mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
Compare commits
90 Commits
dev/wucong
...
v2.0
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8555549e88 | ||
|
|
3047591fad | ||
|
|
5a00aefa20 | ||
|
|
35abb1f3b5 | ||
|
|
21a5efd8ae | ||
|
|
44316c3475 | ||
|
|
116c99bf39 | ||
|
|
6eaef42126 | ||
|
|
525531d8a3 | ||
|
|
c788bca1a6 | ||
|
|
ff9694dc2c | ||
|
|
4505924608 | ||
|
|
46dfe0439b | ||
|
|
63856565f3 | ||
|
|
cc234bd322 | ||
|
|
98ef35b1c0 | ||
|
|
fca1df3ea7 | ||
|
|
c939c80480 | ||
|
|
5bf6befd70 | ||
|
|
1c7976779b | ||
|
|
a8e1774e82 | ||
|
|
1f50ae259b | ||
|
|
793a7fe6ad | ||
|
|
79b2ea818b | ||
|
|
7d9d84d32d | ||
|
|
9b052a94c4 | ||
|
|
6dd68b9d5e | ||
|
|
9f55c5af8f | ||
|
|
b6c5f9dfd2 | ||
|
|
cbfed4a9ee | ||
|
|
54d21b40f0 | ||
|
|
c3250c222f | ||
|
|
82219cdd27 | ||
|
|
4159a18469 | ||
|
|
3e12bb86bd | ||
|
|
cbfbe2bc33 | ||
|
|
3660da4a19 | ||
|
|
3c921daede | ||
|
|
68100c267a | ||
|
|
fbab274b6a | ||
|
|
97f0bc61cd | ||
|
|
afb1a70f7a | ||
|
|
5c77e40304 | ||
|
|
b4c4d848ca | ||
|
|
88f467a8ac | ||
|
|
038ff9f353 | ||
|
|
65ad448714 | ||
|
|
a96ae13616 | ||
|
|
587604b2b4 | ||
|
|
e97cd1b655 | ||
|
|
8d67d17f73 | ||
|
|
a442317d17 | ||
|
|
7f8bea2669 | ||
|
|
6d876f573c | ||
|
|
3770c1c8b1 | ||
|
|
2c193781cc | ||
|
|
efe1d15960 | ||
|
|
9ebcf7b1ad | ||
|
|
37e48dd318 | ||
|
|
c07cd3d730 | ||
|
|
36aec2c0f7 | ||
|
|
d71d790f55 | ||
|
|
e1ffb1e978 | ||
|
|
9fea0f0836 | ||
|
|
9dc559fc2a | ||
|
|
634edfadf0 | ||
|
|
b56dfa223d | ||
|
|
f0b8e892f6 | ||
|
|
cfc68f379c | ||
|
|
4951d2ad1a | ||
|
|
d9ffd592f6 | ||
|
|
7902d1c17f | ||
|
|
39ffc50dec | ||
|
|
08312f4c46 | ||
|
|
c6d8737336 | ||
|
|
a22873e360 | ||
|
|
c97b445df4 | ||
|
|
265507f213 | ||
|
|
a69b7e275d | ||
|
|
fcc054f64e | ||
|
|
890300513c | ||
|
|
f77c6a85aa | ||
|
|
b6d66ce2e3 | ||
|
|
8e4f252d32 | ||
|
|
79b7dff8d2 | ||
|
|
2a3e033ee1 | ||
|
|
24f796a2b1 | ||
|
|
fd1a951a6c | ||
|
|
aea75207dd | ||
|
|
1c062ab381 |
2
.github/workflows/lint.yml
vendored
2
.github/workflows/lint.yml
vendored
@@ -52,5 +52,5 @@ jobs:
|
||||
set -eux
|
||||
pip install flake8==3.8.2 flake8-bugbear flake8-comprehensions flake8-executable flake8-pyi==20.5.0 mccabe pycodestyle==2.6.0 pyflakes==2.2.0
|
||||
flake8 --version
|
||||
flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py
|
||||
flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504,F401,F403,F405,F841 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py
|
||||
if [ $? != 0 ]; then exit 1; fi
|
||||
129
README.md
129
README.md
@@ -1,6 +1,9 @@
|
||||
[](https://github.com/Akshay090/svg-banners)
|
||||
|
||||
## 👉🏻 CosyVoice 👈🏻
|
||||
|
||||
**CosyVoice 3.0**: [Demos](https://funaudiollm.github.io/cosyvoice3/); [Paper](https://arxiv.org/abs/2505.17589); [CV3-Eval](https://github.com/FunAudioLLM/CV3-Eval)
|
||||
|
||||
**CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/abs/2412.10117); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/spaces/FunAudioLLM/CosyVoice2-0.5B)
|
||||
|
||||
**CosyVoice 1.0**: [Demos](https://fun-audio-llm.github.io); [Paper](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice-300M)
|
||||
@@ -26,6 +29,14 @@
|
||||
|
||||
## Roadmap
|
||||
|
||||
- [x] 2025/07
|
||||
|
||||
- [x] release cosyvoice 3.0 eval set
|
||||
|
||||
- [x] 2025/05
|
||||
|
||||
- [x] add cosyvoice 2.0 vllm support
|
||||
|
||||
- [x] 2024/12
|
||||
|
||||
- [x] 25hz cosyvoice 2.0 released
|
||||
@@ -49,34 +60,32 @@
|
||||
|
||||
## Install
|
||||
|
||||
**Clone and install**
|
||||
### Clone and install
|
||||
|
||||
- Clone the repo
|
||||
``` sh
|
||||
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
|
||||
# If you failed to clone submodule due to network failures, please run following command until success
|
||||
cd CosyVoice
|
||||
git submodule update --init --recursive
|
||||
```
|
||||
``` sh
|
||||
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
|
||||
# If you failed to clone the submodule due to network failures, please run the following command until success
|
||||
cd CosyVoice
|
||||
git submodule update --init --recursive
|
||||
```
|
||||
|
||||
- Install Conda: please see https://docs.conda.io/en/latest/miniconda.html
|
||||
- Create Conda env:
|
||||
|
||||
``` sh
|
||||
conda create -n cosyvoice -y python=3.10
|
||||
conda activate cosyvoice
|
||||
# pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
|
||||
conda install -y -c conda-forge pynini==2.1.5
|
||||
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||
``` sh
|
||||
conda create -n cosyvoice -y python=3.10
|
||||
conda activate cosyvoice
|
||||
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||
|
||||
# If you encounter sox compatibility issues
|
||||
# ubuntu
|
||||
sudo apt-get install sox libsox-dev
|
||||
# centos
|
||||
sudo yum install sox sox-devel
|
||||
```
|
||||
# If you encounter sox compatibility issues
|
||||
# ubuntu
|
||||
sudo apt-get install sox libsox-dev
|
||||
# centos
|
||||
sudo yum install sox sox-devel
|
||||
```
|
||||
|
||||
**Model download**
|
||||
### Model download
|
||||
|
||||
We strongly recommend that you download our pretrained `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
||||
|
||||
@@ -85,7 +94,6 @@ We strongly recommend that you download our pretrained `CosyVoice2-0.5B` `CosyVo
|
||||
from modelscope import snapshot_download
|
||||
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
|
||||
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
||||
snapshot_download('iic/CosyVoice-300M-25Hz', local_dir='pretrained_models/CosyVoice-300M-25Hz')
|
||||
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
||||
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
||||
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
||||
@@ -96,15 +104,14 @@ snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice
|
||||
mkdir -p pretrained_models
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hz
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
|
||||
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
|
||||
```
|
||||
|
||||
Optionally, you can unzip `ttsfrd` resouce and install `ttsfrd` package for better text normalization performance.
|
||||
Optionally, you can unzip `ttsfrd` resource and install `ttsfrd` package for better text normalization performance.
|
||||
|
||||
Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use WeTextProcessing by default.
|
||||
Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use wetext by default.
|
||||
|
||||
``` sh
|
||||
cd pretrained_models/CosyVoice-ttsfrd/
|
||||
@@ -113,10 +120,10 @@ pip install ttsfrd_dependency-0.1-py3-none-any.whl
|
||||
pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
|
||||
```
|
||||
|
||||
**Basic Usage**
|
||||
### Basic Usage
|
||||
|
||||
We strongly recommend using `CosyVoice2-0.5B` for better performance.
|
||||
Follow code below for detailed usage of each model.
|
||||
Follow the code below for detailed usage of each model.
|
||||
|
||||
``` python
|
||||
import sys
|
||||
@@ -126,9 +133,9 @@ from cosyvoice.utils.file_utils import load_wav
|
||||
import torchaudio
|
||||
```
|
||||
|
||||
**CosyVoice2 Usage**
|
||||
#### CosyVoice2 Usage
|
||||
```python
|
||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
|
||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, load_vllm=False, fp16=False)
|
||||
|
||||
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
||||
# zero_shot usage
|
||||
@@ -136,6 +143,12 @@ prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
# save zero_shot spk for future usage
|
||||
assert cosyvoice.add_zero_shot_spk('希望你以后能够做的比我还好呦。', prompt_speech_16k, 'my_zero_shot_spk') is True
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '', '', zero_shot_spk_id='my_zero_shot_spk', stream=False)):
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
cosyvoice.save_spkinfo()
|
||||
|
||||
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
|
||||
for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
|
||||
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
@@ -155,7 +168,19 @@ for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你
|
||||
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
```
|
||||
|
||||
**CosyVoice Usage**
|
||||
#### CosyVoice2 vllm Usage
|
||||
If you want to use vllm for inference, please install `vllm==v0.9.0`. Older vllm version do not support CosyVoice2 inference.
|
||||
|
||||
Notice that `vllm==v0.9.0` has a lot of specific requirements, for example `torch==2.7.0`. You can create a new env to in case your hardward do not support vllm and old env is corrupted.
|
||||
|
||||
``` sh
|
||||
conda create -n cosyvoice_vllm --clone cosyvoice
|
||||
conda activate cosyvoice_vllm
|
||||
pip install vllm==v0.9.0 -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||
python vllm_example.py
|
||||
```
|
||||
|
||||
#### CosyVoice Usage
|
||||
```python
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
|
||||
# sft usage
|
||||
@@ -164,7 +189,7 @@ print(cosyvoice.list_available_spks())
|
||||
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
|
||||
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M') # or change to pretrained_models/CosyVoice-300M-25Hz for 25Hz inference
|
||||
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
|
||||
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
|
||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||
@@ -185,7 +210,7 @@ for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展
|
||||
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
||||
```
|
||||
|
||||
**Start web demo**
|
||||
#### Start web demo
|
||||
|
||||
You can use our web demo page to get familiar with CosyVoice quickly.
|
||||
|
||||
@@ -196,14 +221,14 @@ Please see the demo website for details.
|
||||
python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice-300M
|
||||
```
|
||||
|
||||
**Advanced Usage**
|
||||
#### Advanced Usage
|
||||
|
||||
For advanced user, we have provided train and inference scripts in `examples/libritts/cosyvoice/run.sh`.
|
||||
For advanced users, we have provided training and inference scripts in `examples/libritts/cosyvoice/run.sh`.
|
||||
|
||||
**Build for deployment**
|
||||
#### Build for deployment
|
||||
|
||||
Optionally, if you want service deployment,
|
||||
you can run following steps.
|
||||
You can run the following steps.
|
||||
|
||||
``` sh
|
||||
cd runtime/python
|
||||
@@ -233,5 +258,39 @@ You can also scan the QR code to join our official Dingding chat group.
|
||||
4. We borrowed a lot of code from [AcademiCodec](https://github.com/yangdongchao/AcademiCodec).
|
||||
5. We borrowed a lot of code from [WeNet](https://github.com/wenet-e2e/wenet).
|
||||
|
||||
## Citations
|
||||
|
||||
``` bibtex
|
||||
@article{du2024cosyvoice,
|
||||
title={Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer based on supervised semantic tokens},
|
||||
author={Du, Zhihao and Chen, Qian and Zhang, Shiliang and Hu, Kai and Lu, Heng and Yang, Yexin and Hu, Hangrui and Zheng, Siqi and Gu, Yue and Ma, Ziyang and others},
|
||||
journal={arXiv preprint arXiv:2407.05407},
|
||||
year={2024}
|
||||
}
|
||||
|
||||
@article{du2024cosyvoice,
|
||||
title={Cosyvoice 2: Scalable streaming speech synthesis with large language models},
|
||||
author={Du, Zhihao and Wang, Yuxuan and Chen, Qian and Shi, Xian and Lv, Xiang and Zhao, Tianyu and Gao, Zhifu and Yang, Yexin and Gao, Changfeng and Wang, Hui and others},
|
||||
journal={arXiv preprint arXiv:2412.10117},
|
||||
year={2024}
|
||||
}
|
||||
|
||||
@article{du2025cosyvoice,
|
||||
title={CosyVoice 3: Towards In-the-wild Speech Generation via Scaling-up and Post-training},
|
||||
author={Du, Zhihao and Gao, Changfeng and Wang, Yuxuan and Yu, Fan and Zhao, Tianyu and Wang, Hao and Lv, Xiang and Wang, Hui and Shi, Xian and An, Keyu and others},
|
||||
journal={arXiv preprint arXiv:2505.17589},
|
||||
year={2025}
|
||||
}
|
||||
|
||||
@inproceedings{lyu2025build,
|
||||
title={Build LLM-Based Zero-Shot Streaming TTS System with Cosyvoice},
|
||||
author={Lyu, Xiang and Wang, Yuxuan and Zhao, Tianyu and Wang, Hao and Liu, Huadai and Du, Zhihao},
|
||||
booktitle={ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
|
||||
pages={1--2},
|
||||
year={2025},
|
||||
organization={IEEE}
|
||||
}
|
||||
```
|
||||
|
||||
## Disclaimer
|
||||
The content provided above is for academic purposes only and is intended to demonstrate technical capabilities. Some examples are sourced from the internet. If any content infringes on your rights, please contact us to request its removal.
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 94 KiB After Width: | Height: | Size: 94 KiB |
@@ -75,10 +75,11 @@ def main():
|
||||
print('Processing {}'.format(path))
|
||||
states = torch.load(path, map_location=torch.device('cpu'))
|
||||
for k in states.keys():
|
||||
if k not in avg.keys():
|
||||
avg[k] = states[k].clone()
|
||||
else:
|
||||
avg[k] += states[k]
|
||||
if k not in ['step', 'epoch']:
|
||||
if k not in avg.keys():
|
||||
avg[k] = states[k].clone()
|
||||
else:
|
||||
avg[k] += states[k]
|
||||
# average
|
||||
for k in avg.keys():
|
||||
if avg[k] is not None:
|
||||
|
||||
@@ -24,6 +24,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
|
||||
|
||||
def get_args():
|
||||
@@ -71,6 +72,7 @@ def main():
|
||||
script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(llm_text_encoder.half())
|
||||
script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export llm_text_encoder')
|
||||
|
||||
# 2. export llm llm
|
||||
llm_llm = model.model.llm.llm
|
||||
@@ -78,13 +80,23 @@ def main():
|
||||
script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
|
||||
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export llm_llm')
|
||||
|
||||
# 3. export flow encoder
|
||||
flow_encoder = model.model.flow.encoder
|
||||
script = get_optimized_script(flow_encoder)
|
||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(flow_encoder.half())
|
||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||
# 3. export flow encoder
|
||||
flow_encoder = model.model.flow.encoder
|
||||
script = get_optimized_script(flow_encoder)
|
||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(flow_encoder.half())
|
||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export flow_encoder')
|
||||
else:
|
||||
# 3. export flow encoder
|
||||
flow_encoder = model.model.flow.encoder
|
||||
script = get_optimized_script(flow_encoder)
|
||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(flow_encoder.half())
|
||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export flow_encoder')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
@@ -28,6 +28,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
|
||||
|
||||
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
||||
@@ -51,6 +52,7 @@ def get_args():
|
||||
return args
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
@@ -66,6 +68,7 @@ def main():
|
||||
|
||||
# 1. export flow decoder estimator
|
||||
estimator = model.model.flow.decoder.estimator
|
||||
estimator.eval()
|
||||
|
||||
device = model.model.device
|
||||
batch_size, seq_len = 2, 256
|
||||
@@ -110,6 +113,7 @@ def main():
|
||||
}
|
||||
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
||||
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
||||
logging.info('successfully export estimator')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,10 +0,0 @@
|
||||
#!/bin/bash
|
||||
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
||||
# download tensorrt from https://developer.nvidia.com/tensorrt/download/10x, check your system and cuda for compatibability
|
||||
# for example for linux + cuda12.4, you can download https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
|
||||
TRT_DIR=<YOUR_TRT_DIR>
|
||||
MODEL_DIR=<COSYVOICE2_MODEL_DIR>
|
||||
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TRT_DIR/lib:/usr/local/cuda/lib64
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp32.mygpu.plan --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw --outputIOFormats=fp32:chw
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp16.mygpu.plan --fp16 --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw --outputIOFormats=fp16:chw
|
||||
@@ -23,7 +23,7 @@ from torch.utils.data import DataLoader
|
||||
import torchaudio
|
||||
from hyperpyyaml import load_hyperpyyaml
|
||||
from tqdm import tqdm
|
||||
from cosyvoice.cli.model import CosyVoiceModel
|
||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
||||
from cosyvoice.dataset.dataset import Dataset
|
||||
|
||||
|
||||
@@ -33,6 +33,7 @@ def get_args():
|
||||
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
||||
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
||||
parser.add_argument('--tts_text', required=True, help='tts input file')
|
||||
parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
|
||||
parser.add_argument('--llm_model', required=True, help='llm model file')
|
||||
parser.add_argument('--flow_model', required=True, help='flow model file')
|
||||
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
||||
@@ -59,16 +60,25 @@ def main():
|
||||
# Init cosyvoice models from configs
|
||||
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
||||
device = torch.device('cuda' if use_cuda else 'cpu')
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
try:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': args.qwen_pretrain_path})
|
||||
model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'])
|
||||
except Exception:
|
||||
try:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
|
||||
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
||||
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
||||
|
||||
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
||||
tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
||||
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
||||
|
||||
sample_rate = configs['sample_rate']
|
||||
del configs
|
||||
os.makedirs(args.result_dir, exist_ok=True)
|
||||
fn = os.path.join(args.result_dir, 'wav.scp')
|
||||
@@ -104,7 +114,7 @@ def main():
|
||||
tts_speeches = torch.concat(tts_speeches, dim=1)
|
||||
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
||||
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
||||
torchaudio.save(tts_fn, tts_speeches, sample_rate=22050)
|
||||
torchaudio.save(tts_fn, tts_speeches, sample_rate=sample_rate, backend='soundfile')
|
||||
f.write('{} {}\n'.format(tts_key, tts_fn))
|
||||
f.flush()
|
||||
f.close()
|
||||
@@ -112,4 +122,5 @@ def main():
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
logging.warning('this code has been deprecated, please refer to README for CosyVoice inference usage!')
