomputed_durations: ${data.load_durations}
|
||||
|
||||
@@ -1 +1 @@
|
||||
0.0.6.0
|
||||
0.0.5.1
|
||||
|
||||
@@ -48,7 +48,7 @@ def plot_spectrogram_to_numpy(spectrogram, filename):
|
||||
def process_text(i: int, text: str, device: torch.device):
|
||||
print(f"[{i}] - Input text: {text}")
|
||||
x = torch.tensor(
|
||||
intersperse(text_to_sequence(text, ["english_cleaners2"])[0], 0),
|
||||
intersperse(text_to_sequence(text, ["english_cleaners2"]), 0),
|
||||
dtype=torch.long,
|
||||
device=device,
|
||||
)[None]
|
||||
@@ -227,7 +227,7 @@ def cli():
|
||||
parser.add_argument(
|
||||
"--vocoder",
|
||||
type=str,
|
||||
default=None,
|
||||
default="hifigan_univ_v1",
|
||||
help="Vocoder to use (default: will use the one suggested with the pretrained model))",
|
||||
choices=VOCODER_URLS.keys(),
|
||||
)
|
||||
@@ -326,13 +326,12 @@ def batched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
|
||||
for i, batch in enumerate(dataloader):
|
||||
i = i + 1
|
||||
start_t = dt.datetime.now()
|
||||
b = batch["x"].shape[0]
|
||||
output = model.synthesise(
|
||||
batch["x"].to(device),
|
||||
batch["x_lengths"].to(device),
|
||||
n_timesteps=args.steps,
|
||||
temperature=args.temperature,
|
||||
spks=spk.expand(b) if spk is not None else spk,
|
||||
spks=spk,
|
||||
length_scale=args.speaking_rate,
|
||||
)
|
||||
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
import random
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchaudio as ta
|
||||
from lightning import LightningDataModule
|
||||
@@ -41,7 +39,6 @@ class TextMelDataModule(LightningDataModule):
|
||||
f_max,
|
||||
data_statistics,
|
||||
seed,
|
||||
load_durations,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -71,7 +68,6 @@ class TextMelDataModule(LightningDataModule):
|
||||
self.hparams.f_max,
|
||||
self.hparams.data_statistics,
|
||||
self.hparams.seed,
|
||||
self.hparams.load_durations,
|
||||
)
|
||||
self.validset = TextMelDataset( # pylint: disable=attribute-defined-outside-init
|
||||
self.hparams.valid_filelist_path,
|
||||
@@ -87,7 +83,6 @@ class TextMelDataModule(LightningDataModule):
|
||||
self.hparams.f_max,
|
||||
self.hparams.data_statistics,
|
||||
self.hparams.seed,
|
||||
self.hparams.load_durations,
|
||||
)
|
||||
|
||||
def train_dataloader(self):
|
||||
@@ -139,7 +134,6 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
f_max=8000,
|
||||
data_parameters=None,
|
||||
seed=None,
|
||||
load_durations=False,
|
||||
):
|
||||
self.filepaths_and_text = parse_filelist(filelist_path)
|
||||
self.n_spks = n_spks
|
||||
@@ -152,8 +146,6 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
self.win_length = win_length
|
||||
self.f_min = f_min
|
||||
self.f_max = f_max
|
||||
self.load_durations = load_durations
|
||||
|
||||
if data_parameters is not None:
|
||||
self.data_parameters = data_parameters
|
||||
else:
|
||||
@@ -175,26 +167,7 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
text, cleaned_text = self.get_text(text, add_blank=self.add_blank)
|
||||
mel = self.get_mel(filepath)
|
||||
|
||||
durations = self.get_durations(filepath, text) if self.load_durations else None
|
||||
|
||||
return {"x": text, "y": mel, "spk": spk, "filepath": filepath, "x_text": cleaned_text, "durations": durations}
|
||||
|
||||
def get_durations(self, filepath, text):
