mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-05 18:29:19 +08:00
Adding option to do flow matching based duration prediction
This commit is contained in:
16
configs/experiment/ljspeech_stoc_dur.yaml
Normal file
16
configs/experiment/ljspeech_stoc_dur.yaml
Normal file
@@ -0,0 +1,16 @@
|
|||||||
|
# @package _global_
|
||||||
|
|
||||||
|
# to execute this experiment run:
|
||||||
|
# python train.py experiment=multispeaker
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
- override /data: ljspeech.yaml
|
||||||
|
- override /model/duration_predictor: flow_matching.yaml
|
||||||
|
|
||||||
|
# all parameters below will be merged with parameters from default configurations set above
|
||||||
|
# this allows you to overwrite only specified parameters
|
||||||
|
|
||||||
|
tags: ["ljspeech"]
|
||||||
|
|
||||||
|
|
||||||
|
run_name: ljspeech
|
||||||
7
configs/model/duration_predictor/deterministic.yaml
Normal file
7
configs/model/duration_predictor/deterministic.yaml
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
name: deterministic
|
||||||
|
n_spks: ${model.n_spks}
|
||||||
|
spk_emb_dim: ${model.spk_emb_dim}
|
||||||
|
filter_channels: 256
|
||||||
|
kernel_size: 3
|
||||||
|
n_channels: ${model.encoder.encoder_params.n_channels}
|
||||||
|
p_dropout: ${model.encoder.encoder_params.p_dropout}
|
||||||
7
configs/model/duration_predictor/flow_matching.yaml
Normal file
7
configs/model/duration_predictor/flow_matching.yaml
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
defaults:
|
||||||
|
- deterministic.yaml
|
||||||
|
- _self_
|
||||||
|
|
||||||
|
sigma_min: 1e-4
|
||||||
|
n_steps: 10
|
||||||
|
name: flow_matching
|
||||||
@@ -3,16 +3,8 @@ encoder_params:
|
|||||||
n_feats: ${model.n_feats}
|
n_feats: ${model.n_feats}
|
||||||
n_channels: 192
|
n_channels: 192
|
||||||
filter_channels: 768
|
filter_channels: 768
|
||||||
filter_channels_dp: 256
|
|
||||||
n_heads: 2
|
n_heads: 2
|
||||||
n_layers: 6
|
n_layers: 6
|
||||||
kernel_size: 3
|
kernel_size: 3
|
||||||
p_dropout: 0.1
|
p_dropout: 0.1
|
||||||
spk_emb_dim: 64
|
|
||||||
n_spks: 1
|
|
||||||
prenet: true
|
prenet: true
|
||||||
|
|
||||||
duration_predictor_params:
|
|
||||||
filter_channels_dp: ${model.encoder.encoder_params.filter_channels_dp}
|
|
||||||
kernel_size: 3
|
|
||||||
p_dropout: ${model.encoder.encoder_params.p_dropout}
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
defaults:
|
defaults:
|
||||||
- _self_
|
- _self_
|
||||||
- encoder: default.yaml
|
- encoder: default.yaml
|
||||||
|
- duration_predictor: deterministic.yaml
|
||||||
- decoder: default.yaml
|
- decoder: default.yaml
|
||||||
- cfm: default.yaml
|
- cfm: default.yaml
|
||||||
- optimizer: adam.yaml
|
- optimizer: adam.yaml
|
||||||
|
|||||||
243
matcha/models/components/duration_predictors.py
Normal file
243
matcha/models/components/duration_predictors.py
Normal file
@@ -0,0 +1,243 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from einops import pack
|
||||||
|
|
||||||
|
from matcha.models.components.decoder import SinusoidalPosEmb, TimestepEmbedding
|
||||||
|
from matcha.models.components.text_encoder import LayerNorm
|
||||||
|
|
||||||
|
# Define available networks
|
||||||
|
|
||||||
|
|
||||||
|
class DurationPredictorNetwork(nn.Module):
|
||||||
|
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
|
||||||
|
self.drop = torch.nn.Dropout(p_dropout)
|
||||||
|
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||||
|
self.norm_1 = LayerNorm(filter_channels)
|
||||||
|
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||||
|
self.norm_2 = LayerNorm(filter_channels)
|
||||||
|
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask):
|
||||||
|
x = self.conv_1(x * x_mask)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.norm_1(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.conv_2(x * x_mask)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.norm_2(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.proj(x * x_mask)
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class DurationPredictorNetworkWithTimeStep(nn.Module):
|
||||||
|