|
||||
main()
|
||||
@@ -27,6 +27,7 @@ from hyperpyyaml import load_hyperpyyaml
|
||||
|
||||
from torch.distributed.elastic.multiprocessing.errors import record
|
||||
|
||||
from cosyvoice.utils.losses import DPOLoss
|
||||
from cosyvoice.utils.executor import Executor
|
||||
from cosyvoice.utils.train_utils import (
|
||||
init_distributed,
|
||||
@@ -43,9 +44,11 @@ def get_args():
|
||||
choices=['torch_ddp', 'deepspeed'],
|
||||
help='Engine for paralleled training')
|
||||
parser.add_argument('--model', required=True, help='model which will be trained')
|
||||
parser.add_argument('--ref_model', required=False, help='ref model used in dpo')
|
||||
parser.add_argument('--config', required=True, help='config file')
|
||||
parser.add_argument('--train_data', required=True, help='train data file')
|
||||
parser.add_argument('--cv_data', required=True, help='cv data file')
|
||||
parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
|
||||
parser.add_argument('--checkpoint', help='checkpoint model')
|
||||
parser.add_argument('--model_dir', required=True, help='save model dir')
|
||||
parser.add_argument('--tensorboard_dir',
|
||||
@@ -72,6 +75,10 @@ def get_args():
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Use automatic mixed precision training')
|
||||
parser.add_argument('--dpo',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Use Direct Preference Optimization')
|
||||
parser.add_argument('--deepspeed.save_states',
|
||||
dest='save_states',
|
||||
default='model_only',
|
||||
@@ -97,8 +104,12 @@ def main():
|
||||
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
||||
if gan is True:
|
||||
override_dict.pop('hift')
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||
try:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={**override_dict, 'qwen_pretrain_path': args.qwen_pretrain_path})
|
||||
except Exception:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||
if gan is True:
|
||||
configs['train_conf'] = configs['train_conf_gan']
|
||||
configs['train_conf'].update(vars(args))
|
||||
@@ -108,7 +119,7 @@ def main():
|
||||
|
||||
# Get dataset & dataloader
|
||||
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
||||
init_dataset_and_dataloader(args, configs, gan)
|
||||
init_dataset_and_dataloader(args, configs, gan, args.dpo)
|
||||
|
||||
# Do some sanity checks and save config to arsg.model_dir
|
||||
configs = check_modify_and_save_config(args, configs)
|
||||
@@ -117,6 +128,8 @@ def main():
|
||||
writer = init_summarywriter(args)
|
||||
|
||||
# load checkpoint
|
||||
if args.dpo is True:
|
||||
configs[args.model].forward = configs[args.model].forward_dpo
|
||||
model = configs[args.model]
|
||||
start_step, start_epoch = 0, -1
|
||||
if args.checkpoint is not None:
|
||||
@@ -145,13 +158,25 @@ def main():
|
||||
info_dict['epoch'] = start_epoch
|
||||
save_model(model, 'init', info_dict)
|
||||
|
||||
# DPO related
|
||||
if args.dpo is True:
|
||||
ref_model = deepcopy(configs[args.model])
|
||||
state_dict = torch.load(args.ref_model, map_location='cpu')
|
||||
ref_model.load_state_dict(state_dict, strict=False)
|
||||
dpo_loss = DPOLoss(beta=0.01, label_smoothing=0.0, ipo=False)
|
||||
# NOTE maybe it is not needed to wrap ref_model as ddp because its parameter is not updated
|
||||
ref_model = wrap_cuda_model(args, ref_model)
|
||||
else:
|
||||
ref_model, dpo_loss = None, None
|
||||
|
||||
# Get executor
|
||||
executor = Executor(gan=gan)
|
||||
executor = Executor(gan=gan, ref_model=ref_model, dpo_loss=dpo_loss)
|
||||
executor.step = start_step
|
||||
|
||||
# Init scaler, used for pytorch amp mixed precision training
|
||||
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
|
||||
print('start step {} start epoch {}'.format(start_step, start_epoch))
|
||||
|
||||
# Start training loop
|
||||
for epoch in range(start_epoch + 1, info_dict['max_epoch']):
|
||||
executor.epoch = epoch
|
||||
@@ -162,7 +187,7 @@ def main():
|
||||
executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
||||
writer, info_dict, scaler, group_join)
|
||||
else:
|
||||
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join)
|
||||
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=ref_model)
|
||||
dist.destroy_process_group(group_join)
|
||||
|
||||
|
||||
|
||||
@@ -26,13 +26,16 @@ from cosyvoice.utils.class_utils import get_model_type
|
||||
|
||||
class CosyVoice:
|
||||
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
|
||||
self.instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
self.fp16 = fp16
|
||||
if not os.path.exists(model_dir):
|
||||
model_dir = snapshot_download(model_dir)
|
||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
||||
hyper_yaml_path = '{}/cosyvoice.yaml'.format(model_dir)
|
||||
if not os.path.exists(hyper_yaml_path):
|
||||
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
||||
with open(hyper_yaml_path, 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||
@@ -49,7 +52,6 @@ class CosyVoice:
|
||||
self.model.load('{}/llm.pt'.format(model_dir),
|
||||
'{}/flow.pt'.format(model_dir),
|
||||
'{}/hift.pt'.format(model_dir))
|
||||
self.vllm_codec_engine = None
|
||||
if load_jit:
|
||||
self.model.load_jit('{}/llm.text_encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
'{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
@@ -57,6 +59,7 @@ class CosyVoice:
|
||||
if load_trt:
|
||||
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
||||
trt_concurrent,
|
||||
self.fp16)
|
||||
del configs
|
||||
|
||||
@@ -64,6 +67,17 @@ class CosyVoice:
|
||||
spks = list(self.frontend.spk2info.keys())
|
||||
return spks
|
||||
|
||||
def add_zero_shot_spk(self, prompt_text, prompt_speech_16k, zero_shot_spk_id):
|
||||
assert zero_shot_spk_id != '', 'do not use empty zero_shot_spk_id'
|
||||
model_input = self.frontend.frontend_zero_shot('', prompt_text, prompt_speech_16k, self.sample_rate, '')
|
||||
del model_input['text']
|
||||
del model_input['text_len']
|
||||
self.frontend.spk2info[zero_shot_spk_id] = model_input
|
||||
return True
|
||||
|
||||
def save_spkinfo(self):
|
||||
torch.save(self.frontend.spk2info, '{}/spk2info.pt'.format(self.model_dir))
|
||||
|
||||
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_sft(i, spk_id)
|
||||
@@ -75,12 +89,12 @@ class CosyVoice:
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
||||
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
||||
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
@@ -89,9 +103,9 @@ class CosyVoice:
|
||||
yield model_output
|
||||
start_time = time.time()
|
||||
|
||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
@@ -118,7 +132,7 @@ class CosyVoice:
|
||||
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
||||
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
||||
start_time = time.time()
|
||||
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||
yield model_output
|
||||
@@ -127,13 +141,16 @@ class CosyVoice:
|
||||
|
||||
class CosyVoice2(CosyVoice):
|
||||
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, use_vllm=False):
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, load_vllm=False, fp16=False, trt_concurrent=1):
|
||||
self.instruct = True if '-Instruct' in model_dir else False
|
||||
self.model_dir = model_dir
|
||||
self.fp16 = fp16
|
||||
if not os.path.exists(model_dir):
|
||||
model_dir = snapshot_download(model_dir)
|
||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
||||
hyper_yaml_path = '{}/cosyvoice2.yaml'.format(model_dir)
|
||||
if not os.path.exists(hyper_yaml_path):
|
||||
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
||||
with open(hyper_yaml_path, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
||||
assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||
@@ -150,31 +167,24 @@ class CosyVoice2(CosyVoice):
|
||||
self.model.load('{}/llm.pt'.format(model_dir),
|
||||
'{}/flow.pt'.format(model_dir),
|
||||
'{}/hift.pt'.format(model_dir))
|
||||
self.vllm_codec_engine = None
|
||||
if use_vllm:
|
||||
from vllm import EngineArgs, LLMEngine
|
||||
self.model.export_codec_vllm(''.join([model_dir, '/codec_vllm_model']))
|
||||
engine_args = EngineArgs(model=''.join([model_dir, '/codec_vllm_model']),
|
||||
skip_tokenizer_init=True,
|
||||
gpu_memory_utilization=0.2)
|
||||
self.vllm_codec_engine = LLMEngine.from_engine_args(engine_args)
|
||||
self.model.vllm_codec_engine = self.vllm_codec_engine
|
||||
|
||||
if load_vllm:
|
||||
self.model.load_vllm('{}/vllm'.format(model_dir))
|
||||
if load_jit:
|
||||
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||
if load_trt:
|
||||
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
||||
trt_concurrent,
|
||||
self.fp16)
|
||||
del configs
|
||||
|
||||
def inference_instruct(self, *args, **kwargs):
|
||||
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
||||
|
||||
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
||||
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
|
||||
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
||||
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
||||
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
|
||||
start_time = time.time()
|
||||
logging.info('synthesis text {}'.format(i))
|
||||
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
||||
|
||||
@@ -28,9 +28,9 @@ try:
|
||||
import ttsfrd
|
||||
use_ttsfrd = True
|
||||
except ImportError:
|
||||
print("failed to import ttsfrd, use WeTextProcessing instead")
|
||||
from tn.chinese.normalizer import Normalizer as ZhNormalizer
|
||||
from tn.english.normalizer import Normalizer as EnNormalizer
|
||||
print("failed to import ttsfrd, use wetext instead")
|
||||
from wetext import Normalizer as ZhNormalizer
|
||||
from wetext import Normalizer as EnNormalizer
|
||||
use_ttsfrd = False
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
|
||||
@@ -68,7 +68,7 @@ class CosyVoiceFrontEnd:
|
||||
'failed to initialize ttsfrd resource'
|
||||
self.frd.set_lang_type('pinyinvg')
|
||||
else:
|
||||
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
|
||||
self.zh_tn_model = ZhNormalizer(remove_erhua=False)
|
||||
self.en_tn_model = EnNormalizer()
|
||||
self.inflect_parser = inflect.engine()
|
||||
|
||||
@@ -122,7 +122,7 @@ class CosyVoiceFrontEnd:
|
||||
if isinstance(text, Generator):
|
||||
logging.info('get tts_text generator, will skip text_normalize!')
|
||||
return [text]
|
||||
if text_frontend is False:
|
||||
if text_frontend is False or text == '':
|
||||
return [text] if split is True else text
|
||||
text = text.strip()
|
||||
if self.use_ttsfrd:
|
||||
@@ -154,28 +154,32 @@ class CosyVoiceFrontEnd:
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||
return model_input
|
||||
|
||||
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate):
|
||||
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
|
||||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||||
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
||||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||
if resample_rate == 24000:
|
||||
# cosyvoice2, force speech_feat % speech_token = 2
|
||||
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
||||
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
||||
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
||||
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
||||
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
||||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
||||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
||||
'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||
if zero_shot_spk_id == '':
|
||||
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
||||
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
||||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||||
if resample_rate == 24000:
|
||||
# cosyvoice2, force speech_feat % speech_token = 2
|
||||
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
||||
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
||||
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
||||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||||
model_input = {'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
||||
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
||||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
||||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
||||
'llm_embedding': embedding, 'flow_embedding': embedding}
|
||||
else:
|
||||
model_input = self.spk2info[zero_shot_spk_id]
|
||||
model_input['text'] = tts_text_token
|
||||
model_input['text_len'] = tts_text_token_len
|
||||
return model_input
|
||||
|
||||
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate):
|
||||
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate)
|
||||
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
|
||||
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate, zero_shot_spk_id)
|
||||
# in cross lingual mode, we remove prompt in llm
|
||||
del model_input['prompt_text']
|
||||
del model_input['prompt_text_len']
|
||||
@@ -192,8 +196,8 @@ class CosyVoiceFrontEnd:
|
||||
model_input['prompt_text_len'] = instruct_text_token_len
|
||||
return model_input
|
||||
|
||||
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
|
||||
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate)
|
||||
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
|
||||
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate, zero_shot_spk_id)
|
||||
del model_input['llm_prompt_speech_token']
|
||||
del model_input['llm_prompt_speech_token_len']
|
||||
return model_input
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -17,12 +18,12 @@ import torch
|
||||
import numpy as np
|
||||
import threading
|
||||
import time
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from contextlib import nullcontext
|
||||
import uuid
|
||||
from cosyvoice.utils.common import fade_in_out
|
||||
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
||||
from cosyvoice.utils.file_utils import convert_onnx_to_trt, export_cosyvoice2_vllm
|
||||
from cosyvoice.utils.common import TrtContextWrapper
|
||||
|
||||
|
||||
class CosyVoiceModel:
|
||||
@@ -31,22 +32,18 @@ class CosyVoiceModel:
|
||||
llm: torch.nn.Module,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module,
|
||||
fp16: bool):
|
||||
fp16: bool = False):
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.llm = llm
|
||||
self.flow = flow
|
||||
self.hift = hift
|
||||
self.fp16 = fp16
|
||||
self.llm.fp16 = fp16
|
||||
self.flow.fp16 = fp16
|
||||
if self.fp16 is True:
|
||||
self.llm.half()
|
||||
self.flow.half()
|
||||
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
||||
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
||||
self.token_overlap_len = 20
|
||||
# here we fix set flow.decoder.estimator.static_chunk_size = 0 for compatibability
|
||||
self.flow.decoder.estimator.static_chunk_size = 0
|
||||
# mel fade in out
|
||||
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
||||
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
||||
@@ -66,7 +63,6 @@ class CosyVoiceModel:
|
||||
self.mel_overlap_dict = {}
|
||||
self.flow_cache_dict = {}
|
||||
self.hift_cache_dict = {}
|
||||
self.vllm_codec_engine = None
|
||||
|
||||
def load(self, llm_model, flow_model, hift_model):
|
||||
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
||||
@@ -86,41 +82,35 @@ class CosyVoiceModel:
|
||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||
self.flow.encoder = flow_encoder
|
||||
|
||||
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
|
||||
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent, fp16):
|
||||
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
||||
if not os.path.exists(flow_decoder_estimator_model):
|
||||
convert_onnx_to_trt(flow_decoder_estimator_model, flow_decoder_onnx_model, fp16)
|
||||
if os.path.getsize(flow_decoder_estimator_model) == 0:
|
||||
raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model))
|
||||
if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
|
||||
convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
|
||||
del self.flow.decoder.estimator
|
||||
import tensorrt as trt
|
||||
with open(flow_decoder_estimator_model, 'rb') as f:
|
||||
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||
if self.flow.decoder.estimator_engine is None:
|
||||
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
|
||||
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
||||
estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||
assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
|
||||
self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
|
||||
|
||||
def get_trt_kwargs(self):
|
||||
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
|
||||
opt_shape = [(2, 80, 500), (2, 1, 500), (2, 80, 500), (2, 80, 500)]
|
||||
max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
|
||||
input_names = ["x", "mask", "mu", "cond"]
|
||||
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
||||
|
||||
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
||||
with self.llm_context:
|
||||
with self.llm_context, torch.cuda.amp.autocast(self.fp16 is True and hasattr(self.llm, 'vllm') is False):
|
||||
if isinstance(text, Generator):
|
||||
assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
|
||||
if self.vllm_codec_engine is None:
|
||||
for i in self.llm.inference_bistream(text=text,
|
||||
prompt_text=prompt_text.to(self.device),
|
||||
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=llm_embedding.to(self.device)):
|
||||
self.tts_speech_token_dict[uuid].append(i)
|
||||
else:
|
||||
for i in self.llm.inference_bistream_vllm(text=text,
|
||||
prompt_text=prompt_text.to(self.device),
|
||||
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=llm_embedding.to(self.device),
|
||||
vllm_codec_engine=self.vllm_codec_engine):
|
||||
self.tts_speech_token_dict[uuid].append(i)
|
||||
assert isinstance(self, CosyVoice2Model) and not hasattr(self.llm, 'vllm'), 'streaming input text is only implemented for CosyVoice2 and do not support vllm!'
