mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-04 17:59:19 +08:00
Compare commits
81 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
bd4d90d932 | ||
|
|
108906c603 | ||
|
|
354f5dc69f | ||
|
|
8e5f98476e | ||
|
|
7e499df0b2 | ||
|
|
0735e653fc | ||
|
|
f9843cfca4 | ||
|
|
289ef51578 | ||
|
|
7a65f83b17 | ||
|
|
7275764a48 | ||
|
|
863bfbdd8b | ||
|
|
4bc541705a | ||
|
|
a3fea22988 | ||
|
|
d56f40765c | ||
|
|
b0ba920dc1 | ||
|
|
a220f283e3 | ||
|
|
1df73ef43e | ||
|
|
404b045b65 | ||
|
|
7cfae6bed4 | ||
|
|
a83fd29829 | ||
|
|
c8178bf2cd | ||
|
|
8b1284993a | ||
|
|
0000f93021 | ||
|
|
c2569a1018 | ||
|
|
bd058a68f7 | ||
|
|
362ba2dce7 | ||
|
|
77804265f8 | ||
|
|
d31cd92a61 | ||
|
|
068d135e20 | ||
|
|
bd37d03b62 | ||
|
|
ac0b258f80 | ||
|
|
de910380bc | ||
|
|
aa496aa13f | ||
|
|
e658aee6a5 | ||
|
|
d816c40e3d | ||
|
|
4b39f6cad0 | ||
|
|
dd9105b34b | ||
|
|
7d9d4cfd40 | ||
|
|
256adc55d3 | ||
|
|
bfcbdbc82e | ||
|
|
fb7b954de5 | ||
|
|
5a52a67cf7 | ||
|
|
39cbd85236 | ||
|
|
47a629f128 | ||
|
|
95ec24b599 | ||
|
|
5a2a893750 | ||
|
|
13ca33fbe5 | ||
|
|
19bea20928 | ||
|
|
8268360674 | ||
|
|
a0bf4e9e9a | ||
|
|
f1e8efdec2 | ||
|
|
4ec245e61e | ||
|
|
dc035a09f2 | ||
|
|
254a8e05ce | ||
|
|
0ed9290c31 | ||
|
|
f39ee6cf3b | ||
|
|
6e71dc8b8f | ||
|
|
ae2417c175 | ||
|
|
6c7a82a516 | ||
|
|
009b09a8b2 | ||
|
|
a18db17330 | ||
|
|
263d5c4d4e | ||
|
|
df896301ca | ||
|
|
c8d0d60f87 | ||
|
|
e540794e7e | ||
|
|
b756809a32 | ||
|
|
1ead4303f3 | ||
|
|
7a29fef719 | ||
|
|
9ace522249 | ||
|
|
ed6e6bbf6c | ||
|
|
51ea36d271 | ||
|
|
269609003b | ||
|
|
2a81800825 | ||
|
|
336dd20d5b | ||
|
|
01c99161c4 | ||
|
|
2c21a0edac | ||
|
|
25767f76a8 | ||
|
|
1b204ed42c | ||
|
|
2cd057187b | ||
|
|
d373e9a5b1 | ||
|
|
f12be190a4 |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -161,3 +161,4 @@ generator_v1
|
||||
g_02500000
|
||||
gradio_cached_examples/
|
||||
synth_output/
|
||||
/data
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
default_language_version:
|
||||
python: python3.10
|
||||
python: python3.11
|
||||
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.4.0
|
||||
rev: v4.5.0
|
||||
hooks:
|
||||
# list of supported hooks: https://pre-commit.com/hooks.html
|
||||
- id: trailing-whitespace
|
||||
@@ -18,28 +18,28 @@ repos:
|
||||
|
||||
# python code formatting
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 23.1.0
|
||||
rev: 23.12.1
|
||||
hooks:
|
||||
- id: black
|
||||
args: [--line-length, "120"]
|
||||
|
||||
# python import sorting
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.12.0
|
||||
rev: 5.13.2
|
||||
hooks:
|
||||
- id: isort
|
||||
args: ["--profile", "black", "--filter-files"]
|
||||
|
||||
# python upgrading syntax to newer version
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v3.3.1
|
||||
rev: v3.15.0
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
args: [--py38-plus]
|
||||
|
||||
# python check (PEP8), programming errors and code complexity
|
||||
- repo: https://github.com/PyCQA/flake8
|
||||
rev: 6.0.0
|
||||
rev: 7.0.0
|
||||
hooks:
|
||||
- id: flake8
|
||||
args:
|
||||
@@ -54,6 +54,6 @@ repos:
|
||||
|
||||
# pylint
|
||||
- repo: https://github.com/pycqa/pylint
|
||||
rev: v2.8.2
|
||||
rev: v3.0.3
|
||||
hooks:
|
||||
- id: pylint
|
||||
|
||||
82
.pylintrc
82
.pylintrc
@@ -82,16 +82,6 @@ disable=missing-docstring,
|
||||
no-name-in-module,
|
||||
no-member,
|
||||
unsubscriptable-object,
|
||||
print-statement,
|
||||
parameter-unpacking,
|
||||
unpacking-in-except,
|
||||
old-raise-syntax,
|
||||
backtick,
|
||||
long-suffix,
|
||||
old-ne-operator,
|
||||
old-octal-literal,
|
||||
import-star-module-level,
|
||||
non-ascii-bytes-literal,
|
||||
raw-checker-failed,
|
||||
bad-inline-option,
|
||||
locally-disabled,
|
||||
@@ -106,67 +96,6 @@ disable=missing-docstring,
|
||||
too-many-arguments,
|
||||
too-many-locals,
|
||||
too-many-statements,
|
||||
apply-builtin,
|
||||
basestring-builtin,
|
||||
buffer-builtin,
|
||||
cmp-builtin,
|
||||
coerce-builtin,
|
||||
execfile-builtin,
|
||||
file-builtin,
|
||||
long-builtin,
|
||||
raw_input-builtin,
|
||||
reduce-builtin,
|
||||
standarderror-builtin,
|
||||
unicode-builtin,
|
||||
xrange-builtin,
|
||||
coerce-method,
|
||||
delslice-method,
|
||||
getslice-method,
|
||||
setslice-method,
|
||||
no-absolute-import,
|
||||
old-division,
|
||||
dict-iter-method,
|
||||
dict-view-method,
|
||||
next-method-called,
|
||||
metaclass-assignment,
|
||||
indexing-exception,
|
||||
raising-string,
|
||||
reload-builtin,
|
||||
oct-method,
|
||||
hex-method,
|
||||
nonzero-method,
|
||||
cmp-method,
|
||||
input-builtin,
|
||||
round-builtin,
|
||||
intern-builtin,
|
||||
unichr-builtin,
|
||||
map-builtin-not-iterating,
|
||||
zip-builtin-not-iterating,
|
||||
range-builtin-not-iterating,
|
||||
filter-builtin-not-iterating,
|
||||
using-cmp-argument,
|
||||
eq-without-hash,
|
||||
div-method,
|
||||
idiv-method,
|
||||
rdiv-method,
|
||||
exception-message-attribute,
|
||||
invalid-str-codec,
|
||||
sys-max-int,
|
||||
bad-python3-import,
|
||||
deprecated-string-function,
|
||||
deprecated-str-translate-call,
|
||||
deprecated-itertools-function,
|
||||
deprecated-types-field,
|
||||
next-method-defined,
|
||||
dict-items-not-iterating,
|
||||
dict-keys-not-iterating,
|
||||
dict-values-not-iterating,
|
||||
deprecated-operator-function,
|
||||
deprecated-urllib-function,
|
||||
xreadlines-attribute,
|
||||
deprecated-sys-function,
|
||||
exception-escape,
|
||||
comprehension-escape,
|
||||
duplicate-code,
|
||||
not-callable,
|
||||
import-outside-toplevel,
|
||||
@@ -363,13 +292,6 @@ max-line-length=120
|
||||
# Maximum number of lines in a module.
|
||||
max-module-lines=1000
|
||||
|
||||
# List of optional constructs for which whitespace checking is disabled. `dict-
|
||||
# separator` is used to allow tabulation in dicts, etc.: {1 : 1,\n222: 2}.
|
||||
# `trailing-comma` allows a space between comma and closing bracket: (a, ).
|
||||
# `empty-line` allows space-only lines.
|
||||
no-space-check=trailing-comma,
|
||||
dict-separator
|
||||
|
||||
# Allow the body of a class to be on the same line as the declaration if body
|
||||
# contains single statement.
|
||||
single-line-class-stmt=no
|
||||
@@ -599,5 +521,5 @@ min-public-methods=2
|
||||
|
||||
# Exceptions that will emit a warning when being caught. Defaults to
|
||||
# "BaseException, Exception".
|
||||
overgeneral-exceptions=BaseException,
|
||||
Exception
|
||||
overgeneral-exceptions=builtins.BaseException,
|
||||
builtins.Exception
|
||||
|
||||
127
README.md
127
README.md
@@ -10,14 +10,14 @@
|
||||
[](https://hydra.cc/)
|
||||
[](https://black.readthedocs.io/en/stable/)
|
||||
[](https://pycqa.github.io/isort/)
|
||||
|
||||
[](https://pepy.tech/projects/matcha-tts)
|
||||
<p style="text-align: center;">
|
||||
<img src="https://shivammehta25.github.io/Matcha-TTS/images/logo.png" height="128"/>
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
> This is the official code implementation of 🍵 Matcha-TTS.
|
||||
> This is the official code implementation of 🍵 Matcha-TTS [ICASSP 2024].
|
||||
|
||||
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:
|
||||
|
||||
@@ -26,11 +26,15 @@ We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, tha
|
||||
- Sounds highly natural
|
||||
- Is very fast to synthesise from
|
||||
|
||||
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our arXiv preprint](https://arxiv.org/abs/2309.03199) for more details.
|
||||
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our ICASSP 2024 paper](https://arxiv.org/abs/2309.03199) for more details.
|
||||
|
||||
[Pre-trained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be automatically downloaded with the CLI or gradio interface.
|
||||
|
||||
[Try 🍵 Matcha-TTS on HuggingFace 🤗 spaces!](https://huggingface.co/spaces/shivammehta25/Matcha-TTS)
|
||||
You can also [try 🍵 Matcha-TTS in your browser on HuggingFace 🤗 spaces](https://huggingface.co/spaces/shivammehta25/Matcha-TTS).