|
||||
filepath = Path(filepath)
|
||||
data_dir, name = filepath.parent.parent, filepath.stem
|
||||
|
||||
try:
|
||||
dur_loc = data_dir / "durations" / f"{name}.npy"
|
||||
durs = torch.from_numpy(np.load(dur_loc).astype(int))
|
||||
|
||||
except FileNotFoundError as e:
|
||||
raise FileNotFoundError(
|
||||
f"Tried loading the durations but durations didn't exist at {dur_loc}, make sure you've generate the durations first using: python matcha/utils/get_durations_from_trained_model.py \n"
|
||||
) from e
|
||||
|
||||
assert len(durs) == len(text), f"Length of durations {len(durs)} and text {len(text)} do not match"
|
||||
|
||||
return durs
|
||||
return {"x": text, "y": mel, "spk": spk, "filepath": filepath, "x_text": cleaned_text}
|
||||
|
||||
def get_mel(self, filepath):
|
||||
audio, sr = ta.load(filepath)
|
||||
@@ -234,15 +207,13 @@ class TextMelBatchCollate:
|
||||
|
||||
def __call__(self, batch):
|
||||
B = len(batch)
|
||||
y_max_length = max([item["y"].shape[-1] for item in batch])
|
||||
y_max_length = max([item["y"].shape[-1] for item in batch]) # pylint: disable=consider-using-generator
|
||||
y_max_length = fix_len_compatibility(y_max_length)
|
||||
x_max_length = max([item["x"].shape[-1] for item in batch])
|
||||
x_max_length = max([item["x"].shape[-1] for item in batch]) # pylint: disable=consider-using-generator
|
||||
n_feats = batch[0]["y"].shape[-2]
|
||||
|
||||
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
|
||||
x = torch.zeros((B, x_max_length), dtype=torch.long)
|
||||
durations = torch.zeros((B, x_max_length), dtype=torch.long)
|
||||
|
||||
y_lengths, x_lengths = [], []
|
||||
spks = []
|
||||
filepaths, x_texts = [], []
|
||||
@@ -255,8 +226,6 @@ class TextMelBatchCollate:
|
||||
spks.append(item["spk"])
|
||||
filepaths.append(item["filepath"])
|
||||
x_texts.append(item["x_text"])
|
||||
if item["durations"] is not None:
|
||||
durations[i, : item["durations"].shape[-1]] = item["durations"]
|
||||
|
||||
y_lengths = torch.tensor(y_lengths, dtype=torch.long)
|
||||
x_lengths = torch.tensor(x_lengths, dtype=torch.long)
|
||||
@@ -270,5 +239,4 @@ class TextMelBatchCollate:
|
||||
"spks": spks,
|
||||
"filepaths": filepaths,
|
||||
"x_texts": x_texts,
|
||||
"durations": durations if not torch.eq(durations, 0).all() else None,
|
||||
}
|
||||
|
||||
@@ -65,7 +65,6 @@ class BaseLightningClass(LightningModule, ABC):
|
||||
y_lengths=y_lengths,
|
||||
spks=spks,
|
||||
out_size=self.out_size,
|
||||
durations=batch["durations"],
|
||||
)
|
||||
return {
|
||||
"dur_loss": dur_loss,
|
||||
|
||||
448
matcha/models/components/duration_predictors.py
Normal file
448
matcha/models/components/duration_predictors.py
Normal file
@@ -0,0 +1,448 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import pack
|
||||
|
||||
from matcha.models.components.decoder import SinusoidalPosEmb, TimestepEmbedding
|
||||
from matcha.models.components.text_encoder import LayerNorm
|
||||
|
||||
# Define available networks
|
||||
|
||||
|
||||
class DurationPredictorNetwork(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_1 = LayerNorm(filter_channels)
|
||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_2 = LayerNorm(filter_channels)
|
||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DurationPredictorNetworkWithTimeStep(nn.Module):