|
||||
for i in self.llm.inference_bistream(text=text,
|
||||
prompt_text=prompt_text.to(self.device),
|
||||
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=llm_embedding.to(self.device)):
|
||||
self.tts_speech_token_dict[uuid].append(i)
|
||||
else:
|
||||
for i in self.llm.inference(text=text.to(self.device),
|
||||
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
||||
@@ -129,20 +119,24 @@ class CosyVoiceModel:
|
||||
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
||||
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=llm_embedding.to(self.device),
|
||||
vllm_codec_engine=self.vllm_codec_engine):
|
||||
uuid=uuid):
|
||||
self.tts_speech_token_dict[uuid].append(i)
|
||||
self.llm_end_dict[uuid] = True
|
||||
|
||||
def vc_job(self, source_speech_token, uuid):
|
||||
self.tts_speech_token_dict[uuid] = source_speech_token.flatten().tolist()
|
||||
self.llm_end_dict[uuid] = True
|
||||
|
||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
||||
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
flow_cache=self.flow_cache_dict[uuid])
|
||||
self.flow_cache_dict[uuid] = flow_cache
|
||||
with torch.cuda.amp.autocast(self.fp16):
|
||||
tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
flow_cache=self.flow_cache_dict[uuid])
|
||||
|
||||
# mel overlap fade in out
|
||||
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
||||
@@ -173,11 +167,11 @@ class CosyVoiceModel:
|
||||
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||
return tts_speech
|
||||
|
||||
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||
def tts(self, text=torch.zeros(1, 0, dtype=torch.int32), flow_embedding=torch.zeros(0, 192), llm_embedding=torch.zeros(0, 192),
|
||||
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
||||
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
||||
prompt_speech_feat=torch.zeros(1, 0, 80), source_speech_token=torch.zeros(1, 0, dtype=torch.int32), stream=False, speed=1.0, **kwargs):
|
||||
# this_uuid is used to track variables related to this inference thread
|
||||
this_uuid = str(uuid.uuid1())
|
||||
with self.lock:
|
||||
@@ -185,7 +179,10 @@ class CosyVoiceModel:
|
||||
self.hift_cache_dict[this_uuid] = None
|
||||
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
||||
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
||||
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
||||
if source_speech_token.shape[1] == 0:
|
||||
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
||||
else:
|
||||
p = threading.Thread(target=self.vc_job, args=(source_speech_token, this_uuid))
|
||||
p.start()
|
||||
if stream is True:
|
||||
token_hop_len = self.token_min_hop_len
|
||||
@@ -235,61 +232,9 @@ class CosyVoiceModel:
|
||||
self.mel_overlap_dict.pop(this_uuid)
|
||||
self.hift_cache_dict.pop(this_uuid)
|
||||
self.flow_cache_dict.pop(this_uuid)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
|
||||
# this_uuid is used to track variables related to this inference thread
|
||||
this_uuid = str(uuid.uuid1())
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
|
||||
self.hift_cache_dict[this_uuid] = None
|
||||
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
||||
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
||||
if stream is True:
|
||||
token_hop_len = self.token_min_hop_len
|
||||
while True:
|
||||
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
||||
.unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=False)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
||||
# increase token_hop_len for better speech quality
|
||||
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
||||
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
||||
break
|
||||
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=True)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
else:
|
||||
# deal with all tokens
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
finalize=True,
|
||||
speed=speed)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict.pop(this_uuid)
|
||||
self.llm_end_dict.pop(this_uuid)
|
||||
self.mel_overlap_dict.pop(this_uuid)
|
||||
self.hift_cache_dict.pop(this_uuid)
|
||||
torch.cuda.empty_cache()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.current_stream().synchronize()
|
||||
|
||||
|
||||
class CosyVoice2Model(CosyVoiceModel):
|
||||
@@ -298,88 +243,56 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
llm: torch.nn.Module,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module,
|
||||
fp16: bool):
|
||||
fp16: bool = False):
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.llm = llm
|
||||
self.flow = flow
|
||||
self.hift = hift
|
||||
self.fp16 = fp16
|
||||
self.llm.fp16 = fp16
|
||||
self.flow.fp16 = fp16
|
||||
if self.fp16 is True:
|
||||
self.llm.half()
|
||||
self.flow.half()
|
||||
self.token_hop_len = 2 * self.flow.input_frame_rate
|
||||
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
|
||||
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
|
||||
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
|
||||
# NOTE must matching training static_chunk_size
|
||||
self.token_hop_len = 25
|
||||
# hift cache
|
||||
self.mel_cache_len = 8
|
||||
self.source_cache_len = int(self.mel_cache_len * 480)
|
||||
# speech fade in out
|
||||
self.speech_window = np.hamming(2 * self.source_cache_len)
|
||||
# rtf and decoding related
|
||||
self.stream_scale_factor = 1
|
||||
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||
self.lock = threading.Lock()
|
||||
# dict used to store session related variable
|
||||
self.tts_speech_token_dict = {}
|
||||
self.llm_end_dict = {}
|
||||
self.hift_cache_dict = {}
|
||||
self.vllm_codec_engine = None
|
||||
|
||||
def load_jit(self, flow_encoder_model):
|
||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||
self.flow.encoder = flow_encoder
|
||||
|
||||
def export_codec_vllm(self, model_path):
|
||||
if os.path.exists(model_path):
|
||||
return
|
||||
pad_to = DEFAULT_VOCAB_PADDING_SIZE = 64
|
||||
vocab_size = self.llm.speech_embedding.num_embeddings
|
||||
feature_size = self.llm.speech_embedding.embedding_dim
|
||||
pad_vocab_size = ((vocab_size + pad_to - 1) // pad_to) * pad_to
|
||||
|
||||
dtype = torch.bfloat16
|
||||
# lm_head
|
||||
new_lm_head = nn.Linear(in_features=feature_size, out_features=pad_vocab_size, bias=True)
|
||||
with torch.no_grad():
|
||||
new_lm_head.weight[:vocab_size] = self.llm.llm_decoder.weight
|
||||
new_lm_head.bias[:vocab_size] = self.llm.llm_decoder.bias
|
||||
new_lm_head.weight[vocab_size:] = 0
|
||||
new_lm_head.bias[vocab_size:] = 0
|
||||
self.llm.llm.model.lm_head = new_lm_head
|
||||
new_codec_embed = nn.Linear(in_features=feature_size, out_features=pad_vocab_size)
|
||||
# embed_tokens
|
||||
embed_tokens = self.llm.llm.model.model.embed_tokens
|
||||
with torch.no_grad():
|
||||
new_codec_embed.weight[:vocab_size] = self.llm.speech_embedding.weight
|
||||
new_codec_embed.weight[vocab_size:] = 0
|
||||
self.llm.llm.model.set_input_embeddings(new_codec_embed)
|
||||
self.llm.llm.model.to(self.device)
|
||||
self.llm.llm.model.to(dtype)
|
||||
tmp_vocab_size = self.llm.llm.model.config.vocab_size
|
||||
tmp_tie_embedding = self.llm.llm.model.config.tie_word_embeddings
|
||||
del self.llm.llm.model.generation_config.eos_token_id
|
||||
del self.llm.llm.model.config.bos_token_id
|
||||
del self.llm.llm.model.config.eos_token_id
|
||||
self.llm.llm.model.config.vocab_size = pad_vocab_size
|
||||
self.llm.llm.model.config.tie_word_embeddings = False
|
||||
self.llm.llm.model.config.use_bias = True
|
||||
self.llm.llm.model.save_pretrained(model_path)
|
||||
self.llm.llm.model.config.vocab_size = tmp_vocab_size
|
||||
self.llm.llm.model.config.tie_word_embeddings = tmp_tie_embedding
|
||||
self.llm.llm.model.set_input_embeddings(embed_tokens)
|
||||
def load_vllm(self, model_dir):
|
||||
export_cosyvoice2_vllm(self.llm, model_dir, self.device)
|
||||
from vllm import EngineArgs, LLMEngine
|
||||
engine_args = EngineArgs(model=model_dir,
|
||||
skip_tokenizer_init=True,
|
||||
enable_prompt_embeds=True,
|
||||
gpu_memory_utilization=0.2)
|
||||
self.llm.vllm = LLMEngine.from_engine_args(engine_args)
|
||||
self.llm.lock = threading.Lock()
|
||||
del self.llm.llm.model.model.layers
|
||||
|
||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
|
||||
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
finalize=finalize)
|
||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
|
||||
with torch.cuda.amp.autocast(self.fp16):
|
||||
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
streaming=stream,
|
||||
finalize=finalize)
|
||||
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
||||
# append hift cache
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
@@ -405,34 +318,40 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||
return tts_speech
|
||||
|
||||
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
||||
def tts(self, text=torch.zeros(1, 0, dtype=torch.int32), flow_embedding=torch.zeros(0, 192), llm_embedding=torch.zeros(0, 192),
|
||||
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
||||
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
||||
prompt_speech_feat=torch.zeros(1, 0, 80), source_speech_token=torch.zeros(1, 0, dtype=torch.int32), stream=False, speed=1.0, **kwargs):
|
||||
# this_uuid is used to track variables related to this inference thread
|
||||
this_uuid = str(uuid.uuid1())
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
||||
self.hift_cache_dict[this_uuid] = None
|
||||
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
||||
if source_speech_token.shape[1] == 0:
|
||||
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
||||
else:
|
||||
p = threading.Thread(target=self.vc_job, args=(source_speech_token, this_uuid))
|
||||
p.start()
|
||||
if stream is True:
|
||||
token_offset = 0
|
||||
prompt_token_pad = int(np.ceil(flow_prompt_speech_token.shape[1] / self.token_hop_len) * self.token_hop_len - flow_prompt_speech_token.shape[1])
|
||||
while True:
|
||||
time.sleep(0.1)
|
||||
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
||||
this_token_hop_len = self.token_hop_len + prompt_token_pad if token_offset == 0 else self.token_hop_len
|
||||
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= this_token_hop_len + self.flow.pre_lookahead_len:
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + this_token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
token_offset=token_offset,
|
||||
uuid=this_uuid,
|
||||
stream=stream,
|
||||
finalize=False)
|
||||
token_offset += self.token_hop_len
|
||||
token_offset += this_token_hop_len
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
|
||||
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < this_token_hop_len + self.flow.pre_lookahead_len:
|
||||
break
|
||||
p.join()
|
||||
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||
@@ -441,8 +360,8 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
token_offset=token_offset,
|
||||
uuid=this_uuid,
|
||||
finalize=True)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
else:
|
||||
@@ -453,12 +372,15 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
token_offset=0,
|
||||
uuid=this_uuid,
|
||||
finalize=True,
|
||||
speed=speed)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict.pop(this_uuid)
|
||||
self.llm_end_dict.pop(this_uuid)
|
||||
torch.cuda.empty_cache()
|
||||
self.hift_cache_dict.pop(this_uuid)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.current_stream().synchronize()
|
||||
|
||||
@@ -14,14 +14,13 @@
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
import json
|
||||
import math
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.utils.data import IterableDataset
|
||||
from cosyvoice.utils.file_utils import read_lists, read_json_lists
|
||||
from cosyvoice.utils.file_utils import read_lists
|
||||
|
||||
|
||||
class Processor(IterableDataset):
|
||||
@@ -127,10 +126,9 @@ def Dataset(data_list_file,
|
||||
data_pipeline,
|
||||
mode='train',
|
||||
gan=False,
|
||||
dpo=False,
|
||||
shuffle=True,
|
||||
partition=True,
|
||||
tts_file='',
|
||||
prompt_utt2data=''):
|
||||
partition=True):
|
||||
""" Construct dataset from arguments
|
||||
|
||||
We have two shuffle stage in the Dataset. The first is global
|
||||
@@ -142,23 +140,12 @@ def Dataset(data_list_file,
|
||||
tokenizer (BaseTokenizer): tokenizer to tokenize
|
||||
partition(bool): whether to do data partition in terms of rank
|
||||
"""
|
||||
assert mode in ['train', 'inference']
|
||||
lists = read_lists(data_list_file)
|
||||
if mode == 'inference':
|
||||
with open(tts_file) as f:
|
||||
tts_data = json.load(f)
|
||||
utt2lists = read_json_lists(prompt_utt2data)
|
||||
# filter unnecessary file in inference mode
|
||||
lists = list({utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists})
|
||||
dataset = DataList(lists,
|
||||
shuffle=shuffle,
|
||||
partition=partition)
|
||||
if mode == 'inference':
|
||||
# map partial arg to parquet_opener func in inference mode
|
||||
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
||||
if gan is True:
|
||||
# map partial arg to padding func in gan mode
|
||||
data_pipeline[-1] = partial(data_pipeline[-1], gan=gan)
|
||||
# map partial arg to padding func
|
||||
data_pipeline[-1] = partial(data_pipeline[-1], gan=gan, dpo=dpo)
|
||||
for func in data_pipeline:
|
||||
dataset = Processor(dataset, func, mode=mode)
|
||||
return dataset
|
||||
|
||||
@@ -43,8 +43,6 @@ def parquet_opener(data, mode='train', tts_data={}):
|
||||
for df in pq.ParquetFile(url).iter_batches(batch_size=64):
|
||||
df = df.to_pandas()
|
||||
for i in range(len(df)):
|
||||
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
||||
continue
|
||||
sample.update(dict(df.loc[i]))
|
||||
if mode == 'train':
|
||||
# NOTE do not return sample directly, must initialize a new dict
|
||||
@@ -100,6 +98,8 @@ def filter(data,
|
||||
continue
|
||||
if len(sample['speech_token']) == 0:
|
||||
continue
|
||||
if 'reject_speech_token' in sample and len(sample['reject_speech_token']) == 0:
|
||||
continue
|
||||
if num_frames != 0:
|
||||
if len(sample['text_token']) / num_frames < min_output_input_ratio:
|
||||
continue
|
||||
@@ -159,6 +159,7 @@ def truncate(data, truncate_length=24576, mode='train'):
|
||||
|
||||
def compute_fbank(data,
|
||||
feat_extractor,
|
||||
token_mel_ratio=0,
|
||||
mode='train'):
|
||||
""" Extract fbank
|
||||
|
||||
@@ -174,8 +175,13 @@ def compute_fbank(data,
|
||||
assert 'utt' in sample
|
||||
assert 'text_token' in sample
|
||||
waveform = sample['speech']
|
||||
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
||||
sample['speech_feat'] = mat
|
||||
feat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
||||
if token_mel_ratio != 0:
|
||||
# trim to align speech_token and speech_feat
|
||||
token_len = int(min(feat.shape[0] / token_mel_ratio, sample["speech_token"].shape[0]))
|
||||
feat = feat[:token_mel_ratio * token_len]
|
||||
sample["speech_token"] = sample["speech_token"][:token_len]
|
||||
sample['speech_feat'] = feat
|
||||
yield sample
|
||||
|
||||
|
||||
@@ -196,8 +202,8 @@ def compute_f0(data, sample_rate, hop_size, mode='train'):
|
||||
assert 'text_token' in sample
|
||||
waveform = sample['speech']
|
||||
_f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
|
||||
if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
||||
_f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
||||
if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
||||
_f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
||||
f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
|
||||
f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
|
||||
sample['pitch_feat'] = f0
|
||||
@@ -236,8 +242,6 @@ def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
||||
for sample in data:
|
||||
assert 'text' in sample
|
||||
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
||||
if mode == 'inference':
|
||||
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
|
||||
yield sample
|
||||
|
||||
|
||||
@@ -345,18 +349,15 @@ def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
|
||||
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
|
||||
""" Wrapper for static/dynamic batch
|
||||
"""
|
||||
if mode == 'inference':
|
||||
return static_batch(data, 1)
|
||||
if batch_type == 'static':
|
||||
return static_batch(data, batch_size)
|
||||
elif batch_type == 'dynamic':
|
||||
return dynamic_batch(data, max_frames_in_batch)
|
||||
else:
|
||||
if batch_type == 'static':
|
||||
return static_batch(data, batch_size)
|
||||
elif batch_type == 'dynamic':
|
||||
return dynamic_batch(data, max_frames_in_batch)
|
||||
else:
|
||||
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
||||
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
||||
|
||||
|
||||
def padding(data, use_spk_embedding, mode='train', gan=False):
|
||||
def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
|
||||
""" Padding the data into training data
|
||||
|
||||
Args:
|
||||
@@ -418,16 +419,14 @@ def padding(data, use_spk_embedding, mode='train', gan=False):
|
||||
# only gan train needs speech, delete it to save memory
|
||||
del batch["speech"]
|
||||
del batch["speech_len"]
|
||||
if mode == 'inference':
|
||||
tts_text = [sample[i]['tts_text'] for i in order]
|
||||
tts_index = [sample[i]['tts_index'] for i in order]
|
||||
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
|
||||
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
|
||||
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
|
||||
batch.update({'tts_text': tts_text,
|
||||
'tts_index': tts_index,
|
||||
'tts_text_token': tts_text_token,
|
||||
'tts_text_token_len': tts_text_token_len})
|
||||
if dpo is True:
|
||||
reject_speech_token = [torch.tensor(sample[i]['reject_speech_token']) for i in order]
|
||||
reject_speech_token_len = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
|
||||
reject_speech_token = pad_sequence(reject_speech_token,
|
||||
batch_first=True,
|
||||
padding_value=0)
|
||||
batch['reject_speech_token'] = reject_speech_token
|
||||
batch['reject_speech_token_len'] = reject_speech_token_len
|
||||
if use_spk_embedding is True:
|
||||
batch["embedding"] = batch["spk_embedding"]
|
||||
else:
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Tuple
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
@@ -27,34 +28,11 @@ class Transpose(torch.nn.Module):
|
||||
self.dim0 = dim0
|
||||
self.dim1 = dim1
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = torch.transpose(x, self.dim0, self.dim1)
|
||||
return x
|
||||
|
||||
|
||||
class CausalBlock1D(Block1D):
|
||||
def __init__(self, dim: int, dim_out: int):
|
||||
super(CausalBlock1D, self).__init__(dim, dim_out)
|
||||
self.block = torch.nn.Sequential(
|
||||
CausalConv1d(dim, dim_out, 3),
|
||||
Transpose(1, 2),
|
||||
nn.LayerNorm(dim_out),
|
||||
Transpose(1, 2),
|
||||
nn.Mish(),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, mask: torch.Tensor):
|
||||
output = self.block(x * mask)
|
||||
return output * mask
|
||||
|
||||
|
||||
class CausalResnetBlock1D(ResnetBlock1D):
|
||||
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
||||
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
||||
self.block1 = CausalBlock1D(dim, dim_out)
|
||||
self.block2 = CausalBlock1D(dim_out, dim_out)
|
||||
|
||||
|
||||
class CausalConv1d(torch.nn.Conv1d):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -76,20 +54,42 @@ class CausalConv1d(torch.nn.Conv1d):
|
||||
padding_mode=padding_mode,
|
||||
device=device, dtype=dtype)
|
||||
assert stride == 1
|
||||
self.causal_padding = (kernel_size - 1, 0)
|
||||
self.causal_padding = kernel_size - 1
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = F.pad(x, self.causal_padding)
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
||||
x = super(CausalConv1d, self).forward(x)
|
||||
return x
|
||||
|
||||
|
||||
class CausalBlock1D(Block1D):
|
||||
def __init__(self, dim: int, dim_out: int):
|
||||
super(CausalBlock1D, self).__init__(dim, dim_out)
|
||||
self.block = torch.nn.Sequential(
|
||||
CausalConv1d(dim, dim_out, 3),
|
||||
Transpose(1, 2),
|
||||
nn.LayerNorm(dim_out),
|
||||
Transpose(1, 2),
|
||||
nn.Mish(),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
output = self.block(x * mask)
|
||||
return output * mask
|
||||
|
||||
|
||||
class CausalResnetBlock1D(ResnetBlock1D):
|
||||
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
||||
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
||||
self.block1 = CausalBlock1D(dim, dim_out)
|
||||
self.block2 = CausalBlock1D(dim_out, dim_out)
|
||||
|
||||
|
||||
class ConditionalDecoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
causal=False,
|
||||
channels=(256, 256),
|
||||
dropout=0.05,
|
||||
attention_head_dim=64,
|
||||
@@ -106,7 +106,7 @@ class ConditionalDecoder(nn.Module):
|
||||
channels = tuple(channels)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.causal = causal
|
||||
|
||||
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
||||
time_embed_dim = channels[0] * 4
|
||||
self.time_mlp = TimestepEmbedding(
|
||||
@@ -123,8 +123,7 @@ class ConditionalDecoder(nn.Module):
|
||||
input_channel = output_channel
|
||||
output_channel = channels[i]
|
||||
is_last = i == len(channels) - 1
|
||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
||||
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
@@ -138,16 +137,14 @@ class ConditionalDecoder(nn.Module):
|
||||
]
|
||||
)
|
||||
downsample = (
|
||||
Downsample1D(output_channel) if not is_last else
|
||||
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
)
|
||||
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
||||
|
||||
for _ in range(num_mid_blocks):
|
||||
input_channel = channels[-1]
|
||||
out_channels = channels[-1]
|
||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
||||
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
@@ -169,11 +166,7 @@ class ConditionalDecoder(nn.Module):
|
||||
input_channel = channels[i] * 2
|
||||
output_channel = channels[i + 1]
|
||||
is_last = i == len(channels) - 2
|
||||
resnet = CausalResnetBlock1D(
|
||||
dim=input_channel,
|
||||
dim_out=output_channel,
|
||||
time_emb_dim=time_embed_dim,
|
||||
) if self.causal else ResnetBlock1D(
|
||||
resnet = ResnetBlock1D(
|
||||
dim=input_channel,
|
||||
dim_out=output_channel,
|
||||
time_emb_dim=time_embed_dim,
|
||||
@@ -193,10 +186,10 @@ class ConditionalDecoder(nn.Module):
|
||||
upsample = (
|
||||
Upsample1D(output_channel, use_conv_transpose=True)
|
||||
if not is_last
|
||||
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
)
|
||||
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
||||
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
|
||||
self.final_block = Block1D(channels[-1], channels[-1])
|
||||
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
||||
self.initialize_weights()
|
||||
|
||||
@@ -214,7 +207,7 @@ class ConditionalDecoder(nn.Module):
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
||||
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
|
||||
"""Forward pass of the UNet1DConditional model.