|
||||
|
||||
## Teaser video
|
||||
|
||||
[](https://youtu.be/xmvJkz3bqw0)
|
||||
|
||||
## Installation
|
||||
|
||||
@@ -41,7 +45,7 @@ conda create -n matcha-tts python=3.10 -y
|
||||
conda activate matcha-tts
|
||||
```
|
||||
|
||||
2. Install Matcha TTS using pip or from source
|
||||
2. Install Matcha TTS using pip or from source
|
||||
|
||||
```bash
|
||||
pip install matcha-tts
|
||||
@@ -51,6 +55,8 @@ from source
|
||||
|
||||
```bash
|
||||
pip install git+https://github.com/shivammehta25/Matcha-TTS.git
|
||||
cd Matcha-TTS
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
3. Run CLI / gradio app / jupyter notebook
|
||||
@@ -182,16 +188,117 @@ python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
|
||||
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
|
||||
```
|
||||
|
||||
## ONNX support
|
||||
|
||||
> Special thanks to [@mush42](https://github.com/mush42) for implementing ONNX export and inference support.
|
||||
|
||||
It is possible to export Matcha checkpoints to [ONNX](https://onnx.ai/), and run inference on the exported ONNX graph.
|
||||
|
||||
### ONNX export
|
||||
|
||||
To export a checkpoint to ONNX, first install ONNX with
|
||||
|
||||
```bash
|
||||
pip install onnx
|
||||
```
|
||||
|
||||
then run the following:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.export matcha.ckpt model.onnx --n-timesteps 5
|
||||
```
|
||||
|
||||
Optionally, the ONNX exporter accepts **vocoder-name** and **vocoder-checkpoint** arguments. This enables you to embed the vocoder in the exported graph and generate waveforms in a single run (similar to end-to-end TTS systems).
|
||||
|
||||
**Note** that `n_timesteps` is treated as a hyper-parameter rather than a model input. This means you should specify it during export (not during inference). If not specified, `n_timesteps` is set to **5**.
|
||||
|
||||
**Important**: for now, torch>=2.1.0 is needed for export since the `scaled_product_attention` operator is not exportable in older versions. Until the final version is released, those who want to export their models must install torch>=2.1.0 manually as a pre-release.
|
||||
|
||||
### ONNX Inference
|
||||
|
||||
To run inference on the exported model, first install `onnxruntime` using
|
||||
|
||||
```bash
|
||||
pip install onnxruntime
|
||||
pip install onnxruntime-gpu # for GPU inference
|
||||
```
|
||||
|
||||
then use the following:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs
|
||||
```
|
||||
|
||||
You can also control synthesis parameters:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --temperature 0.4 --speaking_rate 0.9 --spk 0
|
||||
```
|
||||
|
||||
To run inference on **GPU**, make sure to install **onnxruntime-gpu** package, and then pass `--gpu` to the inference command:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --gpu
|
||||
```
|
||||
|
||||
If you exported only Matcha to ONNX, this will write mel-spectrogram as graphs and `numpy` arrays to the output directory.
|
||||
If you embedded the vocoder in the exported graph, this will write `.wav` audio files to the output directory.
|
||||
|
||||
If you exported only Matcha to ONNX, and you want to run a full TTS pipeline, you can pass a path to a vocoder model in `ONNX` format:
|
||||
|
||||
```bash
|
||||
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --vocoder hifigan.small.onnx
|
||||
```
|
||||
|
||||
This will write `.wav` audio files to the output directory.
|
||||
|
||||
## Extract phoneme alignments from Matcha-TTS
|
||||
|
||||
If the dataset is structured as
|
||||
|
||||
```bash
|
||||
data/
|
||||
└── LJSpeech-1.1
|
||||
├── metadata.csv
|
||||
├── README
|
||||
├── test.txt
|
||||
├── train.txt
|
||||
├── val.txt
|
||||
└── wavs
|
||||
```
|
||||
Then you can extract the phoneme level alignments from a Trained Matcha-TTS model using:
|
||||
```bash
|
||||
python matcha/utils/get_durations_from_trained_model.py -i dataset_yaml -c <checkpoint>
|
||||
```
|
||||
Example:
|
||||
```bash
|
||||
python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c matcha_ljspeech.ckpt
|
||||
```
|
||||
or simply:
|
||||
```bash
|
||||
matcha-tts-get-durations -i ljspeech.yaml -c matcha_ljspeech.ckpt
|
||||
```
|
||||
---
|
||||
## Train using extracted alignments
|
||||
|
||||
In the datasetconfig turn on load duration.
|
||||
Example: `ljspeech.yaml`
|
||||
```
|
||||
load_durations: True
|
||||
```
|
||||
or see an examples in configs/experiment/ljspeech_from_durations.yaml
|
||||
|
||||
|
||||
## Citation information
|
||||
|
||||
If you use our code or otherwise find this work useful, please cite our paper:
|
||||
|
||||
```text
|
||||
@article{mehta2023matcha,
|
||||
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
|
||||
@inproceedings{mehta2024matcha,
|
||||
title={Matcha-{TTS}: A fast {TTS} architecture with conditional flow matching},
|
||||
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
|
||||
journal={arXiv preprint arXiv:2309.03199},
|
||||
year={2023}
|
||||
booktitle={Proc. ICASSP},
|
||||
year={2024}
|
||||
}
|
||||
```
|
||||
|
||||
@@ -199,7 +306,7 @@ If you use our code or otherwise find this work useful, please cite our paper:
|
||||
|
||||
Since this code uses [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that come with it.
|
||||
|
||||
Other source code I would like to acknowledge:
|
||||
Other source code we would like to acknowledge:
|
||||
|
||||
- [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev): For helping me figure out how to make cython binaries pip installable and encouragement
|
||||
- [Hugging Face Diffusers](https://huggingface.co/): For their awesome diffusers library and its components
|
||||
|
||||
14
configs/data/hi-fi_en-US_female.yaml
Normal file
14
configs/data/hi-fi_en-US_female.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
defaults:
|
||||
- ljspeech
|
||||
- _self_
|
||||
|
||||
# Dataset URL: https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/
|
||||
_target_: matcha.data.text_mel_datamodule.TextMelDataModule
|
||||
name: hi-fi_en-US_female
|
||||
train_filelist_path: data/hi-fi_en-US_female/train.txt
|
||||
valid_filelist_path: data/hi-fi_en-US_female/val.txt
|
||||
batch_size: 32
|
||||
cleaners: [english_cleaners_piper]
|
||||
data_statistics: # Computed for this dataset
|
||||
mel_mean: -6.38385
|
||||
mel_std: 2.541796
|
||||
@@ -1,7 +1,7 @@
|
||||
_target_: matcha.data.text_mel_datamodule.TextMelDataModule
|
||||
name: ljspeech
|
||||
train_filelist_path: data/filelists/ljs_audio_text_train_filelist.txt
|
||||
valid_filelist_path: data/filelists/ljs_audio_text_val_filelist.txt
|
||||
train_filelist_path: data/LJSpeech-1.1/train.txt
|
||||
valid_filelist_path: data/LJSpeech-1.1/val.txt
|
||||
batch_size: 32
|
||||
num_workers: 20
|
||||
pin_memory: True
|
||||
@@ -19,3 +19,4 @@ data_statistics: # Computed for ljspeech dataset
|
||||
mel_mean: -5.536622
|
||||
mel_std: 2.116101
|
||||
seed: ${seed}
|
||||
load_durations: false
|
||||
|
||||
14
configs/experiment/hifi_dataset_piper_phonemizer.yaml
Normal file
14
configs/experiment/hifi_dataset_piper_phonemizer.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: hi-fi_en-US_female.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["hi-fi", "single_speaker", "piper_phonemizer", "en_US", "female"]
|
||||
|
||||
run_name: hi-fi_en-US_female_piper_phonemizer
|
||||
19
configs/experiment/ljspeech_from_durations.yaml
Normal file
19
configs/experiment/ljspeech_from_durations.yaml
Normal file
@@ -0,0 +1,19 @@
|
||||
# @package _global_
|
||||
|
||||
# to execute this experiment run:
|
||||
# python train.py experiment=multispeaker
|
||||
|
||||
defaults:
|
||||
- override /data: ljspeech.yaml
|
||||
|
||||
# all parameters below will be merged with parameters from default configurations set above
|
||||
# this allows you to overwrite only specified parameters
|
||||
|
||||
tags: ["ljspeech"]
|
||||
|
||||
run_name: ljspeech
|
||||
|
||||
|
||||
data:
|
||||
load_durations: True
|
||||
batch_size: 64
|
||||
@@ -12,3 +12,5 @@ spk_emb_dim: 64
|
||||
n_feats: 80
|
||||
data_statistics: ${data.data_statistics}
|
||||
out_size: null # Must be divisible by 4
|
||||
prior_loss: true
|
||||
use_precomputed_durations: ${data.load_durations}
|
||||
|
||||
@@ -1 +1 @@
|
||||
0.0.2
|
||||
0.0.7.2
|
||||
|
||||
@@ -29,8 +29,15 @@ args = Namespace(
|
||||
|
||||
CURRENTLY_LOADED_MODEL = args.model
|
||||
|
||||
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731
|
||||
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731
|
||||
|
||||
def MATCHA_TTS_LOC(x):
|
||||
return LOCATION / f"{x}.ckpt"
|
||||
|
||||
|
||||
def VOCODER_LOC(x):
|
||||
return LOCATION / f"{x}"
|
||||
|
||||
|
||||
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
||||
RADIO_OPTIONS = {
|
||||
"Multi Speaker (VCTK)": {
|
||||
|
||||
@@ -18,13 +18,13 @@ from matcha.text import sequence_to_text, text_to_sequence
|
||||
from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse
|
||||
|
||||
MATCHA_URLS = {
|
||||
"matcha_ljspeech": "https://drive.google.com/file/d/1BBzmMU7k3a_WetDfaFblMoN18GqQeHCg/view?usp=drive_link",
|
||||
"matcha_vctk": "https://drive.google.com/file/d/1enuxmfslZciWGAl63WGh2ekVo00FYuQ9/view?usp=drive_link",
|
||||
"matcha_ljspeech": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_ljspeech.ckpt",
|
||||
"matcha_vctk": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_vctk.ckpt",
|
||||
}
|
||||
|
||||
VOCODER_URLS = {
|
||||
"hifigan_T2_v1": "https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link",
|
||||
"hifigan_univ_v1": "https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link",
|
||||
"hifigan_T2_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/generator_v1", # Old url: https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link
|
||||
"hifigan_univ_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/g_02500000", # Old url: https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link
|
||||
}
|
||||
|
||||
MULTISPEAKER_MODEL = {
|
||||
@@ -48,7 +48,7 @@ def plot_spectrogram_to_numpy(spectrogram, filename):
|
||||