|
||||
"""Similar architecture but with a time embedding support"""
|
||||
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.time_embeddings = SinusoidalPosEmb(filter_channels)
|
||||
self.time_mlp = TimestepEmbedding(
|
||||
in_channels=filter_channels,
|
||||
time_embed_dim=filter_channels,
|
||||
act_fn="silu",
|
||||
)
|
||||
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_1 = LayerNorm(filter_channels)
|
||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_2 = LayerNorm(filter_channels)
|
||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
def forward(self, x, x_mask, enc_outputs, t):
|
||||
t = self.time_embeddings(t)
|
||||
t = self.time_mlp(t).unsqueeze(-1)
|
||||
|
||||
x = pack([x, enc_outputs], "b * t")[0]
|
||||
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = x + t
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = x + t
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
# Define available methods to compute loss
|
||||
|
||||
# Simple MSE deterministic
|
||||
|
||||
|
||||
class DeterministicDurationPredictor(nn.Module):
|
||||
def __init__(self, params):
|
||||
super().__init__()
|
||||
self.estimator = DurationPredictorNetwork(
|
||||
params.n_channels + (params.spk_emb_dim if params.n_spks > 1 else 0),
|
||||
params.filter_channels,
|
||||
params.kernel_size,
|
||||
params.p_dropout,
|
||||
)
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, x, x_mask):
|
||||
return self.estimator(x, x_mask)
|
||||
|
||||
def compute_loss(self, durations, enc_outputs, x_mask):
|
||||
return F.mse_loss(self.estimator(enc_outputs, x_mask), durations, reduction="sum") / torch.sum(x_mask)
|
||||
|
||||
|
||||
# Flow Matching duration predictor
|
||||
|
||||
|
||||
class FlowMatchingDurationPrediction(nn.Module):
|
||||
def __init__(self, params) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.estimator = DurationPredictorNetworkWithTimeStep(
|
||||
1
|
||||
+ params.n_channels
|
||||
+ (
|
||||
params.spk_emb_dim if params.n_spks > 1 else 0
|
||||
), # 1 for the durations and n_channels for encoder outputs
|
||||
params.filter_channels,
|
||||
params.kernel_size,
|
||||
params.p_dropout,
|
||||
)
|
||||
self.sigma_min = params.sigma_min
|
||||
self.n_steps = params.n_steps
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, enc_outputs, mask, n_timesteps=500, temperature=1):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): output_mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
n_timesteps (int): number of diffusion steps
|
||||
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
||||
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
cond: Not used but kept for future purposes
|
||||
|
||||
Returns:
|
||||
sample: generated mel-spectrogram
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
if n_timesteps is None:
|
||||
n_timesteps = self.n_steps
|
||||
|
||||
b, _, t = enc_outputs.shape
|
||||
z = torch.randn((b, 1, t), device=enc_outputs.device, dtype=enc_outputs.dtype) * temperature
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=enc_outputs.device)
|
||||
return self.solve_euler(z, t_span=t_span, enc_outputs=enc_outputs, mask=mask)
|
||||
|
||||
def solve_euler(self, x, t_span, enc_outputs, mask):
|
||||
"""
|
||||
Fixed euler solver for ODEs.
