mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
add flow decoder cache
This commit is contained in:
@@ -24,6 +24,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
|
||||
|
||||
def get_args():
|
||||
@@ -71,6 +72,7 @@ def main():
|
||||
script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(llm_text_encoder.half())
|
||||
script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export llm_text_encoder')
|
||||
|
||||
# 2. export llm llm
|
||||
llm_llm = model.model.llm.llm
|
||||
@@ -78,14 +80,23 @@ def main():
|
||||
script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
|
||||
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export llm_llm')
|
||||
|
||||
# 3. export flow encoder
|
||||
flow_encoder = model.model.flow.encoder
|
||||
script = get_optimized_script(flow_encoder)
|
||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(flow_encoder.half())
|
||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||
|
||||
# 3. export flow encoder
|
||||
flow_encoder = model.model.flow.encoder
|
||||
script = get_optimized_script(flow_encoder)
|
||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(flow_encoder.half())
|
||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export flow_encoder')
|
||||
else:
|
||||
# 3. export flow encoder
|
||||
flow_encoder = model.model.flow.encoder
|
||||
script = get_optimized_script(flow_encoder, ['forward_chunk'])
|
||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(flow_encoder.half(), ['forward_chunk'])
|
||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export flow_encoder')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
@@ -28,6 +28,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
|
||||
|
||||
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
||||
@@ -51,6 +52,7 @@ def get_args():
|
||||
return args
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
@@ -64,52 +66,125 @@ def main():
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
|
||||
# 1. export flow decoder estimator
|
||||
estimator = model.model.flow.decoder.estimator
|
||||
if not isinstance(model, CosyVoice2):
|
||||
# 1. export flow decoder estimator
|
||||
estimator = model.model.flow.decoder.estimator
|
||||
estimator.eval()
|
||||
|
||||
device = model.model.device
|
||||
batch_size, seq_len = 2, 256
|
||||
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||
torch.onnx.export(
|
||||
estimator,
|
||||
(x, mask, mu, t, spks, cond),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
export_params=True,
|
||||
opset_version=18,
|
||||
do_constant_folding=True,
|
||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||
output_names=['estimator_out'],
|
||||
dynamic_axes={
|
||||
'x': {2: 'seq_len'},
|
||||
'mask': {2: 'seq_len'},
|
||||
'mu': {2: 'seq_len'},
|
||||
'cond': {2: 'seq_len'},
|
||||
'estimator_out': {2: 'seq_len'},
|
||||
}
|
||||
)
|
||||
device = model.model.device
|
||||
batch_size, seq_len = 2, 256
|
||||
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||
torch.onnx.export(
|
||||
estimator,
|
||||
(x, mask, mu, t, spks, cond),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
export_params=True,
|
||||
opset_version=18,
|
||||
do_constant_folding=True,
|
||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||
output_names=['estimator_out'],
|
||||
dynamic_axes={
|
||||
'x': {2: 'seq_len'},
|
||||
'mask': {2: 'seq_len'},
|
||||
'mu': {2: 'seq_len'},
|
||||
'cond': {2: 'seq_len'},
|
||||
'estimator_out': {2: 'seq_len'},
|
||||
}
|
||||
)
|
||||
|
||||
# 2. test computation consistency
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
sess_options=option, providers=providers)
|
||||
# 2. test computation consistency
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
sess_options=option, providers=providers)
|
||||
|
||||
for _ in tqdm(range(10)):
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
||||
ort_inputs = {
|
||||
'x': x.cpu().numpy(),
|
||||
'mask': mask.cpu().numpy(),
|
||||
'mu': mu.cpu().numpy(),
|
||||
't': t.cpu().numpy(),
|
||||
'spks': spks.cpu().numpy(),
|
||||
'cond': cond.cpu().numpy()
|
||||
}
|
||||
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