|
||||
|
||||
Args:
|
||||
@@ -249,9 +242,8 @@ class ConditionalDecoder(nn.Module):
|
||||
mask_down = masks[-1]
|
||||
x = resnet(x, mask_down, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
# attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
@@ -268,9 +260,8 @@ class ConditionalDecoder(nn.Module):
|
||||
for resnet, transformer_blocks in self.mid_blocks:
|
||||
x = resnet(x, mask_mid, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
# attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
@@ -285,9 +276,211 @@ class ConditionalDecoder(nn.Module):
|
||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||
x = resnet(x, mask_up, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
# attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
x = upsample(x * mask_up)
|
||||
x = self.final_block(x, mask_up)
|
||||
output = self.final_proj(x * mask_up)
|
||||
return output * mask
|
||||
|
||||
|
||||
class CausalConditionalDecoder(ConditionalDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
channels=(256, 256),
|
||||
dropout=0.05,
|
||||
attention_head_dim=64,
|
||||
n_blocks=1,
|
||||
num_mid_blocks=2,
|
||||
num_heads=4,
|
||||
act_fn="snake",
|
||||
static_chunk_size=50,
|
||||
num_decoding_left_chunks=2,
|
||||
):
|
||||
"""
|
||||
This decoder requires an input with the same shape of the target. So, if your text content
|
||||
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
||||
"""
|
||||
torch.nn.Module.__init__(self)
|
||||
channels = tuple(channels)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
||||
time_embed_dim = channels[0] * 4
|
||||
self.time_mlp = TimestepEmbedding(
|
||||
in_channels=in_channels,
|
||||
time_embed_dim=time_embed_dim,
|
||||
act_fn="silu",
|
||||
)
|
||||
self.static_chunk_size = static_chunk_size
|
||||
self.num_decoding_left_chunks = num_decoding_left_chunks
|
||||
self.down_blocks = nn.ModuleList([])
|
||||
self.mid_blocks = nn.ModuleList([])
|
||||
self.up_blocks = nn.ModuleList([])
|
||||
|
||||
output_channel = in_channels
|
||||
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
||||
input_channel = output_channel
|
||||
output_channel = channels[i]
|
||||
is_last = i == len(channels) - 1
|
||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
downsample = (
|
||||
Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3)
|
||||
)
|
||||
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
||||
|
||||
for _ in range(num_mid_blocks):
|
||||
input_channel = channels[-1]
|
||||
out_channels = channels[-1]
|
||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
||||
|
||||
channels = channels[::-1] + (channels[0],)
|
||||
for i in range(len(channels) - 1):
|
||||
input_channel = channels[i] * 2
|
||||
output_channel = channels[i + 1]
|
||||
is_last = i == len(channels) - 2
|
||||
resnet = CausalResnetBlock1D(
|
||||
dim=input_channel,
|
||||
dim_out=output_channel,
|
||||
time_emb_dim=time_embed_dim,
|
||||
)
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
upsample = (
|
||||
Upsample1D(output_channel, use_conv_transpose=True)
|
||||
if not is_last
|
||||
else CausalConv1d(output_channel, output_channel, 3)
|
||||
)
|
||||
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
||||
self.final_block = CausalBlock1D(channels[-1], channels[-1])
|
||||
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
||||
self.initialize_weights()
|
||||
|
||||
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
|
||||
"""Forward pass of the UNet1DConditional model.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): shape (batch_size, in_channels, time)
|
||||
mask (_type_): shape (batch_size, 1, time)
|
||||
t (_type_): shape (batch_size)
|
||||
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
||||
cond (_type_, optional): placeholder for future use. Defaults to None.
|
||||
|
||||
Raises:
|
||||
ValueError: _description_
|
||||
ValueError: _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
t = self.time_embeddings(t).to(t.dtype)
|
||||
t = self.time_mlp(t)
|
||||
|
||||
x = pack([x, mu], "b * t")[0]
|
||||
|
||||
if spks is not None:
|
||||
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
||||
x = pack([x, spks], "b * t")[0]
|
||||
if cond is not None:
|
||||
x = pack([x, cond], "b * t")[0]
|
||||
|
||||
hiddens = []
|
||||
masks = [mask]
|
||||
for resnet, transformer_blocks, downsample in self.down_blocks:
|
||||
mask_down = masks[-1]
|
||||
x = resnet(x, mask_down, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
if streaming is True:
|
||||
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
else:
|
||||
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
hiddens.append(x) # Save hidden states for skip connections
|
||||
x = downsample(x * mask_down)
|
||||
masks.append(mask_down[:, :, ::2])
|
||||
masks = masks[:-1]
|
||||
mask_mid = masks[-1]
|
||||
|
||||
for resnet, transformer_blocks in self.mid_blocks:
|
||||
x = resnet(x, mask_mid, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
if streaming is True:
|
||||
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
else:
|
||||
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
|
||||
for resnet, transformer_blocks, upsample in self.up_blocks:
|
||||
mask_up = masks.pop()
|
||||
skip = hiddens.pop()
|
||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||
x = resnet(x, mask_up, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
if streaming is True:
|
||||
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
else:
|
||||
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
|
||||
@@ -91,7 +91,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(feat_len)).to(h)
|
||||
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
||||
# NOTE this is unnecessary, feat/h already same shape
|
||||
loss, _ = self.decoder.compute_loss(
|
||||
feat.transpose(1, 2).contiguous(),
|
||||
mask.unsqueeze(1),
|
||||
@@ -111,16 +111,12 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
prompt_feat_len,
|
||||
embedding,
|
||||
flow_cache):
|
||||
if self.fp16 is True:
|
||||
prompt_feat = prompt_feat.half()
|
||||
embedding = embedding.half()
|
||||
|
||||
assert token.shape[0] == 1
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
|
||||
# concat text and prompt_text
|
||||
# concat speech token and prompt speech token
|
||||
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
||||
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
||||
@@ -145,7 +141,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
cond=conds,
|
||||
n_timesteps=10,
|
||||
prompt_len=mel_len1,
|
||||
flow_cache=flow_cache
|
||||
cache=flow_cache
|
||||
)
|
||||
feat = feat[:, :, mel_len1:]
|
||||
assert feat.shape[2] == mel_len2
|
||||
@@ -190,6 +186,52 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
self.token_mel_ratio = token_mel_ratio
|
||||
self.pre_lookahead_len = pre_lookahead_len
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
token = batch['speech_token'].to(device)
|
||||
token_len = batch['speech_token_len'].to(device)
|
||||
feat = batch['speech_feat'].to(device)
|
||||
feat_len = batch['speech_feat_len'].to(device)
|
||||
embedding = batch['embedding'].to(device)
|
||||
|
||||
# NOTE unified training, static_chunk_size > 0 or = 0
|
||||
streaming = True if random.random() < 0.5 else False
|
||||
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
|
||||
# concat text and prompt_text
|
||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len, streaming=streaming)
|
||||
h = self.encoder_proj(h)
|
||||
|
||||
# get conditions
|
||||
conds = torch.zeros(feat.shape, device=token.device)
|
||||
for i, j in enumerate(feat_len):
|
||||
if random.random() < 0.5:
|
||||
continue
|
||||
index = random.randint(0, int(0.3 * j))
|
||||
conds[i, :index] = feat[i, :index]
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(h_lengths.sum(dim=-1).squeeze(dim=1))).to(h)
|
||||
loss, _ = self.decoder.compute_loss(
|
||||
feat.transpose(1, 2).contiguous(),
|
||||
mask.unsqueeze(1),
|
||||
h.transpose(1, 2).contiguous(),
|
||||
embedding,
|
||||
cond=conds,
|
||||
streaming=streaming,
|
||||
)
|
||||
return {'loss': loss}
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self,
|
||||
token,
|
||||
@@ -199,11 +241,8 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
prompt_feat,
|
||||
prompt_feat_len,
|
||||
embedding,
|
||||
streaming,
|
||||
finalize):
|
||||
if self.fp16 is True:
|
||||
prompt_feat = prompt_feat.half()
|
||||
embedding = embedding.half()
|
||||
|
||||
assert token.shape[0] == 1
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
@@ -215,9 +254,11 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len)
|
||||
if finalize is False:
|
||||
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
|
||||
if finalize is True:
|
||||
h, h_lengths = self.encoder(token, token_len, streaming=streaming)
|
||||
else:
|
||||
token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
|
||||
h, h_lengths = self.encoder(token, token_len, context=context, streaming=streaming)
|
||||
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
||||
h = self.encoder_proj(h)
|
||||
|
||||
@@ -232,7 +273,8 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
mask=mask.unsqueeze(1),
|
||||
spks=embedding,
|
||||
cond=conds,
|
||||
n_timesteps=10
|
||||
n_timesteps=10,
|
||||
streaming=streaming
|
||||
)
|
||||
feat = feat[:, :, mel_len1:]
|
||||
assert feat.shape[2] == mel_len2
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -11,10 +12,10 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import threading
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from matcha.models.components.flow_matching import BASECFM
|
||||
from cosyvoice.utils.common import set_all_random_seed
|
||||
|
||||
|
||||
class ConditionalCFM(BASECFM):
|
||||
@@ -31,10 +32,9 @@ class ConditionalCFM(BASECFM):
|
||||
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
||||
# Just change the architecture of the estimator here
|
||||
self.estimator = estimator
|
||||
self.lock = threading.Lock()
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, cache=torch.zeros(1, 80, 0, 2)):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
@@ -54,21 +54,21 @@ class ConditionalCFM(BASECFM):
|
||||
"""
|
||||
|
||||
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
|
||||
cache_size = flow_cache.shape[2]
|
||||
cache_size = cache.shape[2]
|
||||
# fix prompt and overlap part mu and z
|
||||
if cache_size != 0:
|
||||
z[:, :, :cache_size] = flow_cache[:, :, :, 0]
|
||||
mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
|
||||
z[:, :, :cache_size] = cache[:, :, :, 0]
|
||||
mu[:, :, :cache_size] = cache[:, :, :, 1]
|
||||
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
||||
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
||||
flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
|
||||
cache = torch.stack([z_cache, mu_cache], dim=-1)
|
||||
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||
if self.t_scheduler == 'cosine':
|
||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), cache
|
||||
|
||||
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
||||
def solve_euler(self, x, t_span, mu, mask, spks, cond, streaming=False):
|
||||
"""
|
||||
Fixed euler solver for ODEs.
|
||||
Args:
|
||||
@@ -109,7 +109,8 @@ class ConditionalCFM(BASECFM):
|
||||
x_in, mask_in,
|
||||
mu_in, t_in,
|
||||
spks_in,
|
||||
cond_in
|
||||
cond_in,
|
||||
streaming
|
||||
)
|
||||
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
||||
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
||||
@@ -121,28 +122,36 @@ class ConditionalCFM(BASECFM):
|
||||
|
||||
return sol[-1].float()
|
||||
|
||||
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
||||
def forward_estimator(self, x, mask, mu, t, spks, cond, streaming=False):
|
||||
if isinstance(self.estimator, torch.nn.Module):
|
||||
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
||||
return self.estimator(x, mask, mu, t, spks, cond, streaming=streaming)
|
||||
else:
|
||||
with self.lock:
|
||||
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
||||
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
||||
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
||||
self.estimator.set_input_shape('t', (2,))
|
||||
self.estimator.set_input_shape('spks', (2, 80))
|
||||
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||
[estimator, stream], trt_engine = self.estimator.acquire_estimator()
|
||||
# NOTE need to synchronize when switching stream
|
||||
torch.cuda.current_stream().synchronize()
|
||||
with stream:
|
||||
estimator.set_input_shape('x', (2, 80, x.size(2)))
|
||||
estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
||||
estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
||||
estimator.set_input_shape('t', (2,))
|
||||
estimator.set_input_shape('spks', (2, 80))
|
||||
estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||
data_ptrs = [x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr()]
|
||||
for i, j in enumerate(data_ptrs):
|
||||
estimator.set_tensor_address(trt_engine.get_tensor_name(i), j)
|
||||
# run trt engine
|
||||
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr()])
|
||||
assert estimator.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True
|
||||
torch.cuda.current_stream().synchronize()
|
||||
self.estimator.release_estimator(estimator, stream)
|
||||
return x
|
||||
|
||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None, streaming=False):
|
||||
"""Computes diffusion loss
|
||||
|
||||
Args:
|
||||
@@ -179,7 +188,7 @@ class ConditionalCFM(BASECFM):
|
||||
spks = spks * cfg_mask.view(-1, 1)
|
||||
cond = cond * cfg_mask.view(-1, 1, 1)
|
||||
|
||||
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
||||
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond, streaming=streaming)
|
||||
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
||||
return loss, y
|
||||
|
||||
@@ -187,10 +196,11 @@ class ConditionalCFM(BASECFM):
|
||||
class CausalConditionalCFM(ConditionalCFM):
|
||||
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
||||
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
|
||||
set_all_random_seed(0)
|
||||
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, streaming=False):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
@@ -214,4 +224,4 @@ class CausalConditionalCFM(ConditionalCFM):
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||
if self.t_scheduler == 'cosine':
|
||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, streaming=streaming), None
|
||||
|
||||
@@ -51,6 +51,7 @@ class InterpolateRegulator(nn.Module):
|
||||
|
||||
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
|
||||
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
|
||||
# NOTE 20 corresponds to token_overlap_len in cosyvoice/cli/model.py
|
||||
# x in (B, T, D)
|
||||
if x2.shape[1] > 40:
|
||||
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
||||
|
||||
@@ -1,10 +1,16 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
import torch.nn.functional as F
|
||||
try:
|
||||
from torch.nn.utils.parametrizations import weight_norm, spectral_norm
|
||||
except ImportError:
|
||||
from torch.nn.utils import weight_norm, spectral_norm
|
||||
from typing import List, Optional, Tuple
|
||||
from einops import rearrange
|
||||
from torchaudio.transforms import Spectrogram
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
class MultipleDiscriminator(nn.Module):
|
||||
def __init__(
|
||||
@@ -138,3 +144,87 @@ class DiscriminatorR(nn.Module):
|
||||
x += h
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiResSpecDiscriminator(torch.nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
fft_sizes=[1024, 2048, 512],
|
||||
hop_sizes=[120, 240, 50],
|
||||
win_lengths=[600, 1200, 240],
|
||||
window="hann_window"):
|
||||
|
||||
super(MultiResSpecDiscriminator, self).__init__()
|
||||
self.discriminators = nn.ModuleList([
|
||||
SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
|
||||
SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
|
||||
SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)])
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for _, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
def stft(x, fft_size, hop_size, win_length, window):
|
||||
"""Perform STFT and convert to magnitude spectrogram.
|
||||
Args:
|
||||
x (Tensor): Input signal tensor (B, T).
|
||||
fft_size (int): FFT size.
|
||||
hop_size (int): Hop size.
|
||||
win_length (int): Window length.
|
||||
window (str): Window function type.
|
||||
Returns:
|
||||
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
||||
"""
|
||||
x_stft = torch.stft(x, fft_size, hop_size, win_length, window, return_complex=True)
|
||||
|
||||
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
|
||||
return torch.abs(x_stft).transpose(2, 1)
|
||||
|
||||
|
||||
class SpecDiscriminator(nn.Module):
|
||||
"""docstring for Discriminator."""
|
||||
|
||||
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
|
||||
super(SpecDiscriminator, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
||||
self.fft_size = fft_size
|
||||
self.shift_size = shift_size
|
||||
self.win_length = win_length
|
||||
self.window = getattr(torch, window)(win_length)
|
||||
self.discriminators = nn.ModuleList([
|
||||
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))),
|
||||
])
|
||||
|
||||
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
|
||||
|
||||
def forward(self, y):
|
||||
|
||||
fmap = []
|
||||
y = y.squeeze(1)
|
||||
y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.device))
|
||||
y = y.unsqueeze(1)
|
||||
for _, d in enumerate(self.discriminators):
|
||||
y = d(y)
|
||||
y = F.leaky_relu(y, LRELU_SLOPE)
|
||||
fmap.append(y)
|
||||
|
||||
y = self.out(y)
|
||||
fmap.append(y)
|
||||
|
||||
return torch.flatten(y, 1, -1), fmap
|
||||
|
||||
@@ -13,7 +13,10 @@
|
||||
# limitations under the License.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
try:
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
except ImportError:
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
|
||||
class ConvRNNF0Predictor(nn.Module):
|
||||
|
||||
@@ -23,7 +23,10 @@ import torch.nn.functional as F
|
||||
from torch.nn import Conv1d
|
||||
from torch.nn import ConvTranspose1d
|
||||
from torch.nn.utils import remove_weight_norm
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
try:
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
except ImportError:
|
||||
from torch.nn.utils import weight_norm
|
||||
from torch.distributions.uniform import Uniform
|
||||
|
||||
from cosyvoice.transformer.activation import Snake
|
||||
@@ -220,6 +223,172 @@ class SourceModuleHnNSF(torch.nn.Module):
|
||||
return sine_merge, noise, uv
|
||||
|
||||
|
||||
class SineGen2(torch.nn.Module):
|
||||
""" Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
flag_for_pulse=False)
|
||||
samp_rate: sampling rate in Hz
|
||||
harmonic_num: number of harmonic overtones (default 0)
|
||||
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
||||
noise_std: std of Gaussian noise (default 0.003)
|
||||
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
||||
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
||||
Note: when flag_for_pulse is True, the first time step of a voiced
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
||||
sine_amp=0.1, noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False):
|
||||
super(SineGen2, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
self.harmonic_num = harmonic_num
|
||||
self.dim = self.harmonic_num + 1
|
||||
self.sampling_rate = samp_rate
|
||||
self.voiced_threshold = voiced_threshold
|
||||
self.flag_for_pulse = flag_for_pulse
|
||||
self.upsample_scale = upsample_scale
|
||||
|
||||
def _f02uv(self, f0):
|
||||
# generate uv signal
|
||||
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
||||
return uv
|
||||
|
||||
def _f02sine(self, f0_values):
|
||||
""" f0_values: (batchsize, length, dim)
|
||||
where dim indicates fundamental tone and overtones
|
||||
"""
|
||||
# convert to F0 in rad. The interger part n can be ignored
|
||||
# because 2 * np.pi * n doesn't affect phase
|
||||
rad_values = (f0_values / self.sampling_rate) % 1
|
||||
|
||||
# initial phase noise (no noise for fundamental component)
|
||||
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
|
||||
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
||||
if not self.flag_for_pulse:
|
||||
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
||||
scale_factor=1 / self.upsample_scale,
|
||||
mode="linear").transpose(1, 2)
|
||||
|
||||
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
||||
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
||||
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
||||
sines = torch.sin(phase)
|
||||
else:
|
||||
# If necessary, make sure that the first time step of every
|
||||
# voiced segments is sin(pi) or cos(0)
|
||||
# This is used for pulse-train generation
|
||||
|
||||
# identify the last time step in unvoiced segments
|
||||
uv = self._f02uv(f0_values)
|
||||
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
||||
uv_1[:, -1, :] = 1
|
||||
u_loc = (uv < 1) * (uv_1 > 0)
|
||||
|
||||
# get the instantanouse phase
|
||||
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
||||
# different batch needs to be processed differently
|
||||
for idx in range(f0_values.shape[0]):