|
||||
Args:
|
||||
x (torch.Tensor): random noise
|
||||
t_span (torch.Tensor): n_timesteps interpolated
|
||||
shape: (n_timesteps + 1,)
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): output_mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
"""
|
||||
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||
|
||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||
# Or in future might add like a return_all_steps flag
|
||||
sol = []
|
||||
|
||||
for step in range(1, len(t_span)):
|
||||
dphi_dt = self.estimator(x, mask, enc_outputs, t)
|
||||
|
||||
x = x + dt * dphi_dt
|
||||
t = t + dt
|
||||
sol.append(x)
|
||||
if step < len(t_span) - 1:
|
||||
dt = t_span[step + 1] - t
|
||||
|
||||
return sol[-1]
|
||||
|
||||
def compute_loss(self, x1, enc_outputs, mask):
|
||||
"""Computes diffusion loss
|
||||
|
||||
Args:
|
||||
x1 (torch.Tensor): Target
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): target mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
|
||||
Returns:
|
||||
loss: conditional flow matching loss
|
||||
y: conditional flow
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
enc_outputs = enc_outputs.detach() # don't update encoder from the duration predictor
|
||||
b, _, t = enc_outputs.shape
|
||||
|
||||
# random timestep
|
||||
t = torch.rand([b, 1, 1], device=enc_outputs.device, dtype=enc_outputs.dtype)
|
||||
# sample noise p(x_0)
|
||||
z = torch.randn_like(x1)
|
||||
|
||||
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
||||
u = x1 - (1 - self.sigma_min) * z
|
||||
|
||||
loss = F.mse_loss(self.estimator(y, mask, enc_outputs, t.squeeze()), u, reduction="sum") / (
|
||||
torch.sum(mask) * u.shape[1]
|
||||
)
|
||||
return loss
|
||||
|
||||
|
||||
# VITS discrete normalising flow based duration predictor
|
||||
|
||||
|
||||
class Log(nn.Module):
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
||||
logdet = torch.sum(-y, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = torch.exp(x) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class ElementwiseAffine(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.m = nn.Parameter(torch.zeros(channels, 1))
|
||||
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
||||
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = self.m + torch.exp(self.logs) * x
|
||||
y = y * x_mask
|
||||
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class DDSConv(nn.Module):
|
||||
"""
|
||||
Dialted and Depth-Separable Convolution
|
||||
"""
|
||||
|
||||
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.convs_sep = nn.ModuleList()
|
||||
self.convs_1x1 = nn.ModuleList()
|
||||
self.norms_1 = nn.ModuleList()
|
||||
self.norms_2 = nn.ModuleList()
|
||||
for i in range(n_layers):
|
||||
dilation = kernel_size**i
|
||||
padding = (kernel_size * dilation - dilation) // 2
|
||||
self.convs_sep.append(
|
||||
nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding)
|
||||
)
|
||||
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||||
self.norms_1.append(LayerNorm(channels))
|
||||
self.norms_2.append(LayerNorm(channels))
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
if g is not None:
|
||||
x = x + g
|
||||
for i in range(self.n_layers):
|
||||
y = self.convs_sep[i](x * x_mask)
|
||||
y = self.norms_1[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.convs_1x1[i](y)
|
||||
y = self.norms_2[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.drop(y)
|
||||
x = x + y
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class ConvFlow(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.num_bins = num_bins
|
||||
self.tail_bound = tail_bound
|
||||
self.half_channels = in_channels // 2
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||||
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
||||
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0)
|
||||
h = self.convs(h, x_mask, g=g)
|
||||
h = self.proj(h) * x_mask
|
||||
|
||||
b, c, t = x0.shape
|
||||
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||||
|
||||
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
||||
|
||||
x1, logabsdet = piecewise_rational_quadratic_transform(
|
||||
x1,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=reverse,
|
||||
tails="linear",
|
||||
tail_bound=self.tail_bound,
|
||||
)
|
||||
|
||||
x = torch.cat([x0, x1], 1) * x_mask
|
||||
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
||||
if not reverse:
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class StochasticDurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
||||
super().__init__()
|
||||
filter_channels = in_channels # it needs to be removed from future version.