"""Similar architecture but with a time embedding support"""
|
||||||
|
|
||||||
|
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
|
||||||
|
self.time_embeddings = SinusoidalPosEmb(filter_channels)
|
||||||
|
self.time_mlp = TimestepEmbedding(
|
||||||
|
in_channels=filter_channels,
|
||||||
|
time_embed_dim=filter_channels,
|
||||||
|
act_fn="silu",
|
||||||
|
)
|
||||||
|
|
||||||
|
self.drop = torch.nn.Dropout(p_dropout)
|
||||||
|
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||||
|
self.norm_1 = LayerNorm(filter_channels)
|
||||||
|
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||||
|
self.norm_2 = LayerNorm(filter_channels)
|
||||||
|
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, enc_outputs, t):
|
||||||
|
t = self.time_embeddings(t)
|
||||||
|
t = self.time_mlp(t).unsqueeze(-1)
|
||||||
|
|
||||||
|
x = pack([x, enc_outputs], "b * t")[0]
|
||||||
|
|
||||||
|
x = self.conv_1(x * x_mask)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = x + t
|
||||||
|
x = self.norm_1(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.conv_2(x * x_mask)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = x + t
|
||||||
|
x = self.norm_2(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.proj(x * x_mask)
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
|
# Define available methods to compute loss
|
||||||
|
|
||||||
|
# Simple MSE deterministic
|
||||||
|
|
||||||
|
|
||||||
|
class DeterministicDurationPredictor(nn.Module):
|
||||||
|
def __init__(self, params):
|
||||||
|
super().__init__()
|
||||||
|
self.estimator = DurationPredictorNetwork(
|
||||||
|
params.n_channels + (params.spk_emb_dim if params.n_spks > 1 else 0),
|
||||||
|
params.filter_channels,
|
||||||
|
params.kernel_size,
|
||||||
|
params.p_dropout,
|
||||||
|
)
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def forward(self, x, x_mask):
|
||||||
|
return self.estimator(x, x_mask)
|
||||||
|
|
||||||
|
def compute_loss(self, durations, enc_outputs, x_mask):
|
||||||
|
return F.mse_loss(self.estimator(enc_outputs, x_mask), durations, reduction="sum") / torch.sum(x_mask)
|
||||||
|
|
||||||
|
|
||||||
|
# Flow Matching duration predictor
|
||||||
|
|
||||||
|
|
||||||
|
class FlowMatchingDurationPrediction(nn.Module):
|
||||||
|
def __init__(self, params) -> None:
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.estimator = DurationPredictorNetworkWithTimeStep(
|
||||||
|
1
|
||||||
|
+ params.n_channels
|
||||||
|
+ (
|
||||||
|
params.spk_emb_dim if params.n_spks > 1 else 0
|
||||||
|
), # 1 for the durations and n_channels for encoder outputs
|
||||||
|
params.filter_channels,
|
||||||
|
params.kernel_size,
|
||||||
|
params.p_dropout,
|
||||||
|
)
|
||||||
|
self.sigma_min = params.sigma_min
|
||||||
|
self.n_steps = params.n_steps
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def forward(self, enc_outputs, mask, n_timesteps=None, temperature=1):
|
||||||
|
"""Forward diffusion
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mu (torch.Tensor): output of encoder
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
mask (torch.Tensor): output_mask
|
||||||
|
shape: (batch_size, 1, mel_timesteps)
|
||||||
|
n_timesteps (int): number of diffusion steps
|
||||||
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
||||||
|
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||||
|
shape: (batch_size, spk_emb_dim)
|
||||||
|
cond: Not used but kept for future purposes
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
sample: generated mel-spectrogram
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
"""
|
||||||
|
if n_timesteps is None:
|
||||||
|
n_timesteps = self.n_steps
|
||||||
|
|
||||||
|
b, _, t = enc_outputs.shape
|
||||||
|
z = torch.randn((b, 1, t), device=enc_outputs.device, dtype=enc_outputs.dtype) * temperature
|
||||||
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=enc_outputs.device)
|
||||||
|
return self.solve_euler(z, t_span=t_span, enc_outputs=enc_outputs, mask=mask)
|
||||||
|
|
||||||
|
def solve_euler(self, x, t_span, enc_outputs, mask):
|
||||||
|
"""
|
||||||
|
Fixed euler solver for ODEs.