|
||||
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
||||
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
||||
# stores the accumulation of i.phase within
|
||||
# each voiced segments
|
||||
tmp_cumsum[idx, :, :] = 0
|
||||
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
||||
|
||||
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
||||
# within the previous voiced segment.
|
||||
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
||||
|
||||
# get the sines
|
||||
sines = torch.cos(i_phase * 2 * np.pi)
|
||||
return sines
|
||||
|
||||
def forward(self, f0):
|
||||
""" sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||
output uv: tensor(batchsize=1, length, 1)
|
||||
"""
|
||||
# fundamental component
|
||||
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
||||
|
||||
# generate sine waveforms
|
||||
sine_waves = self._f02sine(fn) * self.sine_amp
|
||||
|
||||
# generate uv signal
|
||||
uv = self._f02uv(f0)
|
||||
|
||||
# noise: for unvoiced should be similar to sine_amp
|
||||
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
||||
# . for voiced regions is self.noise_std
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
|
||||
# first: set the unvoiced part to 0 by uv
|
||||
# then: additive noise
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF2(torch.nn.Module):
|
||||
""" SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
harmonic_num: number of harmonic above F0 (default: 0)
|
||||
sine_amp: amplitude of sine source signal (default: 0.1)
|
||||
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
||||
note that amplitude of noise in unvoiced is decided
|
||||
by sine_amp
|
||||
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0):
|
||||
super(SourceModuleHnNSF2, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen2(sampling_rate, upsample_scale, harmonic_num,
|
||||
sine_amp, add_noise_std, voiced_threshod)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
"""
|
||||
# source for harmonic branch
|
||||
with torch.no_grad():
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x)
|
||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||
|
||||
# source for noise branch, in the same shape as uv
|
||||
noise = torch.randn_like(uv) * self.sine_amp / 3
|
||||
return sine_merge, noise, uv
|
||||
|
||||
|
||||
class HiFTGenerator(nn.Module):
|
||||
"""
|
||||
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
||||
@@ -256,7 +425,9 @@ class HiFTGenerator(nn.Module):
|
||||
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
# NOTE in CosyVoice2, we use the original SourceModuleHnNSF implementation
|
||||
this_SourceModuleHnNSF = SourceModuleHnNSF if self.sampling_rate == 22050 else SourceModuleHnNSF2
|
||||
self.m_source = this_SourceModuleHnNSF(
|
||||
sampling_rate=sampling_rate,
|
||||
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
||||
harmonic_num=nb_harmonics,
|
||||
|
||||
@@ -41,7 +41,7 @@ class HiFiGan(nn.Module):
|
||||
loss_fm = feature_loss(fmap_rs, fmap_gs)
|
||||
loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
|
||||
if self.tpr_loss_weight != 0:
|
||||
loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
|
||||
loss_tpr = tpr_loss(y_d_gs, y_d_rs, self.tpr_loss_tau)
|
||||
else:
|
||||
loss_tpr = torch.zeros(1).to(device)
|
||||
loss_f0 = F.l1_loss(generated_f0, pitch_feat)
|
||||
@@ -56,7 +56,7 @@ class HiFiGan(nn.Module):
|
||||
with torch.no_grad():
|
||||
generated_speech, generated_f0 = self.generator(batch, device)
|
||||
# 2. calculate discriminator outputs
|
||||
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
|
||||
y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech.detach())
|
||||
# 3. calculate discriminator losses, tpr losses [Optional]
|
||||
loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
|
||||
if self.tpr_loss_weight != 0:
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||
# 2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li, Qihua)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -11,6 +12,10 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import queue
|
||||
import random
|
||||
import time
|
||||
import threading
|
||||
from typing import Dict, Optional, Callable, List, Generator
|
||||
import torch
|
||||
from torch import nn
|
||||
@@ -21,6 +26,7 @@ from cosyvoice.utils.common import IGNORE_ID
|
||||
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
||||
from cosyvoice.utils.common import th_accuracy
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
from cosyvoice.utils.mask import make_pad_mask
|
||||
|
||||
|
||||
class TransformerLM(torch.nn.Module):
|
||||
@@ -168,10 +174,8 @@ class TransformerLM(torch.nn.Module):
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
uuid: str = '',
|
||||
) -> Generator[torch.Tensor, None, None]:
|
||||
if self.fp16 is True:
|
||||
embedding = embedding.half()
|
||||
|
||||
device = text.device
|
||||
text = torch.concat([prompt_text, text], dim=1)
|
||||
text_len += prompt_text_len
|
||||
@@ -229,6 +233,17 @@ class Qwen2Encoder(torch.nn.Module):
|
||||
super().__init__()
|
||||
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
||||
|
||||
def forward(self, xs: torch.Tensor, xs_lens: torch.Tensor):
|
||||
T = xs.size(1)
|
||||
masks = ~make_pad_mask(xs_lens, T)
|
||||
outs = self.model(
|
||||
inputs_embeds=xs,
|
||||
attention_mask=masks,
|
||||
output_hidden_states=True,
|
||||
return_dict=True,
|
||||
)
|
||||
return outs.hidden_states[-1], masks.unsqueeze(1)
|
||||
|
||||
def forward_one_step(self, xs, masks, cache=None):
|
||||
input_masks = masks[:, -1, :]
|
||||
outs = self.model(
|
||||
@@ -260,7 +275,6 @@ class Qwen2LM(TransformerLM):
|
||||
self.llm_input_size = llm_input_size
|
||||
self.llm_output_size = llm_output_size
|
||||
self.speech_token_size = speech_token_size
|
||||
|
||||
# 2. build speech token language model related modules
|
||||
self.sos_eos = 0
|
||||
self.task_id = 1
|
||||
@@ -283,6 +297,133 @@ class Qwen2LM(TransformerLM):
|
||||
self.sampling = sampling
|
||||
self.mix_ratio = mix_ratio
|
||||
|
||||
# 5. vllm related
|
||||
self.stop_token_ids = [speech_token_size + i for i in range(3)]
|
||||
self.vllm_output_queue = {}
|
||||
|
||||
def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len):
|
||||
lm_target, lm_input = [], []
|
||||
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
||||
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||
text_token_emb = unpad_sequence(text_token_emb, text_token_len.cpu(), batch_first=True)
|
||||
speech_token_emb = unpad_sequence(speech_token_emb, speech_token_len.cpu(), batch_first=True)
|
||||
for i in range(len(text_token)):
|
||||
# bistream sequence
|
||||
if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]:
|
||||
this_lm_target, this_lm_input = [], []
|
||||
this_lm_target.append(IGNORE_ID)
|
||||
this_lm_input.append(self.llm_embedding.weight[self.sos_eos].reshape(1, -1))
|
||||
for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()):
|
||||
this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist()
|
||||
this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist()
|
||||
if len(this_text_token) == self.mix_ratio[0]:
|
||||
assert len(this_speech_token) == self.mix_ratio[1]
|
||||
this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1)
|
||||
this_lm_target += this_speech_token
|
||||
this_lm_target.append(self.speech_token_size + 2)
|
||||
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]])
|
||||
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]])
|
||||
else:
|
||||
this_lm_target += [-1] * len(this_text_token)
|
||||
this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist()
|
||||
this_lm_target.append(self.speech_token_size)
|
||||
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:])
|
||||
this_lm_input.append(self.llm_embedding.weight[self.task_id].reshape(1, -1))
|
||||
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:])
|
||||
this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0)
|
||||
# unistream sequence
|
||||
else:
|
||||
this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.speech_token_size])
|
||||
this_lm_input = torch.concat([self.llm_embedding.weight[self.sos_eos].reshape(1, -1), text_token_emb[i],
|
||||
self.llm_embedding.weight[self.task_id].reshape(1, -1), speech_token_emb[i]], dim=0)
|
||||
lm_target.append(this_lm_target)
|
||||
lm_input.append(this_lm_input)
|
||||
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
||||
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
||||
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID)
|
||||
return lm_target, lm_input, lm_input_len
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
text: (B, L, D)
|
||||
text_lengths: (B,)
|
||||
audio: (B, T, N) or (B, T)
|
||||
audio_lengths: (B,)
|
||||
"""
|
||||
text_token = batch['text_token'].to(device)
|
||||
text_token_len = batch['text_token_len'].to(device)
|
||||
speech_token = batch['speech_token'].to(device)
|
||||
speech_token_len = batch['speech_token_len'].to(device)
|
||||
|
||||
# 1. encode text_token
|
||||
text_token_emb = self.llm.model.model.embed_tokens(text_token)
|
||||
|
||||
# 2. encode speech_token
|
||||
speech_token_emb = self.speech_embedding(speech_token)
|
||||
|
||||
# 3. prepare llm_input/target
|
||||
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len)
|
||||
lm_target = lm_target.to(device)
|
||||
|
||||
# 4. run lm forward
|
||||
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
||||
logits = self.llm_decoder(lm_output)
|
||||
loss = self.criterion_ce(logits, lm_target.to(device))
|
||||
acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID)
|
||||
return {'loss': loss, 'acc': acc}
|
||||
|
||||
def forward_dpo(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
text_token = batch['text_token'].to(device)
|
||||
text_token_len = batch['text_token_len'].to(device)
|
||||
speech_token = batch['speech_token'].to(device)
|
||||
speech_token_len = batch['speech_token_len'].to(device)
|
||||
reject_speech_token = batch['reject_speech_token'].to(device)
|
||||
reject_speech_token_len = batch['reject_speech_token_len'].to(device)
|
||||
|
||||
# 1. encode text_token
|
||||
text_token_emb = self.llm.model.model.embed_tokens(text_token)
|
||||
|
||||
# 2. encode speech_token
|
||||
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||
reject_speech_token = unpad_sequence(reject_speech_token, reject_speech_token_len.cpu(), batch_first=True)
|
||||
speech_token_combined = speech_token + reject_speech_token
|
||||
speech_token_combined = pad_sequence(speech_token_combined, batch_first=True, padding_value=0)
|
||||
speech_token_combined_len = torch.concat([speech_token_len, reject_speech_token_len], dim=0)
|
||||
speech_token_combined_emb = self.speech_embedding(speech_token_combined)
|
||||
|
||||
# 3. prepare llm_input/target
|
||||
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2),
|
||||
speech_token_combined, speech_token_combined_emb, speech_token_combined_len)
|
||||
lm_target = lm_target.to(device)
|
||||
|
||||
# 4. run lm forward
|
||||
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
||||
logits = self.llm_decoder(lm_output)
|
||||
chosen_logits = logits[:text_token.shape[0]]
|
||||
rejected_logits = logits[text_token.shape[0]:]
|
||||
chosen_lm_target = lm_target[:text_token.shape[0]]
|
||||
rejected_lm_target = lm_target[text_token.shape[0]:]
|
||||
loss = self.criterion_ce(chosen_logits, chosen_lm_target.to(device))
|
||||
acc = th_accuracy(chosen_logits.view(-1, self.speech_token_size + 3), chosen_lm_target, ignore_label=IGNORE_ID)
|
||||
|
||||
# 5. calculate dpo logits
|
||||
chosen_lm_mask = chosen_lm_target == IGNORE_ID
|
||||
rejected_lm_mask = rejected_lm_target == IGNORE_ID
|
||||
chosen_logps = torch.gather(chosen_logits.log_softmax(dim=-1), dim=2, index=chosen_lm_target.masked_fill(chosen_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
|
||||
rejected_logps = torch.gather(rejected_logits.log_softmax(dim=-1), dim=2, index=rejected_lm_target.masked_fill(rejected_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
|
||||
chosen_logps = (chosen_logps * chosen_lm_mask).mean(dim=-1)
|
||||
rejected_logps = (rejected_logps * chosen_lm_mask).mean(dim=-1)
|
||||
return {'loss': loss, 'acc': acc, 'chosen_logps': chosen_logps, 'rejected_logps': rejected_logps}
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(
|
||||
self,
|
||||
@@ -296,7 +437,7 @@ class Qwen2LM(TransformerLM):
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
vllm_codec_engine=None,
|
||||
uuid: str = '',
|
||||
) -> Generator[torch.Tensor, None, None]:
|
||||
device = text.device
|
||||
text = torch.concat([prompt_text, text], dim=1)
|
||||
@@ -317,13 +458,47 @@ class Qwen2LM(TransformerLM):
|
||||
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
||||
|
||||
# 5. step by step decode
|
||||
if vllm_codec_engine is None:
|
||||
for token in self.inference_wrapper(lm_input, sampling, min_len, max_len, uuid):
|
||||
yield token
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference_wrapper(self, lm_input, sampling, min_len, max_len, uuid):
|
||||
if hasattr(self, 'vllm'):
|
||||
from vllm import SamplingParams, RequestOutput
|
||||
sampling_params = SamplingParams(top_k=sampling,
|
||||
stop_token_ids=self.stop_token_ids,
|
||||
min_tokens=min_len,
|
||||
max_tokens=max_len)
|
||||
with self.lock:
|
||||
self.vllm.add_request(uuid, {"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(lm_input.device)}, sampling_params)
|
||||
self.vllm_output_queue[uuid] = queue.Queue()
|
||||
out_tokens = []
|
||||
while True:
|
||||
with self.lock:
|
||||
if self.vllm_output_queue[uuid].empty() is True:
|
||||
request_outputs: List[RequestOutput] = self.vllm.step()
|
||||
for request_output in request_outputs:
|
||||
top_ids = list(request_output.outputs[0].token_ids)[-1]
|
||||
self.vllm_output_queue[request_output.request_id].put(top_ids)
|
||||
if self.vllm_output_queue[uuid].empty() is False:
|
||||
top_ids = self.vllm_output_queue[uuid].get()
|
||||
if top_ids in self.stop_token_ids:
|
||||
break
|
||||
# in stream mode, yield token one by one
|
||||
yield top_ids
|
||||
out_tokens.append(top_ids)
|
||||
if len(out_tokens) == max_len:
|
||||
break
|
||||
time.sleep(0.001)
|
||||
with self.lock:
|
||||
self.vllm_output_queue.pop(uuid)
|
||||
else:
|
||||
out_tokens = []
|
||||
cache = None
|
||||
for i in range(max_len):
|
||||
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
||||
cache=cache)
|
||||
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
||||
cache=cache)
|
||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
||||
if top_ids == self.speech_token_size:
|
||||
@@ -334,34 +509,6 @@ class Qwen2LM(TransformerLM):
|
||||
yield top_ids
|
||||
out_tokens.append(top_ids)
|
||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
else:
|
||||
from vllm import SamplingParams, RequestOutput
|
||||
import uuid
|
||||
sampling_params = SamplingParams(top_k=sampling,
|
||||
stop_token_ids=[6561, 6563],
|
||||
min_tokens=min_len,
|
||||
max_tokens=max_len)
|
||||
request_id = uuid.uuid4()
|
||||
vllm_codec_engine.add_request(request_id,
|
||||
{"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(device)},
|
||||
sampling_params)
|
||||
while True:
|
||||
speech_token_break = False
|
||||
request_outputs: List[RequestOutput] = vllm_codec_engine.step()
|
||||
for request_output in request_outputs:
|
||||
if str(request_output.request_id) != str(request_id):
|
||||
continue
|
||||
# print(f"request output: {request_output}")
|
||||
top_ids = list(request_output.outputs[0].token_ids)[-1]
|
||||
if top_ids == self.speech_token_size:
|
||||
speech_token_break = True
|
||||
break
|
||||
if top_ids > self.speech_token_size:
|
||||
continue
|
||||
yield top_ids
|
||||
|
||||
if not vllm_codec_engine.has_unfinished_requests() or speech_token_break:
|
||||
break
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference_bistream(
|
||||
@@ -423,8 +570,8 @@ class Qwen2LM(TransformerLM):
|
||||
while True:
|
||||
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||
cache=cache)
|
||||
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||
cache=cache)
|
||||
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
||||
top_ids = self.speech_token_size + 2
|
||||
@@ -462,129 +609,3 @@ class Qwen2LM(TransformerLM):
|
||||
# in stream mode, yield token one by one
|
||||
yield top_ids
|
||||
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
@torch.inference_mode()
|
||||
def inference_bistream_vllm(
|
||||
self,
|
||||
text: Generator,
|
||||
prompt_text: torch.Tensor,
|
||||
prompt_text_len: torch.Tensor,
|
||||
prompt_speech_token: torch.Tensor,
|
||||
prompt_speech_token_len: torch.Tensor,
|
||||
embedding: torch.Tensor,
|
||||
sampling: int = 25,
|
||||
max_token_text_ratio: float = 20,
|
||||
min_token_text_ratio: float = 2,
|
||||
vllm_codec_engine=None,
|
||||
) -> Generator[torch.Tensor, None, None]:
|
||||
|
||||
device = prompt_text.device
|
||||
# 1. prepare input
|
||||
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||
if prompt_speech_token_len != 0:
|
||||
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||
else:
|
||||
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
||||
lm_input = torch.concat([sos_eos_emb], dim=1)
|
||||
|
||||
# 2. iterate text
|
||||
out_tokens = []
|
||||
cache = None
|
||||
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
||||
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
||||
next_fill_index = -1
|
||||
from vllm import SamplingParams, RequestOutput
|
||||
import uuid
|
||||
sampling_params = SamplingParams(top_k=sampling,
|
||||
stop_token_ids=[6561, 6563],
|
||||
max_tokens=10000)
|
||||
for this_text in text:
|
||||
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
||||
# prompt_speech_token_emb not empty, try append to lm_input
|
||||
while prompt_speech_token_emb.size(1) != 0:
|
||||
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||
lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
|
||||
logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
|
||||
lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
|
||||
text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
|
||||
else:
|
||||
logging.info('not enough text token to decode, wait for more')
|
||||
break
|
||||
# no prompt_speech_token_emb remain, can decode some speech token
|
||||
if prompt_speech_token_emb.size(1) == 0:
|
||||
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
||||
logging.info('get fill token, need to append more text token')
|
||||
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
||||
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
||||
if vllm_codec_engine is None and len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
|
||||
lm_input = lm_input_text
|
||||
else:
|
||||
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
||||
text_cache = text_cache[:, self.mix_ratio[0]:]
|
||||
else:
|
||||
logging.info('not enough text token to decode, wait for more')
|
||||
continue
|
||||
request_id = uuid.uuid4()
|
||||
vllm_codec_engine.add_request(request_id,
|
||||
{"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(device)},
|
||||
sampling_params)
|
||||
## generator
|
||||
while True:
|
||||
speech_token_break = False
|
||||
request_outputs: List[RequestOutput] = vllm_codec_engine.step()
|
||||
for request_output in request_outputs:
|
||||
if str(request_output.request_id) != str(request_id):
|
||||
continue
|
||||
# print(f"request output: {request_output}")
|
||||
out_token = list(request_output.outputs[0].token_ids)[-1]
|
||||
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
||||
top_ids = self.speech_token_size + 2
|
||||
next_fill_index += (self.mix_ratio[1] + 1)
|
||||
else:
|
||||
top_ids = out_token
|
||||
if top_ids == self.speech_token_size + 2:
|
||||
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
||||
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
||||
out_tokens.append(top_ids)
|
||||
if top_ids >= self.speech_token_size:
|
||||
if top_ids == self.speech_token_size + 2:
|
||||
speech_token_break = True
|
||||
break
|
||||
else:
|
||||
raise ValueError('should not get token {}'.format(top_ids))
|
||||
yield top_ids
|
||||
token_embedding = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||
lm_input = torch.concat([lm_input, token_embedding], dim=1)
|
||||
|
||||
if not vllm_codec_engine.has_unfinished_requests() or speech_token_break:
|
||||
break
|
||||
|
||||
# 3. final decode
|
||||
lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
|
||||
logging.info('no more text token, decode until met eos')
|
||||
request_id = uuid.uuid4()
|
||||
vllm_codec_engine.add_request(request_id,
|
||||
{"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(device)},
|
||||
sampling_params)
|
||||
## generator
|
||||
while True:
|
||||
speech_token_break = False
|
||||
request_outputs: List[RequestOutput] = vllm_codec_engine.step()
|
||||
for request_output in request_outputs:
|
||||
if str(request_output.request_id) != str(request_id):
|
||||
continue
|
||||
# print(f"request output: {request_output}")
|
||||
top_ids = list(request_output.outputs[0].token_ids)[-1]
|
||||
out_tokens.append(top_ids)
|
||||
if top_ids >= self.speech_token_size:
|
||||
if top_ids == self.speech_token_size:
|
||||
speech_token_break = True
|
||||
break
|
||||
else:
|
||||
raise ValueError('should not get token {}'.format(top_ids))
|
||||
# in stream mode, yield token one by one
|
||||
yield top_ids
|
||||
|
||||
if not vllm_codec_engine.has_unfinished_requests() or speech_token_break:
|
||||
break
|
||||
|
||||
@@ -287,8 +287,16 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
|
||||
Returns:
|
||||
torch.Tensor: Corresponding encoding
|
||||
"""
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
|
||||
]
|
||||
# How to subscript a Union type:
|
||||
# https://github.com/pytorch/pytorch/issues/69434
|
||||
if isinstance(offset, int):
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
|
||||
]
|
||||
elif isinstance(offset, torch.Tensor):
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
|
||||
]
|
||||
return pos_emb
|
||||
|
||||
@@ -56,7 +56,7 @@ class Upsample1D(nn.Module):
|
||||
# In this mode, first repeat interpolate, than conv with stride=1
|
||||
self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
|
||||
|
||||
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor):
|
||||
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
|
||||
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
|
||||
outputs = self.conv(outputs)
|
||||
@@ -78,16 +78,22 @@ class PreLookaheadLayer(nn.Module):
|
||||
kernel_size=3, stride=1, padding=0,
|
||||
)
|
||||
|
||||
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
||||
def forward(self, inputs: torch.Tensor, context: torch.Tensor = torch.zeros(0, 0, 0)) -> torch.Tensor:
|
||||
"""
|
||||
inputs: (batch_size, seq_len, channels)
|
||||
"""
|
||||
outputs = inputs.transpose(1, 2).contiguous()
|
||||
context = context.transpose(1, 2).contiguous()
|
||||
# look ahead
|
||||
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
||||
if context.size(2) == 0:
|
||||
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
||||
else:
|
||||
assert self.training is False, 'you have passed context, make sure that you are running inference mode'
|
||||
assert context.size(2) == self.pre_lookahead_len
|
||||
outputs = F.pad(torch.concat([outputs, context], dim=2), (0, self.pre_lookahead_len - context.size(2)), mode='constant', value=0.0)
|
||||
outputs = F.leaky_relu(self.conv1(outputs))
|
||||
# outputs
|
||||
outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0)
|
||||
outputs = F.pad(outputs, (self.conv2.kernel_size[0] - 1, 0), mode='constant', value=0.0)
|
||||
outputs = self.conv2(outputs)
|
||||
outputs = outputs.transpose(1, 2).contiguous()
|
||||
|
||||
@@ -238,8 +244,10 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
xs_lens: torch.Tensor,
|
||||
context: torch.Tensor = torch.zeros(0, 0, 0),
|
||||
decoding_chunk_size: int = 0,
|
||||
num_decoding_left_chunks: int = -1,
|
||||
streaming: bool = False,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Embed positions in tensor.