def process_text(i: int, text: str, device: torch.device):
|
||||
print(f"[{i}] - Input text: {text}")
|
||||
x = torch.tensor(
|
||||
intersperse(text_to_sequence(text, ["english_cleaners2"]), 0),
|
||||
intersperse(text_to_sequence(text, ["english_cleaners2"])[0], 0),
|
||||
dtype=torch.long,
|
||||
device=device,
|
||||
)[None]
|
||||
@@ -63,7 +63,7 @@ def get_texts(args):
|
||||
if args.text:
|
||||
texts = [args.text]
|
||||
else:
|
||||
with open(args.file) as f:
|
||||
with open(args.file, encoding="utf-8") as f:
|
||||
texts = f.readlines()
|
||||
return texts
|
||||
|
||||
@@ -114,10 +114,10 @@ def load_matcha(model_name, checkpoint_path, device):
|
||||
return model
|
||||
|
||||
|
||||
def to_waveform(mel, vocoder, denoiser=None):
|
||||
def to_waveform(mel, vocoder, denoiser=None, denoiser_strength=0.00025):
|
||||
audio = vocoder(mel).clamp(-1, 1)
|
||||
if denoiser is not None:
|
||||
audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze()
|
||||
audio = denoiser(audio.squeeze(), strength=denoiser_strength).cpu().squeeze()
|
||||
|
||||
return audio.cpu().squeeze()
|
||||
|
||||
@@ -140,7 +140,7 @@ def validate_args(args):
|
||||
|
||||
if args.checkpoint_path is None:
|
||||
# When using pretrained models
|
||||
if args.model in SINGLESPEAKER_MODEL.keys():
|
||||
if args.model in SINGLESPEAKER_MODEL:
|
||||
args = validate_args_for_single_speaker_model(args)
|
||||
|
||||
if args.model in MULTISPEAKER_MODEL:
|
||||
@@ -326,16 +326,17 @@ def batched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
|
||||
for i, batch in enumerate(dataloader):
|
||||
i = i + 1
|
||||
start_t = dt.datetime.now()
|
||||
b = batch["x"].shape[0]
|
||||
output = model.synthesise(
|
||||
batch["x"].to(device),
|
||||
batch["x_lengths"].to(device),
|
||||
n_timesteps=args.steps,
|
||||
temperature=args.temperature,
|
||||
spks=spk,
|
||||
spks=spk.expand(b) if spk is not None else spk,
|
||||
length_scale=args.speaking_rate,
|
||||
)
|
||||
|
||||
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
||||
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser, args.denoiser_strength)
|
||||
t = (dt.datetime.now() - start_t).total_seconds()
|
||||
rtf_w = t * 22050 / (output["waveform"].shape[-1])
|
||||
print(f"[🍵-Batch: {i}] Matcha-TTS RTF: {output['rtf']:.4f}")
|
||||
@@ -376,7 +377,7 @@ def unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
|
||||
spks=spk,
|
||||
length_scale=args.speaking_rate,
|
||||
)
|
||||
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
||||
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser, args.denoiser_strength)
|
||||
# RTF with HiFiGAN
|
||||
t = (dt.datetime.now() - start_t).total_seconds()
|
||||
rtf_w = t * 22050 / (output["waveform"].shape[-1])
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
import random
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchaudio as ta
|
||||
from lightning import LightningDataModule
|
||||
@@ -39,6 +41,7 @@ class TextMelDataModule(LightningDataModule):
|
||||
f_max,
|
||||
data_statistics,
|
||||
seed,
|
||||
load_durations,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -68,6 +71,7 @@ class TextMelDataModule(LightningDataModule):
|
||||
self.hparams.f_max,
|
||||
self.hparams.data_statistics,
|
||||
self.hparams.seed,
|
||||
self.hparams.load_durations,
|
||||
)
|
||||
self.validset = TextMelDataset( # pylint: disable=attribute-defined-outside-init
|
||||
self.hparams.valid_filelist_path,
|
||||
@@ -83,6 +87,7 @@ class TextMelDataModule(LightningDataModule):
|
||||
self.hparams.f_max,
|
||||
self.hparams.data_statistics,
|
||||
self.hparams.seed,
|
||||
self.hparams.load_durations,
|
||||
)
|
||||
|
||||
def train_dataloader(self):
|
||||
@@ -109,7 +114,7 @@ class TextMelDataModule(LightningDataModule):
|
||||
"""Clean up after fit or test."""
|
||||
pass # pylint: disable=unnecessary-pass
|
||||
|
||||
def state_dict(self): # pylint: disable=no-self-use
|
||||
def state_dict(self):
|
||||
"""Extra things to save to checkpoint."""
|
||||
return {}
|
||||
|
||||
@@ -134,6 +139,7 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
f_max=8000,
|
||||
data_parameters=None,
|
||||
seed=None,
|
||||
load_durations=False,
|
||||
):
|
||||
self.filepaths_and_text = parse_filelist(filelist_path)
|
||||
self.n_spks = n_spks
|
||||
@@ -146,6 +152,8 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
self.win_length = win_length
|
||||
self.f_min = f_min
|
||||
self.f_max = f_max
|
||||
self.load_durations = load_durations
|
||||
|
||||
if data_parameters is not None:
|
||||
self.data_parameters = data_parameters
|
||||
else:
|
||||
@@ -164,10 +172,29 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
filepath, text = filepath_and_text[0], filepath_and_text[1]
|
||||
spk = None
|
||||
|
||||
text = self.get_text(text, add_blank=self.add_blank)
|
||||
text, cleaned_text = self.get_text(text, add_blank=self.add_blank)
|
||||
mel = self.get_mel(filepath)
|
||||
|
||||
return {"x": text, "y": mel, "spk": spk}
|
||||
durations = self.get_durations(filepath, text) if self.load_durations else None
|
||||
|
||||
return {"x": text, "y": mel, "spk": spk, "filepath": filepath, "x_text": cleaned_text, "durations": durations}
|
||||
|
||||
def get_durations(self, filepath, text):
|
||||
filepath = Path(filepath)
|
||||
data_dir, name = filepath.parent.parent, filepath.stem
|
||||
|
||||
try:
|
||||
dur_loc = data_dir / "durations" / f"{name}.npy"
|
||||
durs = torch.from_numpy(np.load(dur_loc).astype(int))
|
||||
|
||||
except FileNotFoundError as e:
|
||||
raise FileNotFoundError(
|
||||
f"Tried loading the durations but durations didn't exist at {dur_loc}, make sure you've generate the durations first using: python matcha/utils/get_durations_from_trained_model.py \n"
|
||||
) from e
|
||||
|
||||
assert len(durs) == len(text), f"Length of durations {len(durs)} and text {len(text)} do not match"
|
||||
|
||||
return durs
|
||||
|
||||
def get_mel(self, filepath):
|
||||
audio, sr = ta.load(filepath)
|
||||
@@ -187,11 +214,11 @@ class TextMelDataset(torch.utils.data.Dataset):
|
||||
return mel
|
||||
|
||||
def get_text(self, text, add_blank=True):
|
||||
text_norm = text_to_sequence(text, self.cleaners)
|
||||
text_norm, cleaned_text = text_to_sequence(text, self.cleaners)
|
||||
if self.add_blank:
|
||||
text_norm = intersperse(text_norm, 0)
|
||||
text_norm = torch.IntTensor(text_norm)
|
||||
return text_norm
|
||||
return text_norm, cleaned_text
|
||||
|
||||
def __getitem__(self, index):
|
||||
datapoint = self.get_datapoint(self.filepaths_and_text[index])
|
||||
@@ -207,15 +234,18 @@ class TextMelBatchCollate:
|
||||
|
||||
def __call__(self, batch):
|
||||
B = len(batch)
|
||||
y_max_length = max([item["y"].shape[-1] for item in batch])
|
||||
y_max_length = max([item["y"].shape[-1] for item in batch]) # pylint: disable=consider-using-generator
|
||||
y_max_length = fix_len_compatibility(y_max_length)
|
||||
x_max_length = max([item["x"].shape[-1] for item in batch])
|
||||
x_max_length = max([item["x"].shape[-1] for item in batch]) # pylint: disable=consider-using-generator
|
||||
n_feats = batch[0]["y"].shape[-2]
|
||||
|
||||
y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
|
||||
x = torch.zeros((B, x_max_length), dtype=torch.long)
|
||||
durations = torch.zeros((B, x_max_length), dtype=torch.long)
|
||||
|
||||
y_lengths, x_lengths = [], []
|
||||
spks = []
|
||||
filepaths, x_texts = [], []
|
||||
for i, item in enumerate(batch):
|
||||
y_, x_ = item["y"], item["x"]
|
||||
y_lengths.append(y_.shape[-1])
|
||||
@@ -223,9 +253,22 @@ class TextMelBatchCollate:
|
||||
y[i, :, : y_.shape[-1]] = y_
|
||||
x[i, : x_.shape[-1]] = x_
|
||||
spks.append(item["spk"])
|
||||
filepaths.append(item["filepath"])
|
||||
x_texts.append(item["x_text"])
|
||||
if item["durations"] is not None:
|
||||
durations[i, : item["durations"].shape[-1]] = item["durations"]
|
||||
|
||||
y_lengths = torch.tensor(y_lengths, dtype=torch.long)
|
||||
x_lengths = torch.tensor(x_lengths, dtype=torch.long)
|
||||
spks = torch.tensor(spks, dtype=torch.long) if self.n_spks > 1 else None
|
||||
|
||||
return {"x": x, "x_lengths": x_lengths, "y": y, "y_lengths": y_lengths, "spks": spks}
|
||||
return {
|
||||
"x": x,
|
||||
"x_lengths": x_lengths,
|
||||
"y": y,
|
||||
"y_lengths": y_lengths,
|
||||
"spks": spks,
|
||||
"filepaths": filepaths,
|
||||
"x_texts": x_texts,
|
||||
"durations": durations if not torch.eq(durations, 0).all() else None,
|
||||
}
|
||||
|
||||
@@ -4,6 +4,10 @@
|
||||
import torch
|
||||
|
||||
|
||||
class ModeException(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class Denoiser(torch.nn.Module):
|
||||
"""Removes model bias from audio produced with waveglow"""
|
||||
|
||||
@@ -20,7 +24,7 @@ class Denoiser(torch.nn.Module):
|
||||
elif mode == "normal":
|
||||
mel_input = torch.randn((1, 80, 88), dtype=dtype, device=device)
|
||||
else:
|
||||
raise Exception(f"Mode {mode} if not supported")
|
||||
raise ModeException(f"Mode {mode} if not supported")
|
||||
|
||||
def stft_fn(audio, n_fft, hop_length, win_length, window):
|
||||
spec = torch.stft(
|
||||
|
||||
@@ -55,7 +55,7 @@ def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin,
|
||||
if torch.max(y) > 1.0:
|
||||
print("max value is ", torch.max(y))
|
||||
|
||||
global mel_basis, hann_window # pylint: disable=global-statement
|
||||
global mel_basis, hann_window # pylint: disable=global-statement,global-variable-not-assigned
|
||||
if fmax not in mel_basis:
|
||||
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
||||
mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
""" from https://github.com/jik876/hifi-gan """
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn as nn # pylint: disable=consider-using-from-import
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
@@ -58,13 +58,14 @@ class BaseLightningClass(LightningModule, ABC):
|
||||
y, y_lengths = batch["y"], batch["y_lengths"]
|
||||
spks = batch["spks"]
|
||||
|
||||
dur_loss, prior_loss, diff_loss = self(
|
||||
dur_loss, prior_loss, diff_loss, *_ = self(
|
||||
x=x,
|