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): random noise
|
||||||
|
t_span (torch.Tensor): n_timesteps interpolated
|
||||||
|
shape: (n_timesteps + 1,)
|
||||||
|
mu (torch.Tensor): output of encoder
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
mask (torch.Tensor): output_mask
|
||||||
|
shape: (batch_size, 1, mel_timesteps)
|
||||||
|
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||||
|
shape: (batch_size, spk_emb_dim)
|
||||||
|
"""
|
||||||
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||||
|
|
||||||
|
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||||
|
# Or in future might add like a return_all_steps flag
|
||||||
|
sol = []
|
||||||
|
|
||||||
|
for step in range(1, len(t_span)):
|
||||||
|
dphi_dt = self.estimator(x, mask, enc_outputs, t)
|
||||||
|
|
||||||
|
x = x + dt * dphi_dt
|
||||||
|
t = t + dt
|
||||||
|
sol.append(x)
|
||||||
|
if step < len(t_span) - 1:
|
||||||
|
dt = t_span[step + 1] - t
|
||||||
|
|
||||||
|
return sol[-1]
|
||||||
|
|
||||||
|
def compute_loss(self, x1, enc_outputs, mask):
|
||||||
|
"""Computes diffusion loss
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x1 (torch.Tensor): Target
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
mask (torch.Tensor): target mask
|
||||||
|
shape: (batch_size, 1, mel_timesteps)
|
||||||
|
mu (torch.Tensor): output of encoder
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
||||||
|
shape: (batch_size, spk_emb_dim)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
loss: conditional flow matching loss
|
||||||
|
y: conditional flow
|
||||||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
|
"""
|
||||||
|
enc_outputs = enc_outputs.detach() # don't update encoder from the duration predictor
|
||||||
|
b, _, t = enc_outputs.shape
|
||||||
|
|
||||||
|
# random timestep
|
||||||
|
t = torch.rand([b, 1, 1], device=enc_outputs.device, dtype=enc_outputs.dtype)
|
||||||
|
# sample noise p(x_0)
|
||||||
|
z = torch.randn_like(x1)
|
||||||
|
|
||||||
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
||||||
|
u = x1 - (1 - self.sigma_min) * z
|
||||||
|
|
||||||
|
loss = F.mse_loss(self.estimator(y, mask, enc_outputs, t.squeeze()), u, reduction="sum") / (
|
||||||
|
torch.sum(mask) * u.shape[1]
|
||||||
|
)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
# Meta class to wrap all duration predictors
|
||||||
|
|
||||||
|
|
||||||
|
class DP(nn.Module):
|
||||||
|
def __init__(self, params):
|
||||||
|
super().__init__()
|
||||||
|
self.name = params.name
|
||||||
|
|
||||||
|
if params.name == "deterministic":
|
||||||
|
self.dp = DeterministicDurationPredictor(
|
||||||
|
params,
|
||||||
|
)
|
||||||
|
elif params.name == "flow_matching":
|
||||||
|
self.dp = FlowMatchingDurationPrediction(
|
||||||
|
params,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Invalid duration predictor configuration: {params.name}")
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def forward(self, enc_outputs, mask):
|
||||||
|
return self.dp(enc_outputs, mask)
|
||||||
|
|
||||||
|
def compute_loss(self, durations, enc_outputs, mask):
|
||||||
|
return self.dp.compute_loss(durations, enc_outputs, mask)
|
||||||
@@ -67,33 +67,6 @@ class ConvReluNorm(nn.Module):
|
|||||||
return x * x_mask
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