|
||||
|
||||
@@ -269,15 +277,14 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
||||
if self.global_cmvn is not None:
|
||||
xs = self.global_cmvn(xs)
|
||||
xs, pos_emb, masks = self.embed(xs, masks)
|
||||
if context.size(1) != 0:
|
||||
assert self.training is False, 'you have passed context, make sure that you are running inference mode'
|
||||
context_masks = torch.ones(1, 1, context.size(1)).to(masks)
|
||||
context, _, _ = self.embed(context, context_masks, offset=xs.size(1))
|
||||
mask_pad = masks # (B, 1, T/subsample_rate)
|
||||
chunk_masks = add_optional_chunk_mask(xs, masks,
|
||||
self.use_dynamic_chunk,
|
||||
self.use_dynamic_left_chunk,
|
||||
decoding_chunk_size,
|
||||
self.static_chunk_size,
|
||||
num_decoding_left_chunks)
|
||||
chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size if streaming is True else 0, -1)
|
||||
# lookahead + conformer encoder
|
||||
xs = self.pre_lookahead_layer(xs)
|
||||
xs = self.pre_lookahead_layer(xs, context=context)
|
||||
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
||||
|
||||
# upsample + conformer encoder
|
||||
@@ -288,12 +295,7 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
||||
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
||||
xs, pos_emb, masks = self.up_embed(xs, masks)
|
||||
mask_pad = masks # (B, 1, T/subsample_rate)
|
||||
chunk_masks = add_optional_chunk_mask(xs, masks,
|
||||
self.use_dynamic_chunk,
|
||||
self.use_dynamic_left_chunk,
|
||||
decoding_chunk_size,
|
||||
self.static_chunk_size * self.up_layer.stride,
|
||||
num_decoding_left_chunks)
|
||||
chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size * self.up_layer.stride if streaming is True else 0, -1)
|
||||
xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
|
||||
|
||||
if self.normalize_before:
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -15,6 +16,7 @@
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
"""Unility functions for Transformer."""
|
||||
|
||||
import queue
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
@@ -164,3 +166,21 @@ def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
||||
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
|
||||
mask = (1.0 - mask) * -1.0e+10
|
||||
return mask
|
||||
|
||||
|
||||
class TrtContextWrapper:
|
||||
def __init__(self, trt_engine, trt_concurrent=1, device='cuda:0'):
|
||||
self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
|
||||
self.trt_engine = trt_engine
|
||||
for _ in range(trt_concurrent):
|
||||
trt_context = trt_engine.create_execution_context()
|
||||
trt_stream = torch.cuda.stream(torch.cuda.Stream(device))
|
||||
assert trt_context is not None, 'failed to create trt context, maybe not enough CUDA memory, try reduce current trt concurrent {}'.format(trt_concurrent)
|
||||
self.trt_context_pool.put([trt_context, trt_stream])
|
||||
assert self.trt_context_pool.empty() is False, 'no avaialbe estimator context'
|
||||
|
||||
def acquire_estimator(self):
|
||||
return self.trt_context_pool.get(), self.trt_engine
|
||||
|
||||
def release_estimator(self, context, stream):
|
||||
self.trt_context_pool.put([context, stream])
|
||||
|
||||
@@ -25,14 +25,16 @@ from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, l
|
||||
|
||||
class Executor:
|
||||
|
||||
def __init__(self, gan: bool = False):
|
||||
def __init__(self, gan: bool = False, ref_model: torch.nn.Module = None, dpo_loss: torch.nn.Module = None):
|
||||
self.gan = gan
|
||||
self.ref_model = ref_model
|
||||
self.dpo_loss = dpo_loss
|
||||
self.step = 0
|
||||
self.epoch = 0
|
||||
self.rank = int(os.environ.get('RANK', 0))
|
||||
self.device = torch.device('cuda:{}'.format(self.rank))
|
||||
|
||||
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join):
|
||||
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
|
||||
''' Train one epoch
|
||||
'''
|
||||
|
||||
@@ -44,6 +46,8 @@ class Executor:
|
||||
# torch.nn.parallel.DistributedDataParallel to be able to train
|
||||
# with uneven inputs across participating processes.
|
||||
model.train()
|
||||
if self.ref_model is not None:
|
||||
self.ref_model.eval()
|
||||
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
||||
with model_context():
|
||||
for batch_idx, batch_dict in enumerate(train_data_loader):
|
||||
@@ -65,7 +69,7 @@ class Executor:
|
||||
context = nullcontext
|
||||
|
||||
with context():
|
||||
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
||||
info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model=self.ref_model, dpo_loss=self.dpo_loss)
|
||||
info_dict = batch_backward(model, scaler, info_dict)
|
||||
|
||||
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
||||
# 2024 Alibaba Inc (authors: Xiang Lyu, Zetao Hu)
|
||||
# 2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,7 +14,9 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import json
|
||||
import torch
|
||||
import torchaudio
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
@@ -47,13 +50,8 @@ def load_wav(wav, target_sr):
|
||||
return speech
|
||||
|
||||
|
||||
def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
||||
def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
|
||||
import tensorrt as trt
|
||||
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
|
||||
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
|
||||
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
|
||||
input_names = ["x", "mask", "mu", "t", "spks", "cond"]
|
||||
|
||||
logging.info("Converting onnx to trt...")
|
||||
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
||||
logger = trt.Logger(trt.Logger.INFO)
|
||||
@@ -61,7 +59,7 @@ def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
||||
network = builder.create_network(network_flags)
|
||||
parser = trt.OnnxParser(network, logger)
|
||||
config = builder.create_builder_config()
|
||||
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB
|
||||
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 32) # 4GB
|
||||
if fp16:
|
||||
config.set_flag(trt.BuilderFlag.FP16)
|
||||
profile = builder.create_optimization_profile()
|
||||
@@ -72,8 +70,8 @@ def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
||||
print(parser.get_error(error))
|
||||
raise ValueError('failed to parse {}'.format(onnx_model))
|
||||
# set input shapes
|
||||
for i in range(len(input_names)):
|
||||
profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i])
|
||||
for i in range(len(trt_kwargs['input_names'])):
|
||||
profile.set_shape(trt_kwargs['input_names'][i], trt_kwargs['min_shape'][i], trt_kwargs['opt_shape'][i], trt_kwargs['max_shape'][i])
|
||||
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
|
||||
# set input and output data type
|
||||
for i in range(network.num_inputs):
|
||||
@@ -87,3 +85,45 @@ def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
||||
# save trt engine
|
||||
with open(trt_model, "wb") as f:
|
||||
f.write(engine_bytes)
|
||||
logging.info("Succesfully convert onnx to trt...")
|
||||
|
||||
|
||||
def export_cosyvoice2_vllm(model, model_path, device):
|
||||
if os.path.exists(model_path):
|
||||
return
|
||||
pad_to = DEFAULT_VOCAB_PADDING_SIZE = 64
|
||||
vocab_size = model.speech_embedding.num_embeddings
|
||||
feature_size = model.speech_embedding.embedding_dim
|
||||
pad_vocab_size = ((vocab_size + pad_to - 1) // pad_to) * pad_to
|
||||
|
||||
dtype = torch.bfloat16
|
||||
# lm_head
|
||||
new_lm_head = torch.nn.Linear(in_features=feature_size, out_features=pad_vocab_size, bias=True)
|
||||
with torch.no_grad():
|
||||
new_lm_head.weight[:vocab_size] = model.llm_decoder.weight
|
||||
new_lm_head.bias[:vocab_size] = model.llm_decoder.bias
|
||||
new_lm_head.weight[vocab_size:] = 0
|
||||
new_lm_head.bias[vocab_size:] = 0
|
||||
model.llm.model.lm_head = new_lm_head
|
||||
new_codec_embed = torch.nn.Linear(in_features=feature_size, out_features=pad_vocab_size)
|
||||
# embed_tokens
|
||||
embed_tokens = model.llm.model.model.embed_tokens
|
||||
with torch.no_grad():
|
||||
new_codec_embed.weight[:vocab_size] = model.speech_embedding.weight
|
||||
new_codec_embed.weight[vocab_size:] = 0
|
||||
model.llm.model.set_input_embeddings(new_codec_embed)
|
||||
model.llm.model.to(device)
|
||||
model.llm.model.to(dtype)
|
||||
tmp_vocab_size = model.llm.model.config.vocab_size
|
||||
tmp_tie_embedding = model.llm.model.config.tie_word_embeddings
|
||||
del model.llm.model.generation_config.eos_token_id
|
||||
del model.llm.model.config.bos_token_id
|
||||
del model.llm.model.config.eos_token_id
|
||||
model.llm.model.config.vocab_size = pad_vocab_size
|
||||
model.llm.model.config.tie_word_embeddings = False
|
||||
model.llm.model.config.use_bias = True
|
||||
model.llm.model.save_pretrained(model_path)
|
||||
os.system('sed -i s@Qwen2ForCausalLM@CosyVoice2ForCausalLM@g {}/config.json'.format(os.path.abspath(model_path)))
|
||||
model.llm.model.config.vocab_size = tmp_vocab_size
|
||||
model.llm.model.config.tie_word_embeddings = tmp_tie_embedding
|
||||
model.llm.model.set_input_embeddings(embed_tokens)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
|
||||
@@ -18,3 +19,39 @@ def mel_loss(real_speech, generated_speech, mel_transforms):
|
||||
mel_g = transform(generated_speech)
|
||||
loss += F.l1_loss(mel_g, mel_r)
|
||||
return loss
|
||||
|
||||
|
||||
class DPOLoss(torch.nn.Module):
|
||||
"""
|
||||
DPO Loss
|
||||
"""
|
||||
|
||||
def __init__(self, beta: float, label_smoothing: float = 0.0, ipo: bool = False) -> None:
|
||||
super().__init__()
|
||||
self.beta = beta
|
||||
self.label_smoothing = label_smoothing
|
||||
self.ipo = ipo
|
||||
|
||||
def forward(
|
||||
self,
|
||||
policy_chosen_logps: torch.Tensor,
|
||||
policy_rejected_logps: torch.Tensor,
|
||||
reference_chosen_logps: torch.Tensor,
|
||||
reference_rejected_logps: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
pi_logratios = policy_chosen_logps - policy_rejected_logps
|
||||
ref_logratios = reference_chosen_logps - reference_rejected_logps
|
||||
logits = pi_logratios - ref_logratios
|
||||
if self.ipo:
|
||||
losses = (logits - 1 / (2 * self.beta)) ** 2 # Eq. 17 of https://arxiv.org/pdf/2310.12036v2.pdf
|
||||
else:
|
||||
# Eq. 3 https://ericmitchell.ai/cdpo.pdf; label_smoothing=0 gives original DPO (Eq. 7 of https://arxiv.org/pdf/2305.18290.pdf)
|
||||
losses = (
|
||||
-F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
|
||||
- F.logsigmoid(-self.beta * logits) * self.label_smoothing
|
||||
)
|
||||
loss = losses.mean()
|
||||
chosen_rewards = self.beta * (policy_chosen_logps - reference_chosen_logps).detach()
|
||||
rejected_rewards = self.beta * (policy_rejected_logps - reference_rejected_logps).detach()
|
||||
|
||||
return loss, chosen_rewards, rejected_rewards
|
||||
|
||||
@@ -15,7 +15,6 @@
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
'''
|
||||
def subsequent_mask(
|
||||
size: int,
|
||||
@@ -153,7 +152,6 @@ def subsequent_chunk_mask(
|
||||
[1, 1, 1, 1]]
|
||||
"""
|
||||
# NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
|
||||
# actually this is not needed after we have inference cache implemented, will remove it later
|
||||
pos_idx = torch.arange(size, device=device)
|
||||
block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
|
||||
ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
|
||||
@@ -233,8 +231,8 @@ def add_optional_chunk_mask(xs: torch.Tensor,
|
||||
chunk_masks = masks
|
||||
assert chunk_masks.dtype == torch.bool
|
||||
if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
|
||||
logging.warning('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
|
||||
chunk_masks[chunk_masks.sum(dim=-1)==0] = True
|
||||
print('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
|
||||
chunk_masks[chunk_masks.sum(dim=-1) == 0] = True
|
||||
return chunk_masks
|
||||
|
||||
|
||||
|
||||
@@ -50,10 +50,10 @@ def init_distributed(args):
|
||||
return world_size, local_rank, rank
|
||||
|
||||
|
||||
def init_dataset_and_dataloader(args, configs, gan):
|
||||
def init_dataset_and_dataloader(args, configs, gan, dpo):
|
||||
data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
|
||||
train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True)
|
||||
cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False)
|
||||
train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, dpo=dpo, shuffle=True, partition=True)
|
||||
cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, dpo=dpo, shuffle=False, partition=False)
|
||||
|
||||
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
||||
train_data_loader = DataLoader(train_dataset,
|
||||
@@ -235,7 +235,7 @@ def cosyvoice_join(group_join, info_dict):
|
||||
return False
|
||||
|
||||
|
||||
def batch_forward(model, batch, scaler, info_dict):
|
||||
def batch_forward(model, batch, scaler, info_dict, ref_model=None, dpo_loss=None):
|
||||
device = int(os.environ.get('LOCAL_RANK', 0))
|
||||
|
||||
dtype = info_dict["dtype"]
|
||||
@@ -253,6 +253,24 @@ def batch_forward(model, batch, scaler, info_dict):
|
||||
|
||||
with autocast:
|
||||
info_dict['loss_dict'] = model(batch, device)
|
||||
if ref_model is not None and dpo_loss is not None:
|
||||
chosen_logps = info_dict['loss_dict']["chosen_logps"]
|
||||
rejected_logps = info_dict['loss_dict']["rejected_logps"]
|
||||
sft_loss = info_dict['loss_dict']['loss']
|
||||
with torch.no_grad():
|
||||
ref_loss_dict = ref_model(batch, device)
|
||||
reference_chosen_logps = ref_loss_dict["chosen_logps"]
|
||||
reference_rejected_logps = ref_loss_dict["rejected_logps"]
|
||||
preference_loss, chosen_reward, reject_reward = dpo_loss(
|
||||
chosen_logps, rejected_logps, reference_chosen_logps, reference_rejected_logps
|
||||
)
|
||||
dpo_acc = (chosen_reward > reject_reward).float().mean()
|
||||
info_dict['loss_dict']["loss"] = preference_loss + sft_loss
|
||||
info_dict['loss_dict']["sft_loss"] = sft_loss
|
||||
info_dict['loss_dict']["dpo_loss"] = preference_loss
|
||||
info_dict['loss_dict']["dpo_acc"] = dpo_acc
|
||||
info_dict['loss_dict']["chosen_reward"] = chosen_reward.mean()
|
||||
info_dict['loss_dict']["reject_reward"] = reject_reward.mean()
|
||||
return info_dict
|
||||
|
||||
|
||||
@@ -286,11 +304,15 @@ def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
|
||||
# optimizer.step().
|
||||
if torch.isfinite(grad_norm):
|
||||
scaler.step(optimizer)
|
||||
else:
|
||||
logging.warning('get infinite grad_norm, check your code/data if it appears frequently')
|
||||
scaler.update()
|
||||
else:
|
||||
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||
if torch.isfinite(grad_norm):
|
||||
optimizer.step()
|
||||
else:
|
||||
logging.warning('get infinite grad_norm, check your code/data if it appears frequently')
|
||||
optimizer.zero_grad()
|
||||
scheduler.step()
|
||||
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
||||
@@ -336,7 +358,7 @@ def log_per_save(writer, info_dict):
|
||||
rank = int(os.environ.get('RANK', 0))
|
||||
logging.info(
|
||||
'Epoch {} Step {} CV info lr {} {} rank {}'.format(
|
||||
epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
|
||||
epoch, step + 1, lr, rank, ' '.join(['{} {}'.format(k, v) for k, v in loss_dict.items()])))
|
||||
|
||||
if writer is not None:
|
||||
for k in ['epoch', 'lr']:
|
||||
|
||||
103
cosyvoice/vllm/cosyvoice2.py
Normal file
103
cosyvoice/vllm/cosyvoice2.py
Normal file
@@ -0,0 +1,103 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py
|
||||
# Copyright 2024 The Qwen team.
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
|
||||
from vllm.model_executor.models.qwen2 import *
|
||||
|
||||
|
||||
class CosyVoice2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
],
|
||||
"gate_up_proj": [
|
||||
"gate_proj",
|
||||
"up_proj",
|
||||
],
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
|
||||
self.config = config
|
||||
self.lora_config = lora_config
|
||||
|
||||
self.quant_config = quant_config
|
||||
self.model = Qwen2Model(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(prefix, "model"))
|
||||
|
||||
if get_pp_group().is_last_rank:
|
||||
if config.tie_word_embeddings:
|
||||
self.lm_head = self.model.embed_tokens
|
||||
else:
|
||||
self.lm_head = ParallelLMHead(config.vocab_size,
|
||||
config.hidden_size,
|
||||
True,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(
|
||||
prefix, "lm_head"))
|
||||
else:
|
||||
self.lm_head = PPMissingLayer()
|
||||
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.model.get_input_embeddings(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
hidden_states = self.model(input_ids, positions, intermediate_tensors,
|
||||
inputs_embeds)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata, self.lm_head.bias)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
loader = AutoWeightsLoader(
|
||||
self,
|
||||
skip_prefixes=(["lm_head."]