||||
x_lengths=x_lengths,
|
||||
y=y,
|
||||
y_lengths=y_lengths,
|
||||
spks=spks,
|
||||
out_size=self.out_size,
|
||||
durations=batch["durations"],
|
||||
)
|
||||
return {
|
||||
"dur_loss": dur_loss,
|
||||
@@ -81,7 +82,7 @@ class BaseLightningClass(LightningModule, ABC):
|
||||
"step",
|
||||
float(self.global_step),
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
|
||||
@@ -2,7 +2,7 @@ import math
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn as nn # pylint: disable=consider-using-from-import
|
||||
import torch.nn.functional as F
|
||||
from conformer import ConformerBlock
|
||||
from diffusers.models.activations import get_activation
|
||||
|
||||
@@ -73,16 +73,14 @@ class BASECFM(torch.nn.Module, ABC):
|
||||
# Or in future might add like a return_all_steps flag
|
||||
sol = []
|
||||
|
||||
steps = 1
|
||||
while steps <= len(t_span) - 1:
|
||||
for step in range(1, len(t_span)):
|
||||
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
||||
|
||||
x = x + dt * dphi_dt
|
||||
t = t + dt
|
||||
sol.append(x)
|
||||
if steps < len(t_span) - 1:
|
||||
dt = t_span[steps + 1] - t
|
||||
steps += 1
|
||||
if step < len(t_span) - 1:
|
||||
dt = t_span[step + 1] - t
|
||||
|
||||
return sol[-1]
|
||||
|
||||
|
||||
@@ -3,10 +3,10 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn as nn # pylint: disable=consider-using-from-import
|
||||
from einops import rearrange
|
||||
|
||||
import matcha.utils as utils
|
||||
import matcha.utils as utils # pylint: disable=consider-using-from-import
|
||||
from matcha.utils.model import sequence_mask
|
||||
|
||||
log = utils.get_pylogger(__name__)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn as nn # pylint: disable=consider-using-from-import
|
||||
from diffusers.models.attention import (
|
||||
GEGLU,
|
||||
GELU,
|
||||
|
||||
@@ -4,7 +4,7 @@ import random
|
||||
|
||||
import torch
|
||||
|
||||
import matcha.utils.monotonic_align as monotonic_align
|
||||
import matcha.utils.monotonic_align as monotonic_align # pylint: disable=consider-using-from-import
|
||||
from matcha import utils
|
||||
from matcha.models.baselightningmodule import BaseLightningClass
|
||||
from matcha.models.components.flow_matching import CFM
|
||||
@@ -34,6 +34,8 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
out_size,
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
prior_loss=True,
|
||||
use_precomputed_durations=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -44,6 +46,8 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
self.spk_emb_dim = spk_emb_dim
|
||||
self.n_feats = n_feats
|
||||
self.out_size = out_size
|
||||
self.prior_loss = prior_loss
|
||||
self.use_precomputed_durations = use_precomputed_durations
|
||||
|
||||
if n_spks > 1:
|
||||
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
|
||||
@@ -102,6 +106,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
# Lengths of mel spectrograms
|
||||
"rtf": float,
|
||||
# Real-time factor
|
||||
}
|
||||
"""
|
||||
# For RTF computation
|
||||
t = dt.datetime.now()
|
||||
@@ -116,7 +121,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
w = torch.exp(logw) * x_mask
|
||||
w_ceil = torch.ceil(w) * length_scale
|
||||
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
||||
y_max_length = int(y_lengths.max())
|
||||
y_max_length = y_lengths.max()
|
||||
y_max_length_ = fix_len_compatibility(y_max_length)
|
||||
|
||||
# Using obtained durations `w` construct alignment map `attn`
|
||||
@@ -145,10 +150,10 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
"rtf": rtf,
|
||||
}
|
||||
|
||||
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None):
|
||||
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None, durations=None):
|
||||
"""
|
||||
Computes 3 losses:
|
||||
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
|
||||
1. duration loss: loss between predicted token durations and those extracted by Monotonic Alignment Search (MAS).
|
||||
2. prior loss: loss between mel-spectrogram and encoder outputs.
|
||||
3. flow matching loss: loss between mel-spectrogram and decoder outputs.
|
||||
|
||||
@@ -177,17 +182,20 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
||||
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
||||
|
||||
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
|
||||
with torch.no_grad():
|
||||
const = -0.5 * math.log(2 * math.pi) * self.n_feats
|
||||
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
|
||||
y_square = torch.matmul(factor.transpose(1, 2), y**2)
|
||||
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
|
||||
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
|
||||
log_prior = y_square - y_mu_double + mu_square + const
|
||||
if self.use_precomputed_durations:
|
||||
attn = generate_path(durations.squeeze(1), attn_mask.squeeze(1))
|
||||
else:
|
||||
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
|
||||
with torch.no_grad():
|
||||
const = -0.5 * math.log(2 * math.pi) * self.n_feats
|
||||
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
|
||||
y_square = torch.matmul(factor.transpose(1, 2), y**2)
|
||||
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
|
||||
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
|
||||
log_prior = y_square - y_mu_double + mu_square + const
|
||||
|
||||
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
|
||||
attn = attn.detach()
|
||||
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
|
||||
attn = attn.detach() # b, t_text, T_mel
|
||||
|
||||
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
||||
# refered to as prior loss in the paper
|
||||
@@ -228,7 +236,10 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
||||
# Compute loss of the decoder
|
||||
diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond)
|
||||
|
||||
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
|
||||
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
|
||||
if self.prior_loss:
|
||||
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
|
||||
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
|
||||
else:
|
||||
prior_loss = 0
|
||||
|
||||
return dur_loss, prior_loss, diff_loss
|
||||
return dur_loss, prior_loss, diff_loss, attn
|
||||
|
||||
0
matcha/onnx/__init__.py
Normal file
0
matcha/onnx/__init__.py
Normal file
181
matcha/onnx/export.py
Normal file
181
matcha/onnx/export.py
Normal file
@@ -0,0 +1,181 @@
|
||||
import argparse
|
||||
import random
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from lightning import LightningModule
|
||||
|
||||
from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder
|
||||
|
||||
DEFAULT_OPSET = 15
|
||||
|
||||
SEED = 1234
|
||||
random.seed(SEED)
|
||||
np.random.seed(SEED)
|
||||
torch.manual_seed(SEED)
|
||||
torch.cuda.manual_seed(SEED)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
||||
|
||||
class MatchaWithVocoder(LightningModule):
|
||||
def __init__(self, matcha, vocoder):
|
||||
super().__init__()
|
||||
self.matcha = matcha
|
||||
self.vocoder = vocoder
|
||||
|
||||
def forward(self, x, x_lengths, scales, spks=None):
|
||||
mel, mel_lengths = self.matcha(x, x_lengths, scales, spks)
|
||||
wavs = self.vocoder(mel).clamp(-1, 1)
|
||||
lengths = mel_lengths * 256
|
||||
return wavs.squeeze(1), lengths
|
||||
|
||||
|
||||
def get_exportable_module(matcha, vocoder, n_timesteps):
|
||||
"""
|
||||
Return an appropriate `LighteningModule` and output-node names
|
||||
based on whether the vocoder is embedded in the final graph
|
||||
"""
|
||||
|
||||
def onnx_forward_func(x, x_lengths, scales, spks=None):
|
||||
"""
|
||||
Custom forward function for accepting
|
||||
scaler parameters as tensors
|
||||
"""
|
||||
# Extract scaler parameters from tensors
|
||||
temperature = scales[0]
|
||||
length_scale = scales[1]
|
||||
output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale)
|
||||
return output["mel"], output["mel_lengths"]
|
||||
|
||||
# Monkey-patch Matcha's forward function
|
||||
matcha.forward = onnx_forward_func
|
||||
|
||||
if vocoder is None:
|
||||
model, output_names = matcha, ["mel", "mel_lengths"]
|
||||
else:
|
||||
model = MatchaWithVocoder(matcha, vocoder)
|
||||
output_names = ["wav", "wav_lengths"]
|
||||
return model, output_names
|
||||
|
||||
|
||||
def get_inputs(is_multi_speaker):
|
||||
"""
|
||||
Create dummy inputs for tracing
|
||||
"""
|
||||
dummy_input_length = 50
|
||||
x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long)
|
||||
x_lengths = torch.LongTensor([dummy_input_length])
|
||||
|
||||
# Scales
|
||||
temperature = 0.667
|
||||
length_scale = 1.0
|
||||
scales = torch.Tensor([temperature, length_scale])
|
||||
|
||||
model_inputs = [x, x_lengths, scales]
|
||||
input_names = [
|
||||
"x",
|
||||
"x_lengths",
|
||||
"scales",
|
||||
]
|
||||
|
||||
if is_multi_speaker:
|
||||
spks = torch.LongTensor([1])
|
||||
model_inputs.append(spks)
|
||||
input_names.append("spks")
|
||||
|
||||
return tuple(model_inputs), input_names
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX")
|
||||
|
||||
parser.add_argument(
|
||||
"checkpoint_path",
|
||||
type=str,
|
||||
help="Path to the model checkpoint",
|
||||
)
|
||||
parser.add_argument("output", type=str, help="Path to output `.onnx` file")
|
||||
parser.add_argument(
|
||||
"--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocoder-name",
|
||||
type=str,
|
||||
choices=list(VOCODER_URLS.keys()),
|
||||
default=None,
|
||||
help="Name of the vocoder to embed in the ONNX graph",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocoder-checkpoint-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience",
|
||||
)
|
||||
parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}")
|
||||
print(f"Setting n_timesteps to {args.n_timesteps}")
|
||||
|
||||
checkpoint_path = Path(args.checkpoint_path)
|
||||
matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu")
|
||||
|
||||
if args.vocoder_name or args.vocoder_checkpoint_path:
|
||||
assert (
|
||||
args.vocoder_name and args.vocoder_checkpoint_path
|
||||
), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph."