||||
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
||||
for _ in tqdm(range(10)):
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
||||
ort_inputs = {
|
||||
'x': x.cpu().numpy(),
|
||||
'mask': mask.cpu().numpy(),
|
||||
'mu': mu.cpu().numpy(),
|
||||
't': t.cpu().numpy(),
|
||||
'spks': spks.cpu().numpy(),
|
||||
'cond': cond.cpu().numpy()
|
||||
}
|
||||
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
||||
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
||||
logging.info('successfully export estimator')
|
||||
else:
|
||||
# 1. export flow decoder estimator
|
||||
estimator = model.model.flow.decoder.estimator
|
||||
estimator.forward = estimator.forward_chunk
|
||||
estimator.eval()
|
||||
|
||||
device = model.model.device
|
||||
batch_size, seq_len = 2, 256
|
||||
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||
cache = model.model.init_flow_cache()['decoder_cache']
|
||||
cache.pop('offset')
|
||||
cache = {k: v[0] for k, v in cache.items()}
|
||||
torch.onnx.export(
|
||||
estimator,
|
||||
(x, mask, mu, t, spks, cond,
|
||||
cache['down_blocks_conv_cache'],
|
||||
cache['down_blocks_kv_cache'],
|
||||
cache['mid_blocks_conv_cache'],
|
||||
cache['mid_blocks_kv_cache'],
|
||||
cache['up_blocks_conv_cache'],
|
||||
cache['up_blocks_kv_cache'],
|
||||
cache['final_blocks_conv_cache']),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
export_params=True,
|
||||
opset_version=18,
|
||||
do_constant_folding=True,
|
||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond', 'down_blocks_conv_cache', 'down_blocks_kv_cache', 'mid_blocks_conv_cache', 'mid_blocks_kv_cache', 'up_blocks_conv_cache', 'up_blocks_kv_cache', 'final_blocks_conv_cache'],
|
||||
output_names=['estimator_out', 'down_blocks_conv_cache_out', 'down_blocks_kv_cache_out', 'mid_blocks_conv_cache_out', 'mid_blocks_kv_cache_out', 'up_blocks_conv_cache_out', 'up_blocks_kv_cache_out', 'final_blocks_conv_cache_out'],
|
||||
dynamic_axes={
|
||||
'x': {2: 'seq_len'},
|
||||
'mask': {2: 'seq_len'},
|
||||
'mu': {2: 'seq_len'},
|
||||
'cond': {2: 'seq_len'},
|
||||
'down_blocks_kv_cache': {3: 'seq_len'},
|
||||
'mid_blocks_kv_cache': {3: 'seq_len'},
|
||||
'up_blocks_kv_cache': {3: 'seq_len'},
|
||||
'estimator_out': {2: 'seq_len'},
|
||||
'down_blocks_kv_cache_out': {3: 'seq_len'},
|
||||
'mid_blocks_kv_cache_out': {3: 'seq_len'},
|
||||
'up_blocks_kv_cache_out': {3: 'seq_len'},
|
||||
}
|
||||
)
|
||||
|
||||
# 2. test computation consistency
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
sess_options=option, providers=providers)
|
||||
|
||||
for _ in tqdm(range(10)):
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||
cache = model.model.init_flow_cache()['decoder_cache']
|
||||
cache.pop('offset')
|
||||
cache = {k: v[0] for k, v in cache.items()}
|
||||
output_pytorch = estimator(x, mask, mu, t, spks, cond, **{k: v.clone() for k, v in cache.items()})
|
||||
ort_inputs = {
|
||||
'x': x.cpu().numpy(),
|
||||
'mask': mask.cpu().numpy(),
|
||||
'mu': mu.cpu().numpy(),
|
||||
't': t.cpu().numpy(),
|
||||
'spks': spks.cpu().numpy(),
|
||||
'cond': cond.cpu().numpy(),
|
||||
}
|
||||
output_onnx = estimator_onnx.run(None, {**ort_inputs, **{k: v.clone().cpu().numpy() for k, v in cache.items()}})
|
||||
for i, j in zip(output_pytorch, output_onnx):
|
||||
torch.testing.assert_allclose(i, torch.from_numpy(j).to(device), rtol=1e-2, atol=1e-4)
|
||||
logging.info('successfully export estimator')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -3,8 +3,23 @@
|
||||
# download tensorrt from https://developer.nvidia.com/tensorrt/download/10x, check your system and cuda for compatibability
|
||||
# for example for linux + cuda12.4, you can download https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
|
||||
TRT_DIR=<YOUR_TRT_DIR>
|
||||
MODEL_DIR=<COSYVOICE2_MODEL_DIR>
|
||||
|
||||
MODEL_DIR=<YOUR_MODEL_DIR>
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TRT_DIR/lib:/usr/local/cuda/lib64
|
||||
|
||||
# cosyvoice export
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp32.mygpu.plan --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw --outputIOFormats=fp32:chw