|
||||
if self.config.tie_word_embeddings else None),
|
||||
)
|
||||
return loader.load_weights(weights)
|
||||
@@ -147,7 +147,7 @@ hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||
generator: !ref <hift>
|
||||
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
||||
mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
|
||||
mel_spec_transform: [
|
||||
!ref <mel_spec_transform1>
|
||||
]
|
||||
|
||||
@@ -147,7 +147,7 @@ hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||
generator: !ref <hift>
|
||||
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
||||
mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
|
||||
mel_spec_transform: [
|
||||
!ref <mel_spec_transform1>
|
||||
]
|
||||
|
||||
@@ -5,70 +5,40 @@ __set_seed3: !apply:torch.manual_seed [1986]
|
||||
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
||||
|
||||
# fixed params
|
||||
sample_rate: 22050
|
||||
text_encoder_input_size: 512
|
||||
llm_input_size: 1024
|
||||
llm_output_size: 1024
|
||||
sample_rate: 24000 # 16000 for llm, 24000 for cfm
|
||||
llm_input_size: 896
|
||||
llm_output_size: 896
|
||||
spk_embed_dim: 192
|
||||
qwen_pretrain_path: 'CosyVoice2-0.5B/CosyVoice-BlankEN'
|
||||
|
||||
# model params
|
||||
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
||||
# for system/third_party class/function, we do not require this.
|
||||
llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||
llm: !new:cosyvoice.llm.llm_dpo.Qwen2LM
|
||||
llm_input_size: !ref <llm_input_size>
|
||||
llm_output_size: !ref <llm_output_size>
|
||||
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
speech_token_size: 4096
|
||||
speech_token_size: 6561
|
||||
length_normalized_loss: True
|
||||
lsm_weight: 0
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
input_size: !ref <text_encoder_input_size>
|
||||
output_size: 1024
|
||||
attention_heads: 16
|
||||
linear_units: 4096
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
normalize_before: True
|
||||
input_layer: 'linear'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
use_cnn_module: False
|
||||
macaron_style: False
|
||||
use_dynamic_chunk: False
|
||||
use_dynamic_left_chunk: False
|
||||
static_chunk_size: 1
|
||||
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
|
||||
input_size: !ref <llm_input_size>
|
||||
output_size: !ref <llm_output_size>
|
||||
attention_heads: 16
|
||||
linear_units: 4096
|
||||
num_blocks: 14
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: 'linear_legacy'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
static_chunk_size: 1
|
||||
dpo: True
|
||||
llm: !new:cosyvoice.llm.llm.Qwen2Encoder
|
||||
pretrain_path: !ref <qwen_pretrain_path>
|
||||
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||
top_p: 0.8
|
||||
top_k: 25
|
||||
win_size: 10
|
||||
tau_r: 0.1
|
||||
|
||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithXvec
|
||||
input_size: 512
|
||||
output_size: 80
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
output_type: 'mel'
|
||||
vocab_size: 4096
|
||||
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
vocab_size: 6561
|
||||
input_frame_rate: 25
|
||||
only_mask_loss: True
|
||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
token_mel_ratio: 2
|
||||
pre_lookahead_len: 3
|
||||
encoder: !new:cosyvoice.transformer.upsample_encoder.UpsampleConformerEncoder
|
||||
output_size: 512
|
||||
attention_heads: 8
|
||||
linear_units: 2048
|
||||
@@ -83,10 +53,7 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
input_size: 512
|
||||
use_cnn_module: False
|
||||
macaron_style: False
|
||||
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
|
||||
channels: 80
|
||||
sampling_ratios: [1, 1, 1, 1]
|
||||
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
|
||||
decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
|
||||
in_channels: 240
|
||||
n_spks: 1
|
||||
spk_emb_dim: 80
|
||||
@@ -101,7 +68,8 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
||||
in_channels: 320
|
||||
out_channels: 80
|
||||
channels: [256, 256]
|
||||
causal: True
|
||||
channels: [256]
|
||||
dropout: 0.0
|
||||
attention_head_dim: 64
|
||||
n_blocks: 4
|
||||
@@ -117,15 +85,15 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
nsf_alpha: 0.1
|
||||
nsf_sigma: 0.003
|
||||
nsf_voiced_threshold: 10
|
||||
upsample_rates: [8, 8]
|
||||
upsample_kernel_sizes: [16, 16]
|
||||
upsample_rates: [8, 5, 3]
|
||||
upsample_kernel_sizes: [16, 11, 7]
|
||||
istft_params:
|
||||
n_fft: 16
|
||||
hop_len: 4
|
||||
resblock_kernel_sizes: [3, 7, 11]
|
||||
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||
source_resblock_kernel_sizes: [7, 11]
|
||||
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
|
||||
source_resblock_kernel_sizes: [7, 7, 11]
|
||||
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||
lrelu_slope: 0.1
|
||||
audio_limit: 0.99
|
||||
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
||||
@@ -133,6 +101,25 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
in_channels: 80
|
||||
cond_channels: 512
|
||||
|
||||
# gan related module
|
||||
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1024
|
||||
num_mels: 80
|
||||
sampling_rate: !ref <sample_rate>
|
||||
hop_size: 256
|
||||
win_size: 1024
|
||||
fmin: 0
|
||||
fmax: null
|
||||
center: False
|
||||
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||
generator: !ref <hift>
|
||||
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
||||
mel_spec_transform: [
|
||||
!ref <mel_spec_transform1>
|
||||
]
|
||||
|
||||
# processor functions
|
||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||
@@ -151,6 +138,8 @@ filter: !name:cosyvoice.dataset.processor.filter
|
||||
token_min_length: 1
|
||||
resample: !name:cosyvoice.dataset.processor.resample
|
||||
resample_rate: !ref <sample_rate>
|
||||
truncate: !name:cosyvoice.dataset.processor.truncate
|
||||
truncate_length: 24576 # must be a multiplier of hop_size
|
||||
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1024
|
||||
num_mels: 80
|
||||
@@ -162,6 +151,9 @@ feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
center: False
|
||||
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||
feat_extractor: !ref <feat_extractor>
|
||||
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||
sample_rate: !ref <sample_rate>
|
||||
hop_size: 256
|
||||
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||
normalize: True
|
||||
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||
@@ -170,9 +162,10 @@ sort: !name:cosyvoice.dataset.processor.sort
|
||||
sort_size: 500 # sort_size should be less than shuffle_size
|
||||
batch: !name:cosyvoice.dataset.processor.batch
|
||||
batch_type: 'dynamic'
|
||||
max_frames_in_batch: 2000
|
||||
max_frames_in_batch: 2000 # change to 1400 in gan train on v100 16g
|
||||
padding: !name:cosyvoice.dataset.processor.padding
|
||||
use_spk_embedding: False # change to True during sft
|
||||
use_spk_embedding: True # change to True during sft
|
||||
dpo: True
|
||||
|
||||
# dataset processor pipeline
|
||||
data_pipeline: [
|
||||
@@ -187,17 +180,47 @@ data_pipeline: [
|
||||
!ref <batch>,
|
||||
!ref <padding>,
|
||||
]
|
||||
data_pipeline_gan: [
|
||||
!ref <parquet_opener>,
|
||||
!ref <tokenize>,
|
||||
!ref <filter>,
|
||||
!ref <resample>,
|
||||
!ref <truncate>,
|
||||
!ref <compute_fbank>,
|
||||
!ref <compute_f0>,
|
||||
!ref <parse_embedding>,
|
||||
!ref <shuffle>,
|
||||
!ref <sort>,
|
||||
!ref <batch>,
|
||||
!ref <padding>,
|
||||
]
|
||||
|
||||
# train conf
|
||||
# llm flow train conf
|
||||
train_conf:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.001 # change to 1e-5 during sft
|
||||
lr: 0.00001 # change to 1e-5 during sft
|
||||
scheduler: warmuplr # change to constantlr during sft
|
||||
scheduler_conf:
|
||||
warmup_steps: 2500
|
||||
warmup_steps: 25000
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 2
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
|
||||
# gan train conf
|
||||
train_conf_gan:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.0002 # use small lr for gan training
|
||||
scheduler: constantlr
|
||||
optim_d: adam
|
||||
optim_conf_d:
|
||||
lr: 0.0002 # use small lr for gan training
|
||||
scheduler_d: constantlr
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 1 # in gan training, accum_grad must be 1
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
@@ -49,5 +49,7 @@ if __name__ == "__main__":
|
||||
type=str)
|
||||
parser.add_argument('--des_dir',
|
||||
type=str)
|
||||
parser.add_argument('--ref_model',
|
||||
type=str)
|
||||
args = parser.parse_args()
|
||||
main()
|
||||
|
||||
50
examples/libritts/cosyvoice/local/prepare_reject_sample.py
Normal file
50
examples/libritts/cosyvoice/local/prepare_reject_sample.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
import torchaudio
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice2
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
||||
def main():
|
||||
cosyvoice = CosyVoice2(args.ref_model)
|
||||
|
||||
utt2wav, utt2text = {}, {}
|
||||
with open('{}/wav.scp'.format(args.src_dir)) as f:
|
||||
for l in f:
|
||||
l = l.split('\n')[0].split()
|
||||
utt2wav[l[0]] = l[1]
|
||||
with open('{}/text'.format(args.src_dir)) as f:
|
||||
for l in f:
|
||||
l = l.split('\n')[0].split()
|
||||
utt2text[l[0]] = ' '.join(l[1:])
|
||||
|
||||
os.makedirs('{}/wav'.format(args.des_dir), exist_ok=True)
|
||||
with open('{}/wav.scp'.format(args.des_dir), 'w') as f:
|
||||
for utt, wav in tqdm(utt2wav.items()):
|
||||
prompt_speech_16k = load_wav(wav, 16000)
|
||||
if prompt_speech_16k.shape[1] >= 30 * 16000:
|
||||
continue
|
||||
speech_list = []
|
||||
for _, j in enumerate(cosyvoice.inference_zero_shot(utt2text[utt], utt2text[utt], prompt_speech_16k, stream=False, text_frontend=False)):
|
||||
speech_list.append(j['tts_speech'])
|
||||
negative_wav = os.path.abspath('{}/wav/{}'.format(args.des_dir, os.path.basename(wav)))
|
||||
torchaudio.save(negative_wav, torch.concat(speech_list, dim=1), cosyvoice.sample_rate, backend='soundfile')
|
||||
f.write('{} {}\n'.format(utt, negative_wav))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--src_dir',
|
||||
type=str)
|
||||
parser.add_argument('--des_dir',
|
||||
type=str)
|
||||
parser.add_argument('--ref_model',
|
||||
type=str)
|
||||
args = parser.parse_args()
|
||||
main()
|
||||
@@ -51,23 +51,6 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
done
|
||||
fi
|
||||
|
||||
# inference
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
echo "Run inference. Please make sure utt in tts_text is in prompt_data"
|
||||
for mode in sft zero_shot; do
|
||||
python cosyvoice/bin/inference.py --mode $mode \
|
||||
--gpu 0 \
|
||||
--config conf/cosyvoice.yaml \
|
||||
--prompt_data data/test-clean/parquet/data.list \
|
||||
--prompt_utt2data data/test-clean/parquet/utt2data.list \
|
||||
--tts_text `pwd`/tts_text.json \
|
||||
--llm_model $pretrained_model_dir/llm.pt \
|
||||
--flow_model $pretrained_model_dir/flow.pt \
|
||||
--hifigan_model $pretrained_model_dir/hift.pt \
|
||||
--result_dir `pwd`/exp/cosyvoice/test-clean/$mode
|
||||
done
|
||||
fi
|
||||
|
||||
# train llm
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
|
||||
@@ -5,74 +5,51 @@ __set_seed3: !apply:torch.manual_seed [1986]
|
||||
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
||||
|
||||
# fixed params
|
||||
sample_rate: 22050
|
||||
text_encoder_input_size: 512
|
||||
llm_input_size: 1024
|
||||
llm_output_size: 1024
|
||||
sample_rate: 24000
|
||||
llm_input_size: 896
|
||||
llm_output_size: 896
|
||||
spk_embed_dim: 192
|
||||
qwen_pretrain_path: ''
|
||||
token_frame_rate: 25
|
||||
token_mel_ratio: 2
|
||||
|
||||
# stream related params
|
||||
chunk_size: 25 # streaming inference chunk size, in token
|
||||
num_decoding_left_chunks: -1 # streaming inference flow decoder left chunk size, <0 means use all left chunks
|
||||
|
||||
# model params
|
||||
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
||||
# for system/third_party class/function, we do not require this.
|
||||
llm: !new:cosyvoice.llm.llm.TransformerLM
|
||||
text_encoder_input_size: !ref <text_encoder_input_size>
|
||||
llm: !new:cosyvoice.llm.llm.Qwen2LM
|
||||
llm_input_size: !ref <llm_input_size>
|
||||
llm_output_size: !ref <llm_output_size>
|
||||
text_token_size: 51866 # change to 60515 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
speech_token_size: 4096
|
||||
speech_token_size: 6561
|
||||
length_normalized_loss: True
|
||||
lsm_weight: 0
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
input_size: !ref <text_encoder_input_size>
|
||||
output_size: 1024
|
||||
attention_heads: 8
|
||||
linear_units: 2048
|
||||
num_blocks: 3
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
normalize_before: True
|
||||
input_layer: 'linear'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
use_cnn_module: False
|
||||
macaron_style: False
|
||||
use_dynamic_chunk: False
|
||||
use_dynamic_left_chunk: False
|
||||
static_chunk_size: 1
|
||||
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
|
||||
input_size: !ref <llm_input_size>
|
||||
output_size: !ref <llm_output_size>
|
||||
attention_heads: 8
|
||||
linear_units: 2048
|
||||
num_blocks: 7
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: 'linear_legacy'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
static_chunk_size: 1
|
||||
mix_ratio: [5, 15]
|
||||
llm: !new:cosyvoice.llm.llm.Qwen2Encoder
|
||||
pretrain_path: !ref <qwen_pretrain_path>
|
||||
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||
top_p: 0.8
|
||||
top_k: 25
|
||||
win_size: 10
|
||||
tau_r: 0.1
|
||||
|
||||
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithXvec
|
||||
input_size: 512
|
||||
output_size: 80
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
output_type: 'mel'
|
||||
vocab_size: 4096
|
||||
input_frame_rate: 50 # change to 25 if you want to train with CosyVoice-300M-25Hz recipe
|
||||
vocab_size: 6561
|
||||
input_frame_rate: !ref <token_frame_rate>
|
||||
only_mask_loss: True
|
||||
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
||||
token_mel_ratio: !ref <token_mel_ratio>
|
||||
pre_lookahead_len: 3
|
||||
encoder: !new:cosyvoice.transformer.upsample_encoder.UpsampleConformerEncoder
|
||||
output_size: 512
|
||||
attention_heads: 4
|
||||
linear_units: 1024
|
||||
num_blocks: 3
|
||||
attention_heads: 8
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.1
|
||||
@@ -83,10 +60,8 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
input_size: 512
|
||||
use_cnn_module: False
|
||||
macaron_style: False
|
||||
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
|
||||
channels: 80
|
||||
sampling_ratios: [1, 1, 1, 1]
|
||||
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
|
||||
static_chunk_size: !ref <chunk_size>
|
||||
decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
|
||||
in_channels: 240
|
||||
n_spks: 1
|
||||
spk_emb_dim: 80
|
||||
@@ -98,16 +73,18 @@ flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
||||
training_cfg_rate: 0.2
|
||||
inference_cfg_rate: 0.7
|
||||
reg_loss_type: 'l1'
|
||||
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
||||
estimator: !new:cosyvoice.flow.decoder.CausalConditionalDecoder
|
||||
in_channels: 320
|
||||
out_channels: 80
|
||||
channels: [256, 256]
|
||||
channels: [256]
|
||||
dropout: 0.0
|
||||
attention_head_dim: 64
|
||||
n_blocks: 4
|
||||
num_mid_blocks: 8
|
||||
num_mid_blocks: 12
|
||||
num_heads: 8
|
||||
act_fn: 'gelu'
|
||||
static_chunk_size: !ref <chunk_size> * <token_mel_ratio>
|
||||
num_decoding_left_chunks: !ref <num_decoding_left_chunks>
|
||||
|
||||
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
in_channels: 80
|
||||
@@ -117,15 +94,15 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
nsf_alpha: 0.1
|
||||
nsf_sigma: 0.003
|
||||
nsf_voiced_threshold: 10
|
||||
upsample_rates: [8, 8]
|
||||
upsample_kernel_sizes: [16, 16]
|
||||
upsample_rates: [8, 5, 3]
|
||||
upsample_kernel_sizes: [16, 11, 7]
|
||||
istft_params:
|
||||
n_fft: 16
|
||||
hop_len: 4
|
||||
resblock_kernel_sizes: [3, 7, 11]
|
||||
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||
source_resblock_kernel_sizes: [7, 11]
|
||||
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
|
||||
source_resblock_kernel_sizes: [7, 7, 11]
|
||||
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||
lrelu_slope: 0.1
|
||||
audio_limit: 0.99
|
||||
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
||||
@@ -133,35 +110,58 @@ hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
in_channels: 80
|
||||
cond_channels: 512
|
||||
|
||||
# gan related module
|
||||
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1920
|
||||
num_mels: 80
|
||||
sampling_rate: !ref <sample_rate>
|
||||
hop_size: 480
|
||||
win_size: 1920
|
||||
fmin: 0
|
||||
fmax: null
|
||||
center: False
|
||||
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||
generator: !ref <hift>
|
||||
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||
mrd: !new:cosyvoice.hifigan.discriminator.MultiResSpecDiscriminator
|
||||
mel_spec_transform: [
|
||||
!ref <mel_spec_transform1>
|
||||
]
|
||||
|
||||
# processor functions
|
||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||
multilingual: True
|
||||
num_languages: 100
|
||||
language: 'en'
|
||||
task: 'transcribe'
|
||||
get_tokenizer: !name:cosyvoice.tokenizer.tokenizer.get_qwen_tokenizer
|
||||
token_path: !ref <qwen_pretrain_path>
|
||||
skip_special_tokens: True
|
||||
allowed_special: 'all'
|
||||
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
||||
get_tokenizer: !ref <get_tokenizer>
|
||||
allowed_special: !ref <allowed_special>
|
||||
filter: !name:cosyvoice.dataset.processor.filter
|
||||
max_length: 40960
|
||||
min_length: 0
|
||||
min_length: 100
|
||||
token_max_length: 200
|
||||
token_min_length: 1
|
||||
resample: !name:cosyvoice.dataset.processor.resample
|
||||
resample_rate: !ref <sample_rate>
|
||||
truncate: !name:cosyvoice.dataset.processor.truncate
|
||||
truncate_length: 24480 # must be a multiplier of hop_size
|
||||
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1024
|
||||
n_fft: 1920
|
||||
num_mels: 80
|
||||
sampling_rate: !ref <sample_rate>
|
||||
hop_size: 256
|
||||
win_size: 1024
|
||||
hop_size: 480
|
||||
win_size: 1920
|
||||
fmin: 0
|
||||
fmax: 8000
|
||||
center: False
|
||||
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||
feat_extractor: !ref <feat_extractor>
|
||||
token_mel_ratio: 2
|
||||
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||
sample_rate: !ref <sample_rate>
|
||||
hop_size: 480
|
||||
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||
normalize: True
|
||||
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||
@@ -170,10 +170,11 @@ sort: !name:cosyvoice.dataset.processor.sort