|
||||
vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu")
|
||||
else:
|
||||
vocoder = None
|
||||
|
||||
is_multi_speaker = matcha.n_spks > 1
|
||||
|
||||
dummy_input, input_names = get_inputs(is_multi_speaker)
|
||||
model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps)
|
||||
|
||||
# Set dynamic shape for inputs/outputs
|
||||
dynamic_axes = {
|
||||
"x": {0: "batch_size", 1: "time"},
|
||||
"x_lengths": {0: "batch_size"},
|
||||
}
|
||||
|
||||
if vocoder is None:
|
||||
dynamic_axes.update(
|
||||
{
|
||||
"mel": {0: "batch_size", 2: "time"},
|
||||
"mel_lengths": {0: "batch_size"},
|
||||
}
|
||||
)
|
||||
else:
|
||||
print("Embedding the vocoder in the ONNX graph")
|
||||
dynamic_axes.update(
|
||||
{
|
||||
"wav": {0: "batch_size", 1: "time"},
|
||||
"wav_lengths": {0: "batch_size"},
|
||||
}
|
||||
)
|
||||
|
||||
if is_multi_speaker:
|
||||
dynamic_axes["spks"] = {0: "batch_size"}
|
||||
|
||||
# Create the output directory (if not exists)
|
||||
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
model.to_onnx(
|
||||
args.output,
|
||||
dummy_input,
|
||||
input_names=input_names,
|
||||
output_names=output_names,
|
||||
dynamic_axes=dynamic_axes,
|
||||
opset_version=args.opset,
|
||||
export_params=True,
|
||||
do_constant_folding=True,
|
||||
)
|
||||
print(f"[🍵] ONNX model exported to {args.output}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
168
matcha/onnx/infer.py
Normal file
168
matcha/onnx/infer.py
Normal file
@@ -0,0 +1,168 @@
|
||||
import argparse
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from time import perf_counter
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
from matcha.cli import plot_spectrogram_to_numpy, process_text
|
||||
|
||||
|
||||
def validate_args(args):
|
||||
assert (
|
||||
args.text or args.file
|
||||
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
|
||||
assert args.temperature >= 0, "Sampling temperature cannot be negative"
|
||||
assert args.speaking_rate >= 0, "Speaking rate must be greater than 0"
|
||||
return args
|
||||
|
||||
|
||||
def write_wavs(model, inputs, output_dir, external_vocoder=None):
|
||||
if external_vocoder is None:
|
||||
print("The provided model has the vocoder embedded in the graph.\nGenerating waveform directly")
|
||||
t0 = perf_counter()
|
||||
wavs, wav_lengths = model.run(None, inputs)
|
||||
infer_secs = perf_counter() - t0
|
||||
mel_infer_secs = vocoder_infer_secs = None
|
||||
else:
|
||||
print("[🍵] Generating mel using Matcha")
|
||||
mel_t0 = perf_counter()
|
||||
mels, mel_lengths = model.run(None, inputs)
|
||||
mel_infer_secs = perf_counter() - mel_t0
|
||||
print("Generating waveform from mel using external vocoder")
|
||||
vocoder_inputs = {external_vocoder.get_inputs()[0].name: mels}
|
||||
vocoder_t0 = perf_counter()
|
||||
wavs = external_vocoder.run(None, vocoder_inputs)[0]
|
||||
vocoder_infer_secs = perf_counter() - vocoder_t0
|
||||
wavs = wavs.squeeze(1)
|
||||
wav_lengths = mel_lengths * 256
|
||||
infer_secs = mel_infer_secs + vocoder_infer_secs
|
||||
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
for i, (wav, wav_length) in enumerate(zip(wavs, wav_lengths)):
|
||||
output_filename = output_dir.joinpath(f"output_{i + 1}.wav")
|
||||
audio = wav[:wav_length]
|
||||
print(f"Writing audio to {output_filename}")
|
||||
sf.write(output_filename, audio, 22050, "PCM_24")
|
||||
|
||||
wav_secs = wav_lengths.sum() / 22050
|
||||
print(f"Inference seconds: {infer_secs}")
|
||||
print(f"Generated wav seconds: {wav_secs}")
|
||||
rtf = infer_secs / wav_secs
|
||||
if mel_infer_secs is not None:
|
||||
mel_rtf = mel_infer_secs / wav_secs
|
||||
print(f"Matcha RTF: {mel_rtf}")
|
||||
if vocoder_infer_secs is not None:
|
||||
vocoder_rtf = vocoder_infer_secs / wav_secs
|
||||
print(f"Vocoder RTF: {vocoder_rtf}")
|
||||
print(f"Overall RTF: {rtf}")
|
||||
|
||||
|
||||
def write_mels(model, inputs, output_dir):
|
||||
t0 = perf_counter()
|
||||
mels, mel_lengths = model.run(None, inputs)
|
||||
infer_secs = perf_counter() - t0
|
||||
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
for i, mel in enumerate(mels):
|
||||
output_stem = output_dir.joinpath(f"output_{i + 1}")
|
||||
plot_spectrogram_to_numpy(mel.squeeze(), output_stem.with_suffix(".png"))
|
||||
np.save(output_stem.with_suffix(".numpy"), mel)
|
||||
|
||||
wav_secs = (mel_lengths * 256).sum() / 22050
|
||||
print(f"Inference seconds: {infer_secs}")
|
||||
print(f"Generated wav seconds: {wav_secs}")
|
||||
rtf = infer_secs / wav_secs
|
||||
print(f"RTF: {rtf}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description=" 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching"
|
||||
)
|
||||
parser.add_argument(
|
||||
"model",
|
||||
type=str,
|
||||
help="ONNX model to use",
|
||||
)
|
||||
parser.add_argument("--vocoder", type=str, default=None, help="Vocoder to use (defaults to None)")
|
||||
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
|
||||
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
|
||||
parser.add_argument("--spk", type=int, default=None, help="Speaker ID")
|
||||
parser.add_argument(
|
||||
"--temperature",
|
||||
type=float,
|
||||
default=0.667,
|
||||
help="Variance of the x0 noise (default: 0.667)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--speaking-rate",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
|
||||
)
|
||||
parser.add_argument("--gpu", action="store_true", help="Use CPU for inference (default: use GPU if available)")
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=str,
|
||||
default=os.getcwd(),
|
||||
help="Output folder to save results (default: current dir)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
args = validate_args(args)
|
||||
|
||||
if args.gpu:
|
||||
providers = ["GPUExecutionProvider"]
|
||||
else:
|
||||
providers = ["CPUExecutionProvider"]
|
||||
model = ort.InferenceSession(args.model, providers=providers)
|
||||
|
||||
model_inputs = model.get_inputs()
|
||||
model_outputs = list(model.get_outputs())
|
||||
|
||||
if args.text:
|
||||
text_lines = args.text.splitlines()
|
||||
else:
|
||||
with open(args.file, encoding="utf-8") as file:
|
||||
text_lines = file.read().splitlines()
|
||||
|
||||
processed_lines = [process_text(0, line, "cpu") for line in text_lines]
|
||||
x = [line["x"].squeeze() for line in processed_lines]
|
||||
# Pad
|
||||
x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True)
|
||||
x = x.detach().cpu().numpy()
|
||||
x_lengths = np.array([line["x_lengths"].item() for line in processed_lines], dtype=np.int64)
|
||||
inputs = {
|
||||
"x": x,
|
||||
"x_lengths": x_lengths,
|
||||
"scales": np.array([args.temperature, args.speaking_rate], dtype=np.float32),
|
||||
}
|
||||
is_multi_speaker = len(model_inputs) == 4
|
||||
if is_multi_speaker:
|
||||
if args.spk is None:
|
||||
args.spk = 0
|
||||
warn = "[!] Speaker ID not provided! Using speaker ID 0"
|
||||
warnings.warn(warn, UserWarning)
|
||||
inputs["spks"] = np.repeat(args.spk, x.shape[0]).astype(np.int64)
|
||||
|
||||
has_vocoder_embedded = model_outputs[0].name == "wav"
|
||||
if has_vocoder_embedded:
|
||||
write_wavs(model, inputs, args.output_dir)
|
||||
elif args.vocoder:
|
||||
external_vocoder = ort.InferenceSession(args.vocoder, providers=providers)
|
||||
write_wavs(model, inputs, args.output_dir, external_vocoder=external_vocoder)
|
||||
else:
|
||||
warn = "[!] A vocoder is not embedded in the graph nor an external vocoder is provided. The mel output will be written as numpy arrays to `*.npy` files in the output directory"
|
||||
warnings.warn(warn, UserWarning)
|
||||
write_mels(model, inputs, args.output_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -7,6 +7,10 @@ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||
_id_to_symbol = {i: s for i, s in enumerate(symbols)} # pylint: disable=unnecessary-comprehension
|
||||
|
||||
|
||||
class UnknownCleanerException(Exception):
|
||||
pass
|
||||
|
||||
|
||||
def text_to_sequence(text, cleaner_names):
|
||||
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
||||
Args:
|
||||
@@ -21,7 +25,7 @@ def text_to_sequence(text, cleaner_names):
|
||||
for symbol in clean_text:
|
||||
symbol_id = _symbol_to_id[symbol]
|
||||
sequence += [symbol_id]
|
||||
return sequence
|
||||
return sequence, clean_text
|
||||
|
||||
|
||||
def cleaned_text_to_sequence(cleaned_text):
|
||||
@@ -48,6 +52,6 @@ def _clean_text(text, cleaner_names):
|
||||
for name in cleaner_names:
|
||||
cleaner = getattr(cleaners, name)
|
||||
if not cleaner:
|
||||
raise Exception("Unknown cleaner: %s" % name)
|
||||
raise UnknownCleanerException(f"Unknown cleaner: {name}")
|
||||
text = cleaner(text)
|
||||
return text
|
||||
|
||||
@@ -36,9 +36,12 @@ global_phonemizer = phonemizer.backend.EspeakBackend(
|
||||
# Regular expression matching whitespace:
|
||||
_whitespace_re = re.compile(r"\s+")
|
||||
|
||||
# Remove brackets
|
||||