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.n_flows = n_flows
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.log_flow = Log()
|
||||
self.flows = nn.ModuleList()
|
||||
self.flows.append(ElementwiseAffine(2))
|
||||
for i in range(n_flows):
|
||||
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||
self.flows.append(modules.Flip())
|
||||
|
||||
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
||||
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||
self.post_flows = nn.ModuleList()
|
||||
self.post_flows.append(modules.ElementwiseAffine(2))
|
||||
for i in range(4):
|
||||
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||
self.post_flows.append(modules.Flip())
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
||||
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
||||
|
||||
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
||||
x = torch.detach(x)
|
||||
x = self.pre(x)
|
||||
if g is not None:
|
||||
g = torch.detach(g)
|
||||
x = x + self.cond(g)
|
||||
x = self.convs(x, x_mask)
|
||||
x = self.proj(x) * x_mask
|
||||
|
||||
if not reverse:
|
||||
flows = self.flows
|
||||
assert w is not None
|
||||
|
||||
logdet_tot_q = 0
|
||||
h_w = self.post_pre(w)
|
||||
h_w = self.post_convs(h_w, x_mask)
|
||||
h_w = self.post_proj(h_w) * x_mask
|
||||
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
||||
z_q = e_q
|
||||
for flow in self.post_flows:
|
||||
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
||||
logdet_tot_q += logdet_q
|
||||
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
||||
u = torch.sigmoid(z_u) * x_mask
|
||||
z0 = (w - u) * x_mask
|
||||
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
||||
logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2]) - logdet_tot_q
|
||||
|
||||
logdet_tot = 0
|
||||
z0, logdet = self.log_flow(z0, x_mask)
|
||||
logdet_tot += logdet
|
||||
z = torch.cat([z0, z1], 1)
|
||||
for flow in flows:
|
||||
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
||||
logdet_tot = logdet_tot + logdet
|
||||
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) - logdet_tot
|
||||
return nll + logq # [b]
|
||||
else:
|
||||
flows = list(reversed(self.flows))
|
||||
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
||||
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
||||
for flow in flows:
|
||||
z = flow(z, x_mask, g=x, reverse=reverse)
|
||||
z0, z1 = torch.split(z, [1, 1], 1)
|
||||
logw = z0
|
||||
return logw
|
||||
|
||||
|
||||
# Meta class to wrap all duration predictors
|
||||
|
||||
|
||||
class DP(nn.Module):
|
||||
def __init__(self, params):
|
||||
super().__init__()
|
||||
self.name = params.name
|
||||
|
||||
if params.name == "deterministic":
|
||||
self.dp = DeterministicDurationPredictor(
|
||||
params,
|
||||
)
|
||||
elif params.name == "flow_matching":
|
||||
self.dp = FlowMatchingDurationPrediction(
|
||||
params,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Invalid duration predictor configuration: {params.name}")
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, enc_outputs, mask):
|
||||
return self.dp(enc_outputs, mask)
|
||||
|
||||
def compute_loss(self, durations, enc_outputs, mask):
|
||||
return self.dp.compute_loss(durations, enc_outputs, mask)
|
||||
@@ -67,33 +67,6 @@ class ConvReluNorm(nn.Module):
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_1 = LayerNorm(filter_channels)
|
||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_2 = LayerNorm(filter_channels)
|
||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class RotaryPositionalEmbeddings(nn.Module):
|
||||
"""
|
||||
## RoPE module
|
||||
@@ -330,7 +303,6 @@ class TextEncoder(nn.Module):
|
||||
self,
|
||||
encoder_type,
|
||||
encoder_params,
|
||||
duration_predictor_params,
|
||||
n_vocab,
|
||||
n_spks=1,
|
||||
spk_emb_dim=128,
|
||||
@@ -368,12 +340,6 @@ class TextEncoder(nn.Module):
|
||||
)
|
||||
|
||||
self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
