Files
Matcha-TTS/matcha/models/components/duration_predictors.py

244 lines
8.3 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import pack
from matcha.models.components.decoder import SinusoidalPosEmb, TimestepEmbedding
from matcha.models.components.text_encoder import LayerNorm
# Define available networks
class DurationPredictorNetwork(nn.Module):
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.p_dropout = p_dropout
self.drop = torch.nn.Dropout(p_dropout)
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_1 = LayerNorm(filter_channels)
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_2 = LayerNorm(filter_channels)
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
def forward(self, x, x_mask):
x = self.conv_1(x * x_mask)
x = torch.relu(x)
x = self.norm_1(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
x = torch.relu(x)
x = self.norm_2(x)
x = self.drop(x)
x = self.proj(x * x_mask)
return x * x_mask
class DurationPredictorNetworkWithTimeStep(nn.Module):
"""Similar architecture but with a time embedding support"""
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.p_dropout = p_dropout
self.time_embeddings = SinusoidalPosEmb(filter_channels)
self.time_mlp = TimestepEmbedding(
in_channels=filter_channels,
time_embed_dim=filter_channels,
act_fn="silu",
)
self.drop = torch.nn.Dropout(p_dropout)
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_1 = LayerNorm(filter_channels)
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_2 = LayerNorm(filter_channels)
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
def forward(self, x, x_mask, enc_outputs, t):
t = self.time_embeddings(t)
t = self.time_mlp(t).unsqueeze(-1)
x = pack([x, enc_outputs], "b * t")[0]
x = self.conv_1(x * x_mask)
x = torch.relu(x)
x = x + t
x = self.norm_1(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
x = torch.relu(x)
x = x + t
x = self.norm_2(x)
x = self.drop(x)
x = self.proj(x * x_mask)
return x * x_mask
# Define available methods to compute loss
# Simple MSE deterministic
class DeterministicDurationPredictor(nn.Module):
def __init__(self, params):
super().__init__()
self.estimator = DurationPredictorNetwork(
params.n_channels + (params.spk_emb_dim if params.n_spks > 1 else 0),
params.filter_channels,
params.kernel_size,
params.p_dropout,
)
@torch.inference_mode()
def forward(self, x, x_mask):
return self.estimator(x, x_mask)
def compute_loss(self, durations, enc_outputs, x_mask):
return F.mse_loss(self.estimator(enc_outputs, x_mask), durations, reduction="sum") / torch.sum(x_mask)
# Flow Matching duration predictor
class FlowMatchingDurationPrediction(nn.Module):
def __init__(self, params) -> None:
super().__init__()
self.estimator = DurationPredictorNetworkWithTimeStep(
1
+ params.n_channels
+ (
params.spk_emb_dim if params.n_spks > 1 else 0
), # 1 for the durations and n_channels for encoder outputs
params.filter_channels,
params.kernel_size,
params.p_dropout,
)
self.sigma_min = params.sigma_min
self.n_steps = params.n_steps
@torch.inference_mode()
def forward(self, enc_outputs, mask, n_timesteps=None, temperature=1):
"""Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
"""
if n_timesteps is None:
n_timesteps = self.n_steps
b, _, t = enc_outputs.shape
z = torch.randn((b, 1, t), device=enc_outputs.device, dtype=enc_outputs.dtype) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=enc_outputs.device)
return self.solve_euler(z, t_span=t_span, enc_outputs=enc_outputs, mask=mask)
def solve_euler(self, x, t_span, enc_outputs, mask):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
"""
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
sol = []
for step in range(1, len(t_span)):
dphi_dt = self.estimator(x, mask, enc_outputs, t)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
return sol[-1]
def compute_loss(self, x1, enc_outputs, mask):
"""Computes diffusion loss
Args:
x1 (torch.Tensor): Target
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): target mask
shape: (batch_size, 1, mel_timesteps)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
shape: (batch_size, spk_emb_dim)
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_feats, mel_timesteps)
"""
enc_outputs = enc_outputs.detach() # don't update encoder from the duration predictor
b, _, t = enc_outputs.shape
# random timestep
t = torch.rand([b, 1, 1], device=enc_outputs.device, dtype=enc_outputs.dtype)
# sample noise p(x_0)
z = torch.randn_like(x1)
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
u = x1 - (1 - self.sigma_min) * z
loss = F.mse_loss(self.estimator(y, mask, enc_outputs, t.squeeze()), u, reduction="sum") / (
torch.sum(mask) * u.shape[1]
)
return loss
# Meta class to wrap all duration predictors
class DP(nn.Module):
def __init__(self, params):
super().__init__()
self.name = params.name
if params.name == "deterministic":
self.dp = DeterministicDurationPredictor(
params,
)
elif params.name == "flow_matching":
self.dp = FlowMatchingDurationPrediction(
params,
)
else:
raise ValueError(f"Invalid duration predictor configuration: {params.name}")
@torch.inference_mode()
def forward(self, enc_outputs, mask):
return self.dp(enc_outputs, mask)
def compute_loss(self, durations, enc_outputs, mask):
return self.dp.compute_loss(durations, enc_outputs, mask)