_brackets_re = re.compile(r"[\[\]\(\)\{\}]")
|
||||
|
||||
# List of (regular expression, replacement) pairs for abbreviations:
|
||||
_abbreviations = [
|
||||
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
||||
(re.compile(f"\\b{x[0]}\\.", re.IGNORECASE), x[1])
|
||||
for x in [
|
||||
("mrs", "misess"),
|
||||
("mr", "mister"),
|
||||
@@ -72,6 +75,10 @@ def lowercase(text):
|
||||
return text.lower()
|
||||
|
||||
|
||||
def remove_brackets(text):
|
||||
return re.sub(_brackets_re, "", text)
|
||||
|
||||
|
||||
def collapse_whitespace(text):
|
||||
return re.sub(_whitespace_re, " ", text)
|
||||
|
||||
@@ -101,5 +108,37 @@ def english_cleaners2(text):
|
||||
text = lowercase(text)
|
||||
text = expand_abbreviations(text)
|
||||
phonemes = global_phonemizer.phonemize([text], strip=True, njobs=1)[0]
|
||||
# Added in some cases espeak is not removing brackets
|
||||
phonemes = remove_brackets(phonemes)
|
||||
phonemes = collapse_whitespace(phonemes)
|
||||
return phonemes
|
||||
|
||||
|
||||
def ipa_simplifier(text):
|
||||
replacements = [
|
||||
("ɐ", "ə"),
|
||||
("ˈə", "ə"),
|
||||
("ʤ", "dʒ"),
|
||||
("ʧ", "tʃ"),
|
||||
("ᵻ", "ɪ"),
|
||||
]
|
||||
for replacement in replacements:
|
||||
text = text.replace(replacement[0], replacement[1])
|
||||
phonemes = collapse_whitespace(text)
|
||||
return phonemes
|
||||
|
||||
|
||||
# I am removing this due to incompatibility with several version of python
|
||||
# However, if you want to use it, you can uncomment it
|
||||
# and install piper-phonemize with the following command:
|
||||
# pip install piper-phonemize
|
||||
|
||||
# import piper_phonemize
|
||||
# def english_cleaners_piper(text):
|
||||
# """Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
|
||||
# text = convert_to_ascii(text)
|
||||
# text = lowercase(text)
|
||||
# text = expand_abbreviations(text)
|
||||
# phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0])
|
||||
# phonemes = collapse_whitespace(phonemes)
|
||||
# return phonemes
|
||||
|
||||
@@ -48,7 +48,7 @@ def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin,
|
||||
if torch.max(y) > 1.0:
|
||||
print("max value is ", torch.max(y))
|
||||
|
||||
global mel_basis, hann_window # pylint: disable=global-statement
|
||||
global mel_basis, hann_window # pylint: disable=global-statement,global-variable-not-assigned
|
||||
if f"{str(fmax)}_{str(y.device)}" not in mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||||
mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
||||
|
||||
0
matcha/utils/data/__init__.py
Normal file
0
matcha/utils/data/__init__.py
Normal file
148
matcha/utils/data/hificaptain.py
Normal file
148
matcha/utils/data/hificaptain.py
Normal file
@@ -0,0 +1,148 @@
|
||||
#!/usr/bin/env python
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
import torchaudio
|
||||
from torch.hub import download_url_to_file
|
||||
from tqdm import tqdm
|
||||
|
||||
from matcha.utils.data.utils import _extract_zip
|
||||
|
||||
URLS = {
|
||||
"en-US": {
|
||||
"female": "https://ast-astrec.nict.go.jp/release/hi-fi-captain/hfc_en-US_F.zip",
|
||||
"male": "https://ast-astrec.nict.go.jp/release/hi-fi-captain/hfc_en-US_M.zip",
|
||||
},
|
||||
"ja-JP": {
|
||||
"female": "https://ast-astrec.nict.go.jp/release/hi-fi-captain/hfc_ja-JP_F.zip",
|
||||
"male": "https://ast-astrec.nict.go.jp/release/hi-fi-captain/hfc_ja-JP_M.zip",
|
||||
},
|
||||
}
|
||||
|
||||
INFO_PAGE = "https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/"
|
||||
|
||||
# On their website they say "We NICT open-sourced Hi-Fi-CAPTAIN",
|
||||
# but they use this very-much-not-open-source licence.
|
||||
# Dunno if this is open washing or stupidity.
|
||||
LICENCE = "CC BY-NC-SA 4.0"
|
||||
|
||||
# I'd normally put the citation here. It's on their website.
|
||||
# Boo to non-open-source stuff.
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("-s", "--save-dir", type=str, default=None, help="Place to store the downloaded zip files")
|
||||
parser.add_argument(
|
||||
"-r",
|
||||
"--skip-resampling",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Skip resampling the data (from 48 to 22.05)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-l", "--language", type=str, choices=["en-US", "ja-JP"], default="en-US", help="The language to download"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-g",
|
||||
"--gender",
|
||||
type=str,
|
||||
choices=["male", "female"],
|
||||
default="female",
|
||||
help="The gender of the speaker to download",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output_dir",
|
||||
type=str,
|
||||
default="data",
|
||||
help="Place to store the converted data. Top-level only, the subdirectory will be created",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def process_text(infile, outpath: Path):
|
||||
outmode = "w"
|
||||
if infile.endswith("dev.txt"):
|
||||
outfile = outpath / "valid.txt"
|
||||
elif infile.endswith("eval.txt"):
|
||||
outfile = outpath / "test.txt"
|
||||
else:
|
||||
outfile = outpath / "train.txt"
|
||||
if outfile.exists():
|
||||
outmode = "a"
|
||||
with (
|
||||
open(infile, encoding="utf-8") as inf,
|
||||
open(outfile, outmode, encoding="utf-8") as of,
|
||||
):
|
||||
for line in inf.readlines():
|
||||
line = line.strip()
|
||||
fileid, rest = line.split(" ", maxsplit=1)
|
||||
outfile = str(outpath / f"{fileid}.wav")
|
||||
of.write(f"{outfile}|{rest}\n")
|
||||
|
||||
|
||||
def process_files(zipfile, outpath, resample=True):
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
for filename in tqdm(_extract_zip(zipfile, tmpdirname)):
|
||||
if not filename.startswith(tmpdirname):
|
||||
filename = os.path.join(tmpdirname, filename)
|
||||
if filename.endswith(".txt"):
|
||||
process_text(filename, outpath)
|
||||
elif filename.endswith(".wav"):
|
||||
filepart = filename.rsplit("/", maxsplit=1)[-1]
|
||||
outfile = str(outpath / filepart)
|
||||
arr, sr = torchaudio.load(filename)
|
||||
if resample:
|
||||
arr = torchaudio.functional.resample(arr, orig_freq=sr, new_freq=22050)
|
||||
torchaudio.save(outfile, arr, 22050)
|
||||
else:
|
||||
continue
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
|
||||
save_dir = None
|
||||
if args.save_dir:
|
||||
save_dir = Path(args.save_dir)
|
||||
if not save_dir.is_dir():
|
||||
save_dir.mkdir()
|
||||
|
||||
if not args.output_dir:
|
||||
print("output directory not specified, exiting")
|
||||
sys.exit(1)
|
||||
|
||||
URL = URLS[args.language][args.gender]
|
||||
dirname = f"hi-fi_{args.language}_{args.gender}"
|
||||
|
||||
outbasepath = Path(args.output_dir)
|
||||
if not outbasepath.is_dir():
|
||||
outbasepath.mkdir()
|
||||
outpath = outbasepath / dirname
|
||||
if not outpath.is_dir():
|
||||
outpath.mkdir()
|
||||
|
||||
resample = True
|
||||
if args.skip_resampling:
|
||||
resample = False
|
||||
|
||||
if save_dir:
|
||||
zipname = URL.rsplit("/", maxsplit=1)[-1]
|
||||
zipfile = save_dir / zipname
|
||||
if not zipfile.exists():
|
||||
download_url_to_file(URL, zipfile, progress=True)
|
||||
process_files(zipfile, outpath, resample)
|
||||
else:
|
||||
with tempfile.NamedTemporaryFile(suffix=".zip", delete=True) as zf:
|
||||
download_url_to_file(URL, zf.name, progress=True)
|
||||
process_files(zf.name, outpath, resample)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
97
matcha/utils/data/ljspeech.py
Normal file
97
matcha/utils/data/ljspeech.py
Normal file
@@ -0,0 +1,97 @@
|
||||
#!/usr/bin/env python
|
||||
import argparse
|
||||
import random
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
from torch.hub import download_url_to_file
|
||||
|
||||
from matcha.utils.data.utils import _extract_tar
|
||||
|
||||
URL = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"
|
||||
|
||||
INFO_PAGE = "https://keithito.com/LJ-Speech-Dataset/"
|
||||
|
||||
LICENCE = "Public domain (LibriVox copyright disclaimer)"
|
||||
|
||||
CITATION = """
|
||||
@misc{ljspeech17,
|
||||
author = {Keith Ito and Linda Johnson},
|
||||
title = {The LJ Speech Dataset},
|
||||
howpublished = {\\url{https://keithito.com/LJ-Speech-Dataset/}},
|
||||
year = 2017
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
def decision():
|
||||
return random.random() < 0.98
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("-s", "--save-dir", type=str, default=None, help="Place to store the downloaded zip files")
|
||||
parser.add_argument(
|
||||
"output_dir",
|
||||
type=str,
|
||||
nargs="?",
|
||||
default="data",
|
||||
help="Place to store the converted data (subdirectory LJSpeech-1.1 will be created)",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def process_csv(ljpath: Path):
|
||||
if (ljpath / "metadata.csv").exists():
|
||||
basepath = ljpath
|
||||
elif (ljpath / "LJSpeech-1.1" / "metadata.csv").exists():
|
||||
basepath = ljpath / "LJSpeech-1.1"
|
||||
csvpath = basepath / "metadata.csv"
|
||||
wavpath = basepath / "wavs"
|
||||
|
||||
with (
|
||||