|
||||
self.proj_w = DurationPredictor(
|
||||
self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
|
||||
duration_predictor_params.filter_channels_dp,
|
||||
duration_predictor_params.kernel_size,
|
||||
duration_predictor_params.p_dropout,
|
||||
)
|
||||
|
||||
def forward(self, x, x_lengths, spks=None):
|
||||
"""Run forward pass to the transformer based encoder and duration predictor
|
||||
@@ -404,7 +370,7 @@ class TextEncoder(nn.Module):
|
||||
x = self.encoder(x, x_mask)
|
||||
mu = self.proj_m(x) * x_mask
|
||||
|
||||
x_dp = torch.detach(x)
|
||||
logw = self.proj_w(x_dp, x_mask)
|
||||
# x_dp = torch.detach(x)
|
||||
# logw = self.proj_w(x_dp, x_mask)
|
||||
|
||||
return mu, logw, x_mask
|
||||
return mu, x, x_mask
|
||||
|
||||
@@ -4,14 +4,14 @@ import random
|
||||
|
||||
import torch
|
||||
|
||||
import matcha.utils.monotonic_align as monotonic_align
|
||||
import matcha.utils.monotonic_align as monotonic_align # pylint: disable=consider-using-from-import
|
||||
from matcha import utils
|
||||
from matcha.models.baselightningmodule import BaseLightningClass
|
||||
from matcha.models.components.duration_predictors import DP
|
||||
from matcha.models.components.flow_matching import CFM
|
||||
from matcha.models.components.text_encoder import TextEncoder
|
||||
from matcha.utils.model import (
|
||||
denormalize,
|
||||
duration_loss,
|
||||
fix_len_compatibility,
|
||||
generate_path,
|
||||
sequence_mask,
|
||||
@@ -28,6 +28,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
spk_emb_dim,
|
||||
n_feats,
|
||||
encoder,
|
||||
duration_predictor,
|
||||
decoder,
|
||||
cfm,
|
||||
data_statistics,
|
||||
@@ -35,7 +36,6 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
prior_loss=True,
|
||||
use_precomputed_durations=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -47,7 +47,6 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
self.n_feats = n_feats
|
||||
self.out_size = out_size
|
||||
self.prior_loss = prior_loss
|
||||
self.use_precomputed_durations = use_precomputed_durations
|
||||
|
||||
if n_spks > 1:
|
||||
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
|
||||
@@ -55,12 +54,13 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
self.encoder = TextEncoder(
|
||||
encoder.encoder_type,
|
||||
encoder.encoder_params,
|
||||
encoder.duration_predictor_params,
|
||||
n_vocab,
|
||||
n_spks,
|
||||
spk_emb_dim,
|
||||
)
|
||||
|
||||
self.dp = DP(duration_predictor)
|
||||
|
||||
self.decoder = CFM(
|
||||
in_channels=2 * encoder.encoder_params.n_feats,
|
||||
out_channel=encoder.encoder_params.n_feats,
|
||||
@@ -114,11 +114,15 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
# Get speaker embedding
|
||||
spks = self.spk_emb(spks.long())
|
||||
|
||||
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
||||
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
||||
# Get encoder_outputs `mu_x` and encoded text `enc_output`
|
||||
mu_x, enc_output, x_mask = self.encoder(x, x_lengths, spks)
|
||||
|
||||
# Get log-scaled token durations `logw`
|
||||
logw = self.dp(enc_output, x_mask)
|
||||
|
||||
w = torch.exp(logw) * x_mask
|
||||
w_ceil = torch.ceil(w) * length_scale
|
||||
# print(w_ceil)
|
||||
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
||||
y_max_length = y_lengths.max()
|
||||
y_max_length_ = fix_len_compatibility(y_max_length)
|
||||
@@ -149,7 +153,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
"rtf": rtf,
|
||||
}
|
||||
|
||||
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None, durations=None):
|
||||
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None):
|
||||
"""
|
||||
Computes 3 losses:
|
||||
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
|
||||
@@ -175,31 +179,27 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
spks = self.spk_emb(spks)
|
||||
|
||||
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
||||
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
||||