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp16.mygpu.plan --fp16 --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw --outputIOFormats=fp16:chw
|
||||
|
||||
# cosyvoice2 export with cache
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp32.mygpu.plan \
|
||||
--minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4,down_blocks_kv_cache:1x4x2x0x512x2,mid_blocks_kv_cache:12x4x2x0x512x2,up_blocks_kv_cache:1x4x2x0x512x2 \
|
||||
--optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193,down_blocks_kv_cache:1x4x2x193x512x2,mid_blocks_kv_cache:12x4x2x193x512x2,up_blocks_kv_cache:1x4x2x193x512x2 \
|
||||
--maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800,down_blocks_kv_cache:1x4x2x200x512x2,mid_blocks_kv_cache:12x4x2x200x512x2,up_blocks_kv_cache:1x4x2x200x512x2 \
|
||||
--inputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw \
|
||||
--outputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp16.mygpu.plan --fp16 \
|
||||
--minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4,down_blocks_kv_cache:1x4x2x0x512x2,mid_blocks_kv_cache:12x4x2x0x512x2,up_blocks_kv_cache:1x4x2x0x512x2 \
|
||||
--optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193,down_blocks_kv_cache:1x4x2x193x512x2,mid_blocks_kv_cache:12x4x2x193x512x2,up_blocks_kv_cache:1x4x2x193x512x2 \
|
||||
--maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800,down_blocks_kv_cache:1x4x2x200x512x2,mid_blocks_kv_cache:12x4x2x200x512x2,up_blocks_kv_cache:1x4x2x200x512x2 \
|
||||
--inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw \
|
||||
--outputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw
|
||||
|
||||
@@ -23,7 +23,7 @@ from torch.utils.data import DataLoader
|
||||
import torchaudio
|
||||
from hyperpyyaml import load_hyperpyyaml
|
||||
from tqdm import tqdm
|
||||
from cosyvoice.cli.model import CosyVoiceModel
|
||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
||||
from cosyvoice.dataset.dataset import Dataset
|
||||
|
||||
|
||||
@@ -33,6 +33,7 @@ def get_args():
|
||||
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
||||
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
||||
parser.add_argument('--tts_text', required=True, help='tts input file')
|
||||
parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
|
||||
parser.add_argument('--llm_model', required=True, help='llm model file')
|
||||
parser.add_argument('--flow_model', required=True, help='flow model file')
|
||||
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
||||
@@ -59,10 +60,18 @@ def main():
|
||||
# Init cosyvoice models from configs
|
||||
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
||||
device = torch.device('cuda' if use_cuda else 'cpu')
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
try:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': args.qwen_pretrain_path})
|
||||
model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16=False)
|
||||
except Exception:
|
||||
try:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16=False)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
|
||||
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
||||
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
||||
|
||||
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
||||
@@ -104,7 +113,7 @@ def main():
|
||||
tts_speeches = torch.concat(tts_speeches, dim=1)
|
||||
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
||||
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
||||
torchaudio.save(tts_fn, tts_speeches, sample_rate=22050)
|
||||
torchaudio.save(tts_fn, tts_speeches, sample_rate=configs['sample_rate'], backend='soundfile')
|
||||
f.write('{} {}\n'.format(tts_key, tts_fn))
|
||||
f.flush()
|
||||
f.close()
|
||||
|
||||
@@ -46,6 +46,7 @@ def get_args():
|
||||
parser.add_argument('--config', required=True, help='config file')
|
||||
parser.add_argument('--train_data', required=True, help='train data file')
|
||||
parser.add_argument('--cv_data', required=True, help='cv data file')
|
||||
parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
|
||||