open(csvpath, encoding="utf-8") as csvf,
|
||||
open(basepath / "train.txt", "w", encoding="utf-8") as tf,
|
||||
open(basepath / "val.txt", "w", encoding="utf-8") as vf,
|
||||
):
|
||||
for line in csvf.readlines():
|
||||
line = line.strip()
|
||||
parts = line.split("|")
|
||||
wavfile = str(wavpath / f"{parts[0]}.wav")
|
||||
if decision():
|
||||
tf.write(f"{wavfile}|{parts[1]}\n")
|
||||
else:
|
||||
vf.write(f"{wavfile}|{parts[1]}\n")
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
|
||||
save_dir = None
|
||||
if args.save_dir:
|
||||
save_dir = Path(args.save_dir)
|
||||
if not save_dir.is_dir():
|
||||
save_dir.mkdir()
|
||||
|
||||
outpath = Path(args.output_dir)
|
||||
if not outpath.is_dir():
|
||||
outpath.mkdir()
|
||||
|
||||
if save_dir:
|
||||
tarname = URL.rsplit("/", maxsplit=1)[-1]
|
||||
tarfile = save_dir / tarname
|
||||
if not tarfile.exists():
|
||||
download_url_to_file(URL, str(tarfile), progress=True)
|
||||
_extract_tar(tarfile, outpath)
|
||||
process_csv(outpath)
|
||||
else:
|
||||
with tempfile.NamedTemporaryFile(suffix=".tar.bz2", delete=True) as zf:
|
||||
download_url_to_file(URL, zf.name, progress=True)
|
||||
_extract_tar(zf.name, outpath)
|
||||
process_csv(outpath)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
53
matcha/utils/data/utils.py
Normal file
53
matcha/utils/data/utils.py
Normal file
@@ -0,0 +1,53 @@
|
||||
# taken from https://github.com/pytorch/audio/blob/main/src/torchaudio/datasets/utils.py
|
||||
# Copyright (c) 2017 Facebook Inc. (Soumith Chintala)
|
||||
# Licence: BSD 2-Clause
|
||||
# pylint: disable=C0123
|
||||
|
||||
import logging
|
||||
import os
|
||||
import tarfile
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
from typing import Any, List, Optional, Union
|
||||
|
||||
_LG = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _extract_tar(from_path: Union[str, Path], to_path: Optional[str] = None, overwrite: bool = False) -> List[str]:
|
||||
if type(from_path) is Path:
|
||||
from_path = str(Path)
|
||||
|
||||
if to_path is None:
|
||||
to_path = os.path.dirname(from_path)
|
||||
|
||||
with tarfile.open(from_path, "r") as tar:
|
||||
files = []
|
||||
for file_ in tar: # type: Any
|
||||
file_path = os.path.join(to_path, file_.name)
|
||||
if file_.isfile():
|
||||
files.append(file_path)
|
||||
if os.path.exists(file_path):
|
||||
_LG.info("%s already extracted.", file_path)
|
||||
if not overwrite:
|
||||
continue
|
||||
tar.extract(file_, to_path)
|
||||
return files
|
||||
|
||||
|
||||
def _extract_zip(from_path: Union[str, Path], to_path: Optional[str] = None, overwrite: bool = False) -> List[str]:
|
||||
if type(from_path) is Path:
|
||||
from_path = str(Path)
|
||||
|
||||
if to_path is None:
|
||||
to_path = os.path.dirname(from_path)
|
||||
|
||||
with zipfile.ZipFile(from_path, "r") as zfile:
|
||||
files = zfile.namelist()
|
||||
for file_ in files:
|
||||
file_path = os.path.join(to_path, file_)
|
||||
if os.path.exists(file_path):
|
||||
_LG.info("%s already extracted.", file_path)
|
||||
if not overwrite:
|
||||
continue
|
||||
zfile.extract(file_, to_path)
|
||||
return files
|
||||
@@ -94,6 +94,7 @@ def main():
|
||||
cfg["batch_size"] = args.batch_size
|
||||
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
|
||||
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
|
||||
cfg["load_durations"] = False
|
||||
|
||||
text_mel_datamodule = TextMelDataModule(**cfg)
|
||||
text_mel_datamodule.setup()
|
||||
@@ -101,10 +102,8 @@ def main():
|
||||
log.info("Dataloader loaded! Now computing stats...")
|
||||
params = compute_data_statistics(data_loader, cfg["n_feats"])
|
||||
print(params)
|
||||
json.dump(
|
||||
params,
|
||||
open(output_file, "w"),
|
||||
)
|
||||
with open(output_file, "w", encoding="utf-8") as dumpfile:
|
||||
json.dump(params, dumpfile)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
195
matcha/utils/get_durations_from_trained_model.py
Normal file
195
matcha/utils/get_durations_from_trained_model.py
Normal file
@@ -0,0 +1,195 @@
|
||||
r"""
|
||||
The file creates a pickle file where the values needed for loading of dataset is stored and the model can load it
|
||||
when needed.
|
||||
|
||||
Parameters from hparam.py will be used
|
||||
"""
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import lightning
|
||||
import numpy as np
|
||||
import rootutils
|
||||
import torch
|
||||
from hydra import compose, initialize
|
||||
from omegaconf import open_dict
|
||||
from torch import nn
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from matcha.cli import get_device
|
||||
from matcha.data.text_mel_datamodule import TextMelDataModule
|
||||
from matcha.models.matcha_tts import MatchaTTS
|
||||
from matcha.utils.logging_utils import pylogger
|
||||
from matcha.utils.utils import get_phoneme_durations
|
||||
|
||||
log = pylogger.get_pylogger(__name__)
|
||||
|
||||
|
||||
def save_durations_to_folder(
|
||||
attn: torch.Tensor, x_length: int, y_length: int, filepath: str, output_folder: Path, text: str
|
||||
):
|
||||
durations = attn.squeeze().sum(1)[:x_length].numpy()
|
||||
durations_json = get_phoneme_durations(durations, text)
|
||||
output = output_folder / Path(filepath).name.replace(".wav", ".npy")
|
||||
with open(output.with_suffix(".json"), "w", encoding="utf-8") as f:
|
||||
json.dump(durations_json, f, indent=4, ensure_ascii=False)
|
||||
|
||||
np.save(output, durations)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def compute_durations(data_loader: torch.utils.data.DataLoader, model: nn.Module, device: torch.device, output_folder):
|
||||
"""Generate durations from the model for each datapoint and save it in a folder
|
||||
|
||||
Args:
|
||||
data_loader (torch.utils.data.DataLoader): Dataloader
|
||||
model (nn.Module): MatchaTTS model
|
||||
device (torch.device): GPU or CPU
|
||||
"""
|
||||
|
||||
for batch in tqdm(data_loader, desc="🍵 Computing durations 🍵:"):
|
||||
x, x_lengths = batch["x"], batch["x_lengths"]
|
||||
y, y_lengths = batch["y"], batch["y_lengths"]
|
||||
spks = batch["spks"]
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
x_lengths = x_lengths.to(device)
|
||||
y_lengths = y_lengths.to(device)
|
||||
spks = spks.to(device) if spks is not None else None
|
||||
|
||||
_, _, _, attn = model(
|
||||
x=x,
|
||||
x_lengths=x_lengths,
|
||||
y=y,
|
||||
y_lengths=y_lengths,
|
||||
spks=spks,
|
||||
)
|
||||
attn = attn.cpu()
|
||||
for i in range(attn.shape[0]):
|
||||
save_durations_to_folder(
|
||||
attn[i],
|
||||
x_lengths[i].item(),
|
||||
y_lengths[i].item(),
|
||||
batch["filepaths"][i],
|
||||
output_folder,
|
||||
batch["x_texts"][i],
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"-i",
|
||||
"--input-config",
|
||||
type=str,
|
||||
default="ljspeech.yaml",
|
||||
help="The name of the yaml config file under configs/data",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-b",
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default="32",
|
||||
help="Can have increased batch size for faster computation",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-f",
|
||||
"--force",
|
||||
action="store_true",
|
||||
default=False,
|
||||
required=False,
|
||||
help="force overwrite the file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--checkpoint_path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint file to load the model from",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output-folder",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Output folder to save the data statistics",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--cpu", action="store_true", help="Use CPU for inference, not recommended (default: use GPU if available)"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
with initialize(version_base="1.3", config_path="../../configs/data"):
|
||||
cfg = compose(config_name=args.input_config, return_hydra_config=True, overrides=[])
|
||||
|
||||
root_path = rootutils.find_root(search_from=__file__, indicator=".project-root")
|
||||
|
||||
with open_dict(cfg):
|
||||
del cfg["hydra"]
|
||||
del cfg["_target_"]
|
||||
cfg["seed"] = 1234
|
||||
cfg["batch_size"] = args.batch_size
|
||||
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
|
||||
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
|
||||
cfg["load_durations"] = False
|
||||
|
||||
if args.output_folder is not None:
|
||||
output_folder = Path(args.output_folder)
|
||||
else:
|
||||
output_folder = Path(cfg["train_filelist_path"]).parent / "durations"
|
||||
|
||||
print(f"Output folder set to: {output_folder}")
|
||||
|
||||
if os.path.exists(output_folder) and not args.force:
|
||||
print("Folder already exists. Use -f to force overwrite")
|
||||
sys.exit(1)
|
||||
|
||||
output_folder.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"Preprocessing: {cfg['name']} from training filelist: {cfg['train_filelist_path']}")
|
||||
print("Loading model...")