mu_x, enc_output, x_mask = self.encoder(x, x_lengths, spks)
|
||||
y_max_length = y.shape[-1]
|
||||
|
||||
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
||||
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
||||
|
||||
if self.use_precomputed_durations:
|
||||
attn = generate_path(durations.squeeze(1), attn_mask.squeeze(1))
|
||||
else:
|
||||
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
|
||||
with torch.no_grad():
|
||||
const = -0.5 * math.log(2 * math.pi) * self.n_feats
|
||||
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
|
||||
y_square = torch.matmul(factor.transpose(1, 2), y**2)
|
||||
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
|
||||
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
|
||||
log_prior = y_square - y_mu_double + mu_square + const
|
||||
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
|
||||
with torch.no_grad():
|
||||
const = -0.5 * math.log(2 * math.pi) * self.n_feats
|
||||
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
|
||||
y_square = torch.matmul(factor.transpose(1, 2), y**2)
|
||||
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
|
||||
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
|
||||
log_prior = y_square - y_mu_double + mu_square + const
|
||||
|
||||
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
|
||||
attn = attn.detach() # b, t_text, T_mel
|
||||
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
|
||||
attn = attn.detach()
|
||||
|
||||
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
||||
# refered to as prior loss in the paper
|
||||
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
|
||||
dur_loss = duration_loss(logw, logw_, x_lengths)
|
||||
dur_loss = self.dp.compute_loss(logw_, enc_output, x_mask)
|
||||
|
||||
# Cut a small segment of mel-spectrogram in order to increase batch size
|
||||
# - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it
|
||||
|
||||
@@ -15,6 +15,7 @@ import logging
|
||||
import re
|
||||
|
||||
import phonemizer
|
||||
import piper_phonemize
|
||||
from unidecode import unidecode
|
||||
|
||||
# To avoid excessive logging we set the log level of the phonemizer package to Critical
|
||||
@@ -105,17 +106,11 @@ def english_cleaners2(text):
|
||||
return phonemes
|
||||
|
||||
|
||||
# I am removing this due to incompatibility with several version of python
|
||||
# However, if you want to use it, you can uncomment it
|
||||
# and install piper-phonemize with the following command:
|
||||
# pip install piper-phonemize
|
||||
|
||||
# import piper_phonemize
|
||||
# def english_cleaners_piper(text):
|
||||
# """Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
|
||||
# text = convert_to_ascii(text)
|
||||
# text = lowercase(text)
|
||||
# text = expand_abbreviations(text)
|
||||
# phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0])
|
||||
# phonemes = collapse_whitespace(phonemes)
|
||||
# return phonemes
|
||||
def english_cleaners_piper(text):
|
||||
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
|
||||
text = convert_to_ascii(text)
|
||||
text = lowercase(text)
|
||||
text = expand_abbreviations(text)
|
||||
phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0])
|
||||
phonemes = collapse_whitespace(phonemes)
|
||||
return phonemes
|
||||
|
||||
@@ -94,7 +94,6 @@ def main():
|
||||
cfg["batch_size"] = args.batch_size
|
||||
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
|
||||
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
|
||||
cfg["load_durations"] = False
|
||||
|
||||
text_mel_datamodule = TextMelDataModule(**cfg)
|
||||
text_mel_datamodule.setup()
|
||||
|
||||
@@ -86,7 +86,7 @@ def main():
|
||||
"-i",
|
||||
"--input-config",
|
||||
type=str,
|
||||
default="ljspeech.yaml",
|
||||
default="vctk.yaml",
|
||||
help="The name of the yaml config file under configs/data",
|
||||
)
|
||||
|
||||
@@ -140,14 +140,11 @@ def main():
|
||||
cfg["batch_size"] = args.batch_size
|
||||
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