class DurationPredictor(nn.Module):
|
|
||||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
|
||||||
super().__init__()
|
|
||||||
self.in_channels = in_channels
|
|
||||||
self.filter_channels = filter_channels
|
|
||||||
self.p_dropout = p_dropout
|
|
||||||
|
|
||||||
self.drop = torch.nn.Dropout(p_dropout)
|
|
||||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
|
||||||
self.norm_1 = LayerNorm(filter_channels)
|
|
||||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
|
||||||
self.norm_2 = LayerNorm(filter_channels)
|
|
||||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
|
||||||
|
|
||||||
def forward(self, x, x_mask):
|
|
||||||
x = self.conv_1(x * x_mask)
|
|
||||||
x = torch.relu(x)
|
|
||||||
x = self.norm_1(x)
|
|
||||||
x = self.drop(x)
|
|
||||||
x = self.conv_2(x * x_mask)
|
|
||||||
x = torch.relu(x)
|
|
||||||
x = self.norm_2(x)
|
|
||||||
x = self.drop(x)
|
|
||||||
x = self.proj(x * x_mask)
|
|
||||||
return x * x_mask
|
|
||||||
|
|
||||||
|
|
||||||
class RotaryPositionalEmbeddings(nn.Module):
|
class RotaryPositionalEmbeddings(nn.Module):
|
||||||
"""
|
"""
|
||||||
## RoPE module
|
## RoPE module
|
||||||
@@ -330,7 +303,6 @@ class TextEncoder(nn.Module):
|
|||||||
self,
|
self,
|
||||||
encoder_type,
|
encoder_type,
|
||||||
encoder_params,
|
encoder_params,
|
||||||
duration_predictor_params,
|
|
||||||
n_vocab,
|
n_vocab,
|
||||||
n_spks=1,
|
n_spks=1,
|
||||||
spk_emb_dim=128,
|
spk_emb_dim=128,
|
||||||
@@ -368,12 +340,6 @@ class TextEncoder(nn.Module):
|
|||||||
)
|
)
|
||||||
|
|
||||||
self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
|
self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
|
||||||
self.proj_w = DurationPredictor(
|
|
||||||
self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
|
|
||||||
duration_predictor_params.filter_channels_dp,
|
|
||||||
duration_predictor_params.kernel_size,
|
|
||||||
duration_predictor_params.p_dropout,
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x, x_lengths, spks=None):
|
def forward(self, x, x_lengths, spks=None):
|
||||||
"""Run forward pass to the transformer based encoder and duration predictor
|
"""Run forward pass to the transformer based encoder and duration predictor
|
||||||
@@ -404,7 +370,7 @@ class TextEncoder(nn.Module):
|
|||||||
x = self.encoder(x, x_mask)
|
x = self.encoder(x, x_mask)
|
||||||
mu = self.proj_m(x) * x_mask
|
mu = self.proj_m(x) * x_mask
|
||||||
|
|
||||||
x_dp = torch.detach(x)
|
# x_dp = torch.detach(x)
|
||||||
logw = self.proj_w(x_dp, x_mask)
|
# logw = self.proj_w(x_dp, x_mask)
|
||||||
|
|
||||||
return mu, logw, x_mask
|
return mu, x, x_mask
|
||||||
|
|||||||
@@ -7,11 +7,11 @@ import torch
|
|||||||
import matcha.utils.monotonic_align as monotonic_align
|
import matcha.utils.monotonic_align as monotonic_align
|
||||||
from matcha import utils
|
from matcha import utils
|
||||||
from matcha.models.baselightningmodule import BaseLightningClass
|
from matcha.models.baselightningmodule import BaseLightningClass
|
||||||
|
from matcha.models.components.duration_predictors import DP
|
||||||
from matcha.models.components.flow_matching import CFM
|
from matcha.models.components.flow_matching import CFM
|
||||||
from matcha.models.components.text_encoder import TextEncoder
|
from matcha.models.components.text_encoder import TextEncoder
|
||||||