|
||||
device = get_device(args)
|
||||
model = MatchaTTS.load_from_checkpoint(args.checkpoint_path, map_location=device)
|
||||
|
||||
text_mel_datamodule = TextMelDataModule(**cfg)
|
||||
text_mel_datamodule.setup()
|
||||
try:
|
||||
print("Computing stats for training set if exists...")
|
||||
train_dataloader = text_mel_datamodule.train_dataloader()
|
||||
compute_durations(train_dataloader, model, device, output_folder)
|
||||
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||
print("No training set found")
|
||||
|
||||
try:
|
||||
print("Computing stats for validation set if exists...")
|
||||
val_dataloader = text_mel_datamodule.val_dataloader()
|
||||
compute_durations(val_dataloader, model, device, output_folder)
|
||||
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||
print("No validation set found")
|
||||
|
||||
try:
|
||||
print("Computing stats for test set if exists...")
|
||||
test_dataloader = text_mel_datamodule.test_dataloader()
|
||||
compute_durations(test_dataloader, model, device, output_folder)
|
||||
except lightning.fabric.utilities.exceptions.MisconfigurationException:
|
||||
print("No test set found")
|
||||
|
||||
print(f"[+] Done! Data statistics saved to: {output_folder}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Helps with generating durations for the dataset to train other architectures
|
||||
# that cannot learn to align due to limited size of dataset
|
||||
# Example usage:
|
||||
# python python matcha/utils/get_durations_from_trained_model.py -i ljspeech.yaml -c pretrained_model
|
||||
# This will create a folder in data/processed_data/durations/ljspeech with the durations
|
||||
main()
|
||||
@@ -7,15 +7,17 @@ import torch
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(int(max_length), dtype=length.dtype, device=length.device)
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
|
||||
while True:
|
||||
if length % (2**num_downsamplings_in_unet) == 0:
|
||||
return length
|
||||
length += 1
|
||||
factor = torch.scalar_tensor(2).pow(num_downsamplings_in_unet)
|
||||
length = (length / factor).ceil() * factor
|
||||
if not torch.onnx.is_in_onnx_export():
|
||||
return length.int().item()
|
||||
else:
|
||||
return length
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
|
||||
@@ -72,7 +72,7 @@ def print_config_tree(
|
||||
|
||||
# save config tree to file
|
||||
if save_to_file:
|
||||
with open(Path(cfg.paths.output_dir, "config_tree.log"), "w") as file:
|
||||
with open(Path(cfg.paths.output_dir, "config_tree.log"), "w", encoding="utf-8") as file:
|
||||
rich.print(tree, file=file)
|
||||
|
||||
|
||||
@@ -97,5 +97,5 @@ def enforce_tags(cfg: DictConfig, save_to_file: bool = False) -> None:
|
||||
log.info(f"Tags: {cfg.tags}")
|
||||
|
||||
if save_to_file:
|
||||
with open(Path(cfg.paths.output_dir, "tags.log"), "w") as file:
|
||||
with open(Path(cfg.paths.output_dir, "tags.log"), "w", encoding="utf-8") as file:
|
||||
rich.print(cfg.tags, file=file)
|
||||
|
||||
@@ -2,6 +2,7 @@ import os
|
||||
import sys
|
||||
import warnings
|
||||
from importlib.util import find_spec
|
||||
from math import ceil
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Tuple
|
||||
|
||||
@@ -115,7 +116,7 @@ def get_metric_value(metric_dict: Dict[str, Any], metric_name: str) -> float:
|
||||
return None
|
||||
|
||||
if metric_name not in metric_dict:
|
||||
raise Exception(
|
||||
raise ValueError(
|
||||
f"Metric value not found! <metric_name={metric_name}>\n"
|
||||
"Make sure metric name logged in LightningModule is correct!\n"
|
||||
"Make sure `optimized_metric` name in `hparams_search` config is correct!"
|
||||
@@ -205,13 +206,54 @@ def get_user_data_dir(appname="matcha_tts"):
|
||||
return final_path
|
||||
|
||||
|
||||
def assert_model_downloaded(checkpoint_path, url, use_wget=False):
|
||||
def assert_model_downloaded(checkpoint_path, url, use_wget=True):
|
||||
if Path(checkpoint_path).exists():
|
||||
log.debug(f"[+] Model already present at {checkpoint_path}!")
|
||||
print(f"[+] Model already present at {checkpoint_path}!")
|
||||
return
|
||||
log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
|
||||
print(f"[-] Model not found at {checkpoint_path}! Will download it")
|
||||
checkpoint_path = str(checkpoint_path)
|
||||
if not use_wget:
|
||||
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
|
||||
else:
|
||||
wget.download(url=url, out=checkpoint_path)
|
||||
|
||||
|
||||
def get_phoneme_durations(durations, phones):
|
||||
prev = durations[0]
|
||||
merged_durations = []
|
||||
# Convolve with stride 2
|
||||
for i in range(1, len(durations), 2):
|
||||
if i == len(durations) - 2:
|
||||
# if it is last take full value
|
||||
next_half = durations[i + 1]
|
||||
else:
|
||||
next_half = ceil(durations[i + 1] / 2)
|
||||
|
||||
curr = prev + durations[i] + next_half
|
||||
prev = durations[i + 1] - next_half
|
||||
merged_durations.append(curr)
|
||||
|
||||
assert len(phones) == len(merged_durations)
|
||||
assert len(merged_durations) == (len(durations) - 1) // 2
|
||||
|
||||
merged_durations = torch.cumsum(torch.tensor(merged_durations), 0, dtype=torch.long)
|
||||
start = torch.tensor(0)
|
||||
duration_json = []
|
||||
for i, duration in enumerate(merged_durations):
|
||||
duration_json.append(
|
||||
{
|
||||
phones[i]: {
|
||||
"starttime": start.item(),
|
||||
"endtime": duration.item(),
|
||||
"duration": duration.item() - start.item(),
|
||||
}
|
||||
}
|
||||
)
|
||||
start = duration
|
||||
|
||||
assert list(duration_json[-1].values())[0]["endtime"] == sum(
|
||||
durations
|
||||
), f"{list(duration_json[-1].values())[0]['endtime'], sum(durations)}"
|
||||
return duration_json
|
||||
|
||||
@@ -35,10 +35,10 @@ torchaudio
|
||||
matplotlib
|
||||
pandas
|
||||
conformer==0.3.2
|
||||
diffusers==0.21.2
|
||||
diffusers # developed using version ==0.25.0
|
||||
notebook
|
||||
ipywidgets
|
||||
gradio
|
||||
gradio==3.43.2
|
||||
gdown
|
||||
wget
|
||||
seaborn
|
||||
|
||||
12
setup.py
12
setup.py
@@ -16,9 +16,16 @@ with open("README.md", encoding="utf-8") as readme_file:
|
||||
README = readme_file.read()
|
||||
|
||||
cwd = os.path.dirname(os.path.abspath(__file__))
|
||||
with open(os.path.join(cwd, "matcha", "VERSION")) as fin:
|
||||
with open(os.path.join(cwd, "matcha", "VERSION"), encoding="utf-8") as fin:
|
||||
version = fin.read().strip()
|
||||
|
||||
|
||||
def get_requires():
|
||||
requirements = os.path.join(os.path.dirname(__file__), "requirements.txt")
|
||||
with open(requirements, encoding="utf-8") as reqfile:
|
||||
return [str(r).strip() for r in reqfile]
|
||||
|
||||
|
||||
setup(
|
||||
name="matcha-tts",
|
||||
version=version,
|
||||
@@ -28,7 +35,7 @@ setup(
|
||||
author="Shivam Mehta",
|
||||
author_email="shivam.mehta25@gmail.com",
|
||||
url="https://shivammehta25.github.io/Matcha-TTS",
|
||||
install_requires=[str(r) for r in open(os.path.join(os.path.dirname(__file__), "requirements.txt"))],
|
||||
install_requires=get_requires(),
|
||||
include_dirs=[numpy.get_include()],
|
||||
include_package_data=True,
|
||||
packages=find_packages(exclude=["tests", "tests/*", "examples", "examples/*"]),
|
||||
@@ -38,6 +45,7 @@ setup(
|
||||
"matcha-data-stats=matcha.utils.generate_data_statistics:main",
|
||||
"matcha-tts=matcha.cli:cli",
|
||||
"matcha-tts-app=matcha.app:main",
|
||||
"matcha-tts-get-durations=matcha.utils.get_durations_from_trained_model:main",
|
||||
]
|
||||
},
|
||||
ext_modules=cythonize(exts, language_level=3),
|
||||
|
||||
@@ -19,7 +19,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"id": "148f4bc0-c28e-4670-9a5e-4c7928ab8992",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -192,7 +192,7 @@
|
||||
"source": [
|
||||
"@torch.inference_mode()\n",
|
||||
"def process_text(text: str):\n",
|
||||
" x = torch.tensor(intersperse(text_to_sequence(text, ['english_cleaners2']), 0),dtype=torch.long, device=device)[None]\n",
|
||||
" x = torch.tensor(intersperse(text_to_sequence(text, ['english_cleaners2'])[0], 0),dtype=torch.long, device=device)[None]\n",
|
||||
" x_lengths = torch.tensor([x.shape[-1]],dtype=torch.long, device=device)\n",
|
||||
" x_phones = sequence_to_text(x.squeeze(0).tolist())\n",
|
||||
" return {\n",
|
||||
|
||||
Reference in New Issue
Block a user