|
||||
sort_size: 500 # sort_size should be less than shuffle_size
|
||||
batch: !name:cosyvoice.dataset.processor.batch
|
||||
batch_type: 'dynamic'
|
||||
max_frames_in_batch: 12000
|
||||
max_frames_in_batch: 2000
|
||||
padding: !name:cosyvoice.dataset.processor.padding
|
||||
use_spk_embedding: False # change to True during sft
|
||||
|
||||
|
||||
# dataset processor pipeline
|
||||
data_pipeline: [
|
||||
!ref <parquet_opener>,
|
||||
@@ -187,17 +188,47 @@ data_pipeline: [
|
||||
!ref <batch>,
|
||||
!ref <padding>,
|
||||
]
|
||||
data_pipeline_gan: [
|
||||
!ref <parquet_opener>,
|
||||
!ref <tokenize>,
|
||||
!ref <filter>,
|
||||
!ref <resample>,
|
||||
!ref <truncate>,
|
||||
!ref <compute_fbank>,
|
||||
!ref <compute_f0>,
|
||||
!ref <parse_embedding>,
|
||||
!ref <shuffle>,
|
||||
!ref <sort>,
|
||||
!ref <batch>,
|
||||
!ref <padding>,
|
||||
]
|
||||
|
||||
# train conf
|
||||
# llm flow train conf
|
||||
train_conf:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.002 # change to 0.001 if you want to train flow from scratch
|
||||
scheduler: warmuplr
|
||||
lr: 1e-5 # change to 1e-5 during sft
|
||||
scheduler: constantlr # change to constantlr during sft
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
warmup_steps: 2500
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 2
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
|
||||
# gan train conf
|
||||
train_conf_gan:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.0002 # use small lr for gan training
|
||||
scheduler: constantlr
|
||||
optim_d: adam
|
||||
optim_conf_d:
|
||||
lr: 0.0002 # use small lr for gan training
|
||||
scheduler_d: constantlr
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 1 # in gan training, accum_grad must be 1
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
1
examples/libritts/cosyvoice2/local
Symbolic link
1
examples/libritts/cosyvoice2/local
Symbolic link
@@ -0,0 +1 @@
|
||||
../cosyvoice/local
|
||||
1
examples/libritts/cosyvoice2/path.sh
Symbolic link
1
examples/libritts/cosyvoice2/path.sh
Symbolic link
@@ -0,0 +1 @@
|
||||
../cosyvoice/path.sh
|
||||
111
examples/libritts/cosyvoice2/run.sh
Normal file
111
examples/libritts/cosyvoice2/run.sh
Normal file
@@ -0,0 +1,111 @@
|
||||
#!/bin/bash
|
||||
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
||||
. ./path.sh || exit 1;
|
||||
|
||||
stage=-1
|
||||
stop_stage=3
|
||||
|
||||
data_url=www.openslr.org/resources/60
|
||||
data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
|
||||
pretrained_model_dir=../../../pretrained_models/CosyVoice2-0.5B
|
||||
|
||||
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
||||
echo "Data Download"
|
||||
for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
|
||||
local/download_and_untar.sh ${data_dir} ${data_url} ${part}
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||
mkdir -p data/$x
|
||||
python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||
tools/extract_embedding.py --dir data/$x \
|
||||
--onnx_path $pretrained_model_dir/campplus.onnx
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||
tools/extract_speech_token.py --dir data/$x \
|
||||
--onnx_path $pretrained_model_dir/speech_tokenizer_v2.onnx
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||
mkdir -p data/$x/parquet
|
||||
tools/make_parquet_list.py --num_utts_per_parquet 1000 \
|
||||
--num_processes 10 \
|
||||
--src_dir data/$x \
|
||||
--des_dir data/$x/parquet
|
||||
done
|
||||
fi
|
||||
|
||||
# train llm
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
job_id=1986
|
||||
dist_backend="nccl"
|
||||
num_workers=2
|
||||
prefetch=100
|
||||
train_engine=torch_ddp
|
||||
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
|
||||
if [ $train_engine == 'deepspeed' ]; then
|
||||
echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
|
||||
fi
|
||||
cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
|
||||
cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
|
||||
# NOTE will update llm/hift training later
|
||||
for model in llm flow hifigan; do
|
||||
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
|
||||
cosyvoice/bin/train.py \
|
||||
--train_engine $train_engine \
|
||||
--config conf/cosyvoice2.yaml \
|
||||
--train_data data/train.data.list \
|
||||
--cv_data data/dev.data.list \
|
||||
--qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
|
||||
--model $model \
|
||||
--checkpoint $pretrained_model_dir/$model.pt \
|
||||
--model_dir `pwd`/exp/cosyvoice2/$model/$train_engine \
|
||||
--tensorboard_dir `pwd`/tensorboard/cosyvoice2/$model/$train_engine \
|
||||
--ddp.dist_backend $dist_backend \
|
||||
--num_workers ${num_workers} \
|
||||
--prefetch ${prefetch} \
|
||||
--pin_memory \
|
||||
--use_amp \
|
||||
--deepspeed_config ./conf/ds_stage2.json \
|
||||
--deepspeed.save_states model+optimizer
|
||||
done
|
||||
fi
|
||||
|
||||
# average model
|
||||
average_num=5
|
||||
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||
for model in llm flow hifigan; do
|
||||
decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
|
||||
echo "do model average and final checkpoint is $decode_checkpoint"
|
||||
python cosyvoice/bin/average_model.py \
|
||||
--dst_model $decode_checkpoint \
|
||||
--src_path `pwd`/exp/cosyvoice/$model/$train_engine \
|
||||
--num ${average_num} \
|
||||
--val_best
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
|
||||
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
||||
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
||||
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
||||
fi
|
||||
123
examples/libritts/cosyvoice2/run_dpo.sh
Normal file
123
examples/libritts/cosyvoice2/run_dpo.sh
Normal file
@@ -0,0 +1,123 @@
|
||||
#!/bin/bash
|
||||
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
||||
. ./path.sh || exit 1;
|
||||
|
||||
stage=-1
|
||||
stop_stage=3
|
||||
|
||||
data_url=www.openslr.org/resources/60
|
||||
data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
|
||||
pretrained_model_dir=../../../pretrained_models/CosyVoice2-0.5B
|
||||
|
||||
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
||||
echo "Data Download"
|
||||
for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
|
||||
local/download_and_untar.sh ${data_dir} ${data_url} ${part}
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||
mkdir -p data/$x
|
||||
python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
echo "Prepare negative samples using CosyVoice2-0.5B, this is also our reference model.
|
||||
Here we use CosyVoice2-0.5B generated audio as reject sample for simplicity, you can use metric like wer/similarity."
|
||||
for x in train-clean-100 train-clean-360 train-other-500; do
|
||||
mkdir -p data/${x}_reject
|
||||
python local/prepare_reject_sample.py --src_dir data/$x --des_dir data/${x}_reject --ref_model $pretrained_model_dir
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||
tools/extract_embedding.py --dir data/$x \
|
||||
--onnx_path $pretrained_model_dir/campplus.onnx
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 train-clean-100_reject train-clean-360_reject dev-clean dev-other test-clean test-other; do
|
||||
tools/extract_speech_token.py --dir data/$x \
|
||||
--onnx_path $pretrained_model_dir/speech_tokenizer_v2.onnx
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||
mkdir -p data/$x/parquet
|
||||
tools/make_parquet_list.py --num_utts_per_parquet 1000 \
|
||||
--num_processes 10 \
|
||||
--dpo \
|
||||
--src_dir data/$x \
|
||||
--des_dir data/$x/parquet
|
||||
done
|
||||
fi
|
||||
|
||||
# train llm
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
job_id=1986
|
||||
dist_backend="nccl"
|
||||
num_workers=2
|
||||
prefetch=100
|
||||
train_engine=torch_ddp
|
||||
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
|
||||
if [ $train_engine == 'deepspeed' ]; then
|
||||
echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
|
||||
fi
|
||||
cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
|
||||
cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
|
||||
# NOTE only llm supports dpo
|
||||
for model in llm; do
|
||||
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
|
||||
cosyvoice/bin/train.py \
|
||||
--train_engine $train_engine \
|
||||
--config conf/cosyvoice2.yaml \
|
||||
--train_data data/train.data.list \
|
||||
--cv_data data/dev.data.list \
|
||||
--qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
|
||||
--model $model \
|
||||
--checkpoint $pretrained_model_dir/$model.pt \
|
||||
--ref_model $pretrained_model_dir/llm.pt \
|
||||
--model_dir `pwd`/exp/cosyvoice2/$model/$train_engine \
|
||||
--tensorboard_dir `pwd`/tensorboard/cosyvoice2/$model/$train_engine \
|
||||
--ddp.dist_backend $dist_backend \
|
||||
--num_workers ${num_workers} \
|
||||
--prefetch ${prefetch} \
|
||||
--pin_memory \
|
||||
--use_amp \
|
||||
--dpo \
|
||||
--deepspeed_config ./conf/ds_stage2.json \
|
||||
--deepspeed.save_states model+optimizer
|
||||
done
|
||||
fi
|
||||
|
||||
# average model
|
||||
average_num=5
|
||||
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||
for model in llm flow hifigan; do
|
||||
decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
|
||||
echo "do model average and final checkpoint is $decode_checkpoint"
|
||||
python cosyvoice/bin/average_model.py \
|
||||
--dst_model $decode_checkpoint \
|
||||
--src_path `pwd`/exp/cosyvoice/$model/$train_engine \
|
||||
--num ${average_num} \
|
||||
--val_best
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
|
||||
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
||||
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
||||
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
||||
fi
|
||||
1
examples/libritts/cosyvoice2/tts_text.json
Symbolic link
1
examples/libritts/cosyvoice2/tts_text.json
Symbolic link
@@ -0,0 +1 @@
|
||||
../cosyvoice/tts_text.json
|
||||
1
examples/magicdata-read/cosyvoice/conf
Symbolic link
1
examples/magicdata-read/cosyvoice/conf
Symbolic link
@@ -0,0 +1 @@
|
||||
../../libritts/cosyvoice/conf
|
||||
@@ -1,3 +0,0 @@
|
||||
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PYTHONPATH=../../../:../../../third_party/Matcha-TTS:$PYTHONPATH
|
||||
1
examples/magicdata-read/cosyvoice/path.sh
Symbolic link
1
examples/magicdata-read/cosyvoice/path.sh
Symbolic link
@@ -0,0 +1 @@
|
||||
../../libritts/cosyvoice/path.sh
|
||||
@@ -51,23 +51,6 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
done
|
||||
fi
|
||||
|
||||
# inference
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
echo "Run inference. Please make sure utt in tts_text is in prompt_data"
|
||||
for mode in sft zero_shot; do
|
||||
python cosyvoice/bin/inference.py --mode $mode \
|
||||
--gpu 0 \
|
||||
--config conf/cosyvoice.yaml \
|
||||
--prompt_data data/test/parquet/data.list \
|
||||
--prompt_utt2data data/test/parquet/utt2data.list \
|
||||
--tts_text `pwd`/tts_text.json \
|
||||
--llm_model $pretrained_model_dir/llm.pt \
|
||||
--flow_model $pretrained_model_dir/flow.pt \
|
||||
--hifigan_model $pretrained_model_dir/hift.pt \
|
||||
--result_dir `pwd`/exp/cosyvoice/test/$mode
|
||||
done
|
||||
fi
|
||||
|
||||
# train llm
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
@@ -83,7 +66,7 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
fi
|
||||
cp data/train/parquet/data.list data/train.data.list
|
||||
cp data/dev/parquet/data.list data/dev.data.list
|
||||
for model in llm flow; do
|
||||
for model in llm flow hifigan; do
|
||||
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
||||
cosyvoice/bin/train.py \
|
||||
@@ -99,11 +82,26 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
--num_workers ${num_workers} \
|
||||
--prefetch ${prefetch} \
|
||||
--pin_memory \
|
||||
--use_amp \
|
||||
--deepspeed_config ./conf/ds_stage2.json \
|
||||
--deepspeed.save_states model+optimizer
|
||||
done
|
||||
fi
|
||||
|
||||
# average model
|
||||
average_num=5
|
||||
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||
for model in llm flow hifigan; do
|
||||
decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
|
||||
echo "do model average and final checkpoint is $decode_checkpoint"
|
||||
python cosyvoice/bin/average_model.py \
|
||||
--dst_model $decode_checkpoint \
|
||||
--src_path `pwd`/exp/cosyvoice/$model/$train_engine \
|
||||
--num ${average_num} \
|
||||
--val_best
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
||||
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu121
|
||||
--extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/ # https://github.com/microsoft/onnxruntime/issues/21684
|
||||
conformer==0.3.2
|
||||
deepspeed==0.14.2; sys_platform == 'linux'
|
||||
deepspeed==0.15.1; sys_platform == 'linux'
|
||||
diffusers==0.29.0
|
||||
fastapi==0.115.6
|
||||
fastapi-cli==0.0.4
|
||||
gdown==5.1.0
|
||||
gradio==5.4.0
|
||||
grpcio==1.57.0
|
||||
@@ -13,14 +15,15 @@ inflect==7.3.1
|
||||
librosa==0.10.2
|
||||
lightning==2.2.4
|
||||
matplotlib==3.7.5
|
||||
modelscope==1.15.0
|
||||
modelscope==1.20.0
|
||||
networkx==3.1
|
||||
omegaconf==2.3.0
|
||||
onnx==1.16.0
|
||||
onnxruntime-gpu==1.18.0; sys_platform == 'linux'
|
||||
onnxruntime==1.18.0; sys_platform == 'darwin' or sys_platform == 'windows'
|
||||
onnxruntime==1.18.0; sys_platform == 'darwin' or sys_platform == 'win32'
|
||||
openai-whisper==20231117
|
||||
protobuf==4.25
|
||||
pyarrow==18.1.0
|
||||
pydantic==2.7.0
|
||||
pyworld==0.3.4
|
||||
rich==13.7.1
|
||||
@@ -29,11 +32,9 @@ tensorboard==2.14.0
|
||||
tensorrt-cu12==10.0.1; sys_platform == 'linux'
|
||||
tensorrt-cu12-bindings==10.0.1; sys_platform == 'linux'
|
||||
tensorrt-cu12-libs==10.0.1; sys_platform == 'linux'
|
||||
torch==2.4.0
|
||||
torchaudio==2.4.0
|
||||
torch==2.3.1
|
||||
torchaudio==2.3.1
|
||||
transformers==4.40.1
|
||||
uvicorn==0.30.0
|
||||
wetext==0.0.4
|
||||
wget==3.2
|
||||
fastapi==0.115.6
|
||||
fastapi-cli==0.0.4
|
||||
WeTextProcessing==1.0.3
|
||||
|
||||
@@ -5,7 +5,7 @@ WORKDIR /opt/CosyVoice
|
||||
|
||||
RUN sed -i s@/archive.ubuntu.com/@/mirrors.aliyun.com/@g /etc/apt/sources.list
|
||||
RUN apt-get update -y
|
||||
RUN apt-get -y install git unzip git-lfs
|
||||
RUN apt-get -y install git unzip git-lfs g++
|
||||
RUN git lfs install
|
||||
RUN git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
|
||||
# here we use python==3.10 because we cannot find an image which have both python3.8 and torch2.0.1-cu118 installed
|
||||
|
||||
@@ -72,6 +72,7 @@ async def inference_instruct(tts_text: str = Form(), spk_id: str = Form(), instr
|
||||
model_output = cosyvoice.inference_instruct(tts_text, spk_id, instruct_text)
|
||||
return StreamingResponse(generate_data(model_output))
|
||||
|
||||
|
||||
@app.get("/inference_instruct2")
|
||||
@app.post("/inference_instruct2")
|
||||
async def inference_instruct2(tts_text: str = Form(), instruct_text: str = Form(), prompt_wav: UploadFile = File()):
|
||||
@@ -80,7 +81,6 @@ async def inference_instruct2(tts_text: str = Form(), instruct_text: str = Form(
|
||||
return StreamingResponse(generate_data(model_output))
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--port',
|
||||
@@ -98,4 +98,4 @@ if __name__ == '__main__':
|
||||
cosyvoice = CosyVoice2(args.model_dir)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
||||
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
||||
|
||||
@@ -34,10 +34,10 @@ logging.basicConfig(level=logging.DEBUG,
|
||||
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
|
||||
def __init__(self, args):
|
||||
try:
|
||||
self.cosyvoice = CosyVoice(args.model_dir)
|
||||
self.cosyvoice = CosyVoice(args.model_dir, trt_concurrent=args.max_conc)
|
||||
except Exception:
|
||||
try:
|
||||
self.cosyvoice = CosyVoice2(args.model_dir)
|
||||
self.cosyvoice = CosyVoice2(args.model_dir, trt_concurrent=args.max_conc)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
logging.info('grpc service initialized')
|
||||
|
||||
@@ -34,7 +34,9 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
|
||||
spk_list = [utt2spk[utt] for utt in utt_list]
|
||||
uttembedding_list = [utt2embedding[utt] for utt in utt_list]
|
||||
spkembedding_list = [spk2embedding[utt2spk[utt]] for utt in utt_list]
|
||||
speech_token_list = [utt2speech_token[utt] for utt in utt_list]
|
||||
speech_token_list = [utt2speech_token.get(utt, []) for utt in utt_list]
|
||||
if args.dpo:
|
||||
reject_speech_token_list = [utt2reject_speech_token[utt] for utt in utt_list]
|
||||
|
||||
# 保存到parquet,utt2parquet_file,spk2parquet_file
|
||||
df = pd.DataFrame()
|
||||
@@ -46,6 +48,8 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
|
||||
df['utt_embedding'] = uttembedding_list
|
||||
df['spk_embedding'] = spkembedding_list
|
||||
df['speech_token'] = speech_token_list
|
||||
if args.dpo:
|
||||
df['reject_speech_token'] = reject_speech_token_list
|
||||
df.to_parquet(parquet_file)
|
||||
with open(utt2parquet_file, 'w') as f:
|
||||
json.dump({k: parquet_file for k in utt_list}, f, ensure_ascii=False, indent=2)
|
||||
@@ -68,6 +72,10 @@ if __name__ == "__main__":
|
||||
type=str)
|
||||
parser.add_argument('--des_dir',
|
||||
type=str)
|
||||
parser.add_argument('--dpo',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Use Direct Preference Optimization')
|
||||
args = parser.parse_args()
|
||||
|
||||
utt2wav, utt2text, utt2spk = {}, {}, {}
|
||||
@@ -86,6 +94,8 @@ if __name__ == "__main__":
|
||||
utt2embedding = torch.load('{}/utt2embedding.pt'.format(args.src_dir))
|
||||
spk2embedding = torch.load('{}/spk2embedding.pt'.format(args.src_dir))
|
||||
utt2speech_token = torch.load('{}/utt2speech_token.pt'.format(args.src_dir))
|
||||
if args.dpo:
|
||||
utt2reject_speech_token = torch.load('{}_reject/utt2speech_token.pt'.format(args.src_dir))
|
||||
utts = list(utt2wav.keys())
|
||||
|
||||
# Using process pool to speedup
|
||||
|
||||
23
vllm_example.py
Normal file
23
vllm_example.py
Normal file
@@ -0,0 +1,23 @@
|
||||
import sys
|
||||
sys.path.append('third_party/Matcha-TTS')
|
||||
from vllm import ModelRegistry
|
||||
from cosyvoice.vllm.cosyvoice2 import CosyVoice2ForCausalLM
|
||||
ModelRegistry.register_model("CosyVoice2ForCausalLM", CosyVoice2ForCausalLM)
|
||||
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice2
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
from cosyvoice.utils.common import set_all_random_seed
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def main():
|
||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=True, load_trt=True, load_vllm=True, fp16=True)
|
||||
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
||||
for i in tqdm(range(100)):
|
||||
set_all_random_seed(i)
|
||||
for _, _ in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
||||
continue
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user