from matcha.utils.model import (
|
from matcha.utils.model import (
|
||||||
denormalize,
|
denormalize,
|
||||||
duration_loss,
|
|
||||||
fix_len_compatibility,
|
fix_len_compatibility,
|
||||||
generate_path,
|
generate_path,
|
||||||
sequence_mask,
|
sequence_mask,
|
||||||
@@ -28,6 +28,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
spk_emb_dim,
|
spk_emb_dim,
|
||||||
n_feats,
|
n_feats,
|
||||||
encoder,
|
encoder,
|
||||||
|
duration_predictor,
|
||||||
decoder,
|
decoder,
|
||||||
cfm,
|
cfm,
|
||||||
data_statistics,
|
data_statistics,
|
||||||
@@ -53,12 +54,13 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
self.encoder = TextEncoder(
|
self.encoder = TextEncoder(
|
||||||
encoder.encoder_type,
|
encoder.encoder_type,
|
||||||
encoder.encoder_params,
|
encoder.encoder_params,
|
||||||
encoder.duration_predictor_params,
|
|
||||||
n_vocab,
|
n_vocab,
|
||||||
n_spks,
|
n_spks,
|
||||||
spk_emb_dim,
|
spk_emb_dim,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.dp = DP(duration_predictor)
|
||||||
|
|
||||||
self.decoder = CFM(
|
self.decoder = CFM(
|
||||||
in_channels=2 * encoder.encoder_params.n_feats,
|
in_channels=2 * encoder.encoder_params.n_feats,
|
||||||
out_channel=encoder.encoder_params.n_feats,
|
out_channel=encoder.encoder_params.n_feats,
|
||||||
@@ -112,8 +114,11 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
# Get speaker embedding
|
# Get speaker embedding
|
||||||
spks = self.spk_emb(spks.long())
|
spks = self.spk_emb(spks.long())
|
||||||
|
|
||||||
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
# Get encoder_outputs `mu_x` and encoded text `enc_output`
|
||||||
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
mu_x, enc_output, x_mask = self.encoder(x, x_lengths, spks)
|
||||||
|
|
||||||
|
# Get log-scaled token durations `logw`
|
||||||
|
logw = self.dp(enc_output, x_mask)
|
||||||
|
|
||||||
w = torch.exp(logw) * x_mask
|
w = torch.exp(logw) * x_mask
|
||||||
w_ceil = torch.ceil(w) * length_scale
|
w_ceil = torch.ceil(w) * length_scale
|
||||||
@@ -173,7 +178,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
spks = self.spk_emb(spks)
|
spks = self.spk_emb(spks)
|
||||||
|
|
||||||
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
||||||
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
mu_x, enc_output, x_mask = self.encoder(x, x_lengths, spks)
|
||||||
y_max_length = y.shape[-1]
|
y_max_length = y.shape[-1]
|
||||||
|
|
||||||
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
||||||
@@ -192,9 +197,8 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
attn = attn.detach()
|
attn = attn.detach()
|
||||||
|
|
||||||
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
||||||
# refered to as prior loss in the paper
|
|
||||||
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
|
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
|
||||||
dur_loss = duration_loss(logw, logw_, x_lengths)
|
dur_loss = self.dp.compute_loss(logw_, enc_output, x_mask)
|
||||||
|
|
||||||
# Cut a small segment of mel-spectrogram in order to increase batch size
|
# Cut a small segment of mel-spectrogram in order to increase batch size
|
||||||
# - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it
|
# - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it
|
||||||
|
|||||||
Reference in New Issue
Block a user