parser.add_argument('--checkpoint', help='checkpoint model')
|
||||
parser.add_argument('--model_dir', required=True, help='save model dir')
|
||||
parser.add_argument('--tensorboard_dir',
|
||||
@@ -97,8 +98,12 @@ def main():
|
||||
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
||||
if gan is True:
|
||||
override_dict.pop('hift')
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||
try:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={**override_dict, 'qwen_pretrain_path': args.qwen_pretrain_path})
|
||||
except Exception:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||
if gan is True:
|
||||
configs['train_conf'] = configs['train_conf_gan']
|
||||
configs['train_conf'].update(vars(args))
|
||||
|
||||
@@ -32,7 +32,10 @@ class CosyVoice:
|
||||
self.fp16 = fp16
|
||||
if not os.path.exists(model_dir):
|
||||
model_dir = snapshot_download(model_dir)
|
||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
||||
hyper_yaml_path = '{}/cosyvoice.yaml'.format(model_dir)
|
||||
if not os.path.exists(hyper_yaml_path):
|
||||
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
||||
with open(hyper_yaml_path, 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||
@@ -132,7 +135,10 @@ class CosyVoice2(CosyVoice):
|
||||
self.fp16 = fp16
|
||||
if not os.path.exists(model_dir):
|
||||
model_dir = snapshot_download(model_dir)
|
||||
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
||||
hyper_yaml_path = '{}/cosyvoice2.yaml'.format(model_dir)
|
||||
if not os.path.exists(hyper_yaml_path):
|
||||
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
||||
with open(hyper_yaml_path, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
||||
assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
||||
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
||||
|
||||
@@ -44,8 +44,6 @@ class CosyVoiceModel:
|
||||
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
||||
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
||||
self.token_overlap_len = 20
|
||||
# here we fix set flow.decoder.estimator.static_chunk_size = 0 for compatibability
|
||||
self.flow.decoder.estimator.static_chunk_size = 0
|
||||
# mel fade in out
|
||||
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
||||
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
||||
@@ -121,15 +119,14 @@ class CosyVoiceModel:
|
||||
self.llm_end_dict[uuid] = True
|
||||
|
||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
||||
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
flow_cache=self.flow_cache_dict[uuid])
|
||||
self.flow_cache_dict[uuid] = flow_cache
|
||||
tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
flow_cache=self.flow_cache_dict[uuid])
|
||||
|
||||
# mel overlap fade in out
|
||||
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
||||
@@ -276,6 +273,7 @@ class CosyVoiceModel:
|
||||
self.llm_end_dict.pop(this_uuid)
|
||||
self.mel_overlap_dict.pop(this_uuid)
|
||||
self.hift_cache_dict.pop(this_uuid)
|
||||
self.flow_cache_dict.pop(this_uuid)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@@ -297,9 +295,8 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
self.llm.half()
|
||||
self.flow.half()
|
||||
self.token_hop_len = 2 * self.flow.input_frame_rate
|
||||
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
|
||||
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
|
||||
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
|
||||
# flow decoder required_cache_size
|
||||
self.flow_decoder_required_cache_size = self.flow.decoder.estimator.num_decoding_left_chunks * self.flow.input_frame_rate * self.flow.token_mel_ratio
|
||||
# hift cache
|
||||
self.mel_cache_len = 8
|
||||
self.source_cache_len = int(self.mel_cache_len * 480)
|
||||
@@ -312,22 +309,49 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
# dict used to store session related variable
|
||||
self.tts_speech_token_dict = {}
|
||||
self.llm_end_dict = {}
|
||||
self.flow_cache_dict = {}
|
||||
self.hift_cache_dict = {}
|
||||
|
||||
def init_flow_cache(self):
|
||||
encoder_cache = {'offset': 0,
|
||||
'pre_lookahead_layer_conv2_cache': torch.zeros(1, 512, 2).to(self.device),
|
||||
'encoders_kv_cache': torch.zeros(6, 1, 8, 0, 64 * 2).to(self.device),
|
||||
'upsample_offset': 0,
|
||||
'upsample_conv_cache': torch.zeros(1, 512, 4).to(self.device),
|
||||
'upsample_kv_cache': torch.zeros(4, 1, 8, 0, 64 * 2).to(self.device)}
|
||||
decoder_cache = {'offset': 0,
|
||||
'down_blocks_conv_cache': torch.zeros(10, 1, 2, 832, 2).to(self.device),
|
||||
'down_blocks_kv_cache': torch.zeros(10, 1, 4, 2, 0, 512, 2).to(self.device),
|
||||
'mid_blocks_conv_cache': torch.zeros(10, 12, 2, 512, 2).to(self.device),
|
||||
'mid_blocks_kv_cache': torch.zeros(10, 12, 4, 2, 0, 512, 2).to(self.device),
|
||||
'up_blocks_conv_cache': torch.zeros(10, 1, 2, 1024, 2).to(self.device),
|
||||
'up_blocks_kv_cache': torch.zeros(10, 1, 4, 2, 0, 512, 2).to(self.device),
|
||||
'final_blocks_conv_cache': torch.zeros(10, 2, 256, 2).to(self.device)}
|
||||
cache = {'encoder_cache': encoder_cache, 'decoder_cache': decoder_cache}
|
||||
return cache
|
||||
|
||||
def trim_flow_cache(self, cache):
|
||||
if cache['decoder_cache']['down_blocks_kv_cache'].size(4) > self.flow_decoder_required_cache_size:
|
||||
cache['decoder_cache']['down_blocks_kv_cache'] = cache['decoder_cache']['down_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:]
|
||||
cache['decoder_cache']['mid_blocks_kv_cache'] = cache['decoder_cache']['mid_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:]
|
||||
cache['decoder_cache']['up_blocks_kv_cache'] = cache['decoder_cache']['up_blocks_kv_cache'][:, :, :, :, -self.flow_decoder_required_cache_size:]
|
||||
return cache
|
||||
|
||||
def load_jit(self, flow_encoder_model):
|
||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||
self.flow.encoder = flow_encoder
|
||||
|
||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
|
||||
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
finalize=finalize)
|
||||
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
||||
tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
cache=self.flow_cache_dict[uuid],
|
||||
finalize=finalize)
|
||||
self.flow_cache_dict[uuid] = self.trim_flow_cache(self.flow_cache_dict[uuid])
|
||||
# append hift cache
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
||||
@@ -362,24 +386,27 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
||||
self.hift_cache_dict[this_uuid] = None
|
||||
self.flow_cache_dict[this_uuid] = self.init_flow_cache()
|
||||
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
||||
p.start()
|
||||
if stream is True:
|
||||
token_offset = 0
|
||||
while True:
|
||||
time.sleep(0.1)
|
||||
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
||||
if len(self.tts_speech_token_dict[this_uuid]) >= self.token_hop_len + self.flow.pre_lookahead_len:
|
||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||
prompt_token=flow_prompt_speech_token,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
token_offset=token_offset,
|
||||
finalize=False)
|
||||
token_offset += self.token_hop_len
|
||||
# NOTE in cache inference mode, we only use flow_prompt_speech_token/prompt_speech_feat in first chunk
|
||||
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32).to(self.device)
|
||||
prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][self.token_hop_len:]
|
||||
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < self.token_hop_len + self.flow.pre_lookahead_len:
|
||||
break
|
||||
p.join()
|
||||
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||
@@ -389,7 +416,6 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
token_offset=token_offset,
|
||||
finalize=True)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
else:
|
||||
@@ -401,11 +427,12 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=flow_embedding,
|
||||
uuid=this_uuid,
|
||||
token_offset=0,
|
||||
finalize=True,
|
||||
speed=speed)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
with self.lock:
|
||||
self.tts_speech_token_dict.pop(this_uuid)
|
||||
self.llm_end_dict.pop(this_uuid)
|
||||
self.hift_cache_dict.pop(this_uuid)
|
||||
self.flow_cache_dict.pop(this_uuid)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
@@ -11,14 +11,16 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Tuple, Optional, Dict, Any
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import pack, rearrange, repeat
|
||||
from diffusers.models.attention_processor import Attention, AttnProcessor2_0, inspect, logger, deprecate
|
||||
from cosyvoice.utils.common import mask_to_bias
|
||||
from cosyvoice.utils.mask import add_optional_chunk_mask
|
||||
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
||||
from matcha.models.components.transformer import BasicTransformerBlock
|
||||
from matcha.models.components.transformer import BasicTransformerBlock, maybe_allow_in_graph
|
||||
|
||||
|
||||
class Transpose(torch.nn.Module):
|
||||
@@ -27,34 +29,11 @@ class Transpose(torch.nn.Module):
|
||||
self.dim0 = dim0
|
||||
self.dim1 = dim1
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]:
|
||||
x = torch.transpose(x, self.dim0, self.dim1)
|
||||
return x
|
||||
|
||||
|
||||
class CausalBlock1D(Block1D):
|
||||
def __init__(self, dim: int, dim_out: int):
|
||||
super(CausalBlock1D, self).__init__(dim, dim_out)
|
||||
self.block = torch.nn.Sequential(
|
||||
CausalConv1d(dim, dim_out, 3),
|
||||
Transpose(1, 2),
|
||||
nn.LayerNorm(dim_out),
|
||||
Transpose(1, 2),
|
||||
nn.Mish(),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, mask: torch.Tensor):
|
||||
output = self.block(x * mask)
|
||||
return output * mask
|
||||
|
||||
|
||||
class CausalResnetBlock1D(ResnetBlock1D):
|
||||
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
||||
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
||||
self.block1 = CausalBlock1D(dim, dim_out)
|
||||
self.block2 = CausalBlock1D(dim_out, dim_out)
|
||||
|
||||
|
||||
class CausalConv1d(torch.nn.Conv1d):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -76,12 +55,332 @@ class CausalConv1d(torch.nn.Conv1d):
|
||||
padding_mode=padding_mode,
|
||||
device=device, dtype=dtype)
|
||||
assert stride == 1
|
||||
self.causal_padding = (kernel_size - 1, 0)
|
||||
self.causal_padding = kernel_size - 1
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = F.pad(x, self.causal_padding)
|
||||
def forward(self, x: torch.Tensor, cache: torch.Tensor=torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if cache.size(2) == 0:
|
||||
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
||||
else:
|
||||
assert cache.size(2) == self.causal_padding
|
||||
x = torch.concat([cache, x], dim=2)
|
||||
cache = x[:, :, -self.causal_padding:]
|
||||
x = super(CausalConv1d, self).forward(x)
|
||||
return x
|
||||
return x, cache
|
||||
|
||||
|
||||
class CausalBlock1D(Block1D):
|
||||
def __init__(self, dim: int, dim_out: int):
|
||||
super(CausalBlock1D, self).__init__(dim, dim_out)
|
||||
self.block = torch.nn.Sequential(
|
||||
CausalConv1d(dim, dim_out, 3),
|
||||
Transpose(1, 2),
|
||||
nn.LayerNorm(dim_out),
|
||||
Transpose(1, 2),
|
||||
nn.Mish(),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, mask: torch.Tensor, cache: torch.Tensor=torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
output, cache = self.block[0](x * mask, cache)
|
||||
for i in range(1, len(self.block)):
|
||||
output = self.block[i](output)
|
||||
return output * mask, cache
|
||||
|
||||
|
||||
class CausalResnetBlock1D(ResnetBlock1D):
|
||||
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
||||
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
||||
self.block1 = CausalBlock1D(dim, dim_out)
|
||||
self.block2 = CausalBlock1D(dim_out, dim_out)
|
||||
|
||||
def forward(self, x: torch.Tensor, mask: torch.Tensor, time_emb: torch.Tensor, block1_cache: torch.Tensor=torch.zeros(0, 0, 0), block2_cache: torch.Tensor=torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
h, block1_cache = self.block1(x, mask, block1_cache)
|
||||
h += self.mlp(time_emb).unsqueeze(-1)
|
||||
h, block2_cache = self.block2(h, mask, block2_cache)
|
||||
output = h + self.res_conv(x * mask)
|
||||
return output, block1_cache, block2_cache
|
||||
|
||||
|
||||
class CausalAttnProcessor2_0(AttnProcessor2_0):
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(CausalAttnProcessor2_0, self).__init__()
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
temb: Optional[torch.FloatTensor] = None,
|
||||
cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, torch.Tensor]:
|
||||
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
||||
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
||||
deprecate("scale", "1.0.0", deprecation_message)
|
||||
|
||||
residual = hidden_states
|
||||
if attn.spatial_norm is not None:
|
||||
hidden_states = attn.spatial_norm(hidden_states, temb)
|
||||
|
||||
input_ndim = hidden_states.ndim
|
||||
|
||||
if input_ndim == 4:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
# NOTE do not use attn.prepare_attention_mask as we have already provided the correct attention_mask
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
# (batch, heads, source_length, target_length)
|
||||
attention_mask = attention_mask.unsqueeze(dim=1).repeat(1, attn.heads, 1, 1)
|
||||
|
||||
if attn.group_norm is not None:
|
||||
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
elif attn.norm_cross:
|
||||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||||
|
||||
key_cache = attn.to_k(encoder_hidden_states)
|
||||
value_cache = attn.to_v(encoder_hidden_states)
|
||||
# NOTE here we judge cache.size(0) instead of cache.size(1), because init_cache has size (2, 0, 512, 2)
|
||||
if cache.size(0) != 0:
|
||||
key = torch.concat([cache[:, :, :, 0], key_cache], dim=1)
|
||||
value = torch.concat([cache[:, :, :, 1], value_cache], dim=1)
|
||||
else:
|
||||
key, value = key_cache, value_cache
|
||||
cache = torch.stack([key_cache, value_cache], dim=3)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
if input_ndim == 4:
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
|
||||
if attn.residual_connection:
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
hidden_states = hidden_states / attn.rescale_output_factor
|
||||
|
||||
return hidden_states, cache
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class CausalAttention(Attention):
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
cross_attention_dim: Optional[int] = None,
|
||||
heads: int = 8,
|
||||
dim_head: int = 64,
|
||||
dropout: float = 0.0,
|
||||
bias: bool = False,
|
||||
upcast_attention: bool = False,
|
||||
upcast_softmax: bool = False,
|
||||
cross_attention_norm: Optional[str] = None,
|
||||
cross_attention_norm_num_groups: int = 32,
|
||||
added_kv_proj_dim: Optional[int] = None,
|
||||
norm_num_groups: Optional[int] = None,
|
||||
spatial_norm_dim: Optional[int] = None,
|
||||
out_bias: bool = True,
|
||||
scale_qk: bool = True,
|
||||
only_cross_attention: bool = False,
|
||||
eps: float = 1e-5,
|
||||
rescale_output_factor: float = 1.0,
|
||||
residual_connection: bool = False,
|
||||
_from_deprecated_attn_block: bool = False,
|
||||
processor: Optional["AttnProcessor2_0"] = None,
|
||||
out_dim: int = None,
|
||||
):
|
||||
super(CausalAttention, self).__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax, cross_attention_norm, cross_attention_norm_num_groups,
|
||||
added_kv_proj_dim, norm_num_groups, spatial_norm_dim, out_bias, scale_qk, only_cross_attention, eps, rescale_output_factor, residual_connection, _from_deprecated_attn_block, processor, out_dim)
|
||||
processor = CausalAttnProcessor2_0()
|
||||
self.set_processor(processor)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
**cross_attention_kwargs,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
r"""
|
||||
The forward method of the `Attention` class.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.Tensor`):
|
||||
The hidden states of the query.
|
||||
encoder_hidden_states (`torch.Tensor`, *optional*):
|
||||
The hidden states of the encoder.
|
||||
attention_mask (`torch.Tensor`, *optional*):
|
||||
The attention mask to use. If `None`, no mask is applied.
|
||||
**cross_attention_kwargs:
|
||||
Additional keyword arguments to pass along to the cross attention.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`: The output of the attention layer.
|
||||
"""
|
||||
# The `Attention` class can call different attention processors / attention functions