|
||||
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
|
||||
cfg["load_durations"] = False
|
||||
|
||||
if args.output_folder is not None:
|
||||
output_folder = Path(args.output_folder)
|
||||
else:
|
||||
output_folder = Path(cfg["train_filelist_path"]).parent / "durations"
|
||||
|
||||
print(f"Output folder set to: {output_folder}")
|
||||
output_folder = Path("data") / "processed_data" / cfg["name"] / "durations"
|
||||
|
||||
if os.path.exists(output_folder) and not args.force:
|
||||
print("Folder already exists. Use -f to force overwrite")
|
||||
|
||||
@@ -38,7 +38,8 @@ conformer==0.3.2
|
||||
diffusers==0.25.0
|
||||
notebook
|
||||
ipywidgets
|
||||
gradio==3.43.2
|
||||
gradio
|
||||
gdown
|
||||
wget
|
||||
seaborn
|
||||
piper_phonemize
|
||||
|
||||
15
scripts/get_durations.sh
Normal file
15
scripts/get_durations.sh
Normal file
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "Starting script"
|
||||
|
||||
echo "Getting LJ Speech durations"
|
||||
python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c logs/train/lj_det/runs/2024-01-12_12-05-00/checkpoints/last.ckpt -f
|
||||
|
||||
echo "Getting TSG2 durations"
|
||||
python matcha/utils/get_durations_from_trained_model.py -i tsg2.yaml -c logs/train/tsg2_det_dur/runs/2024-01-05_12-33-35/checkpoints/last.ckpt -f
|
||||
|
||||
echo "Getting Joe Spont durations"
|
||||
python matcha/utils/get_durations_from_trained_model.py -i joe_spont_only.yaml -c logs/train/joe_det_dur/runs/2024-02-20_14-01-01/checkpoints/last.ckpt -f
|
||||
|
||||
echo "Getting Ryan durations"
|
||||
python matcha/utils/get_durations_from_trained_model.py -i ryan.yaml -c logs/train/matcha_ryan_det/runs/2024-02-26_09-28-09/checkpoints/last.ckpt -f
|
||||
7
scripts/transcribe.sh
Normal file
7
scripts/transcribe.sh
Normal file
@@ -0,0 +1,7 @@
|
||||
echo "Transcribing"
|
||||
|
||||
whispertranscriber -i lj_det_output -o lj_det_output_transcriptions -f
|
||||
|
||||
whispertranscriber -i lj_fm_output -o lj_fm_output_transcriptions -f
|
||||
wercompute -r dur_wer_computation/reference_transcripts/ -i lj_det_output_transcriptions
|
||||
wercompute -r dur_wer_computation/reference_transcripts/ -i lj_fm_output_transcriptions
|
||||
30
scripts/wer_computer.sh
Normal file
30
scripts/wer_computer.sh
Normal file
@@ -0,0 +1,30 @@
|
||||
#!/bin/bash
|
||||
# Run from root folder with: bash scripts/wer_computer.sh
|
||||
|
||||
|
||||
root_folder=${1:-"dur_wer_computation"}
|
||||
echo "Running WER computation for Duration predictors"
|
||||
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/lj_fm_output_transcriptions/"
|
||||
# echo $cmd
|
||||
echo "LJ"
|
||||
echo "==================================="
|
||||
echo "Flow Matching"
|
||||
$cmd
|
||||
echo "-----------------------------------"
|
||||
|
||||
echo "LJ Determinstic"
|
||||
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/lj_det_output_transcriptions/"
|
||||
$cmd
|
||||
echo "-----------------------------------"
|
||||
|
||||
echo "Cormac"
|
||||
echo "==================================="
|
||||
echo "Cormac Flow Matching"
|
||||
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/fm_output_transcriptions/"
|
||||
$cmd
|
||||
echo "-----------------------------------"
|
||||
|
||||
echo "Cormac Determinstic"
|
||||
cmd="wercompute -r ${root_folder}/reference_transcripts/ -i ${root_folder}/det_output_transcriptions/"
|
||||
$cmd
|
||||
echo "-----------------------------------"
|
||||
1
setup.py
1
setup.py
@@ -38,7 +38,6 @@ setup(
|
||||
"matcha-data-stats=matcha.utils.generate_data_statistics:main",
|
||||
"matcha-tts=matcha.cli:cli",
|
||||
"matcha-tts-app=matcha.app:main",
|
||||
"matcha-tts-get-durations=matcha.utils.get_durations_from_trained_model:main",
|
||||
]
|
||||
},
|
||||
ext_modules=cythonize(exts, language_level=3),
|
||||
|
||||
1269
synthesis.ipynb
1269
synthesis.ipynb
File diff suppressed because one or more lines are too long
Reference in New Issue
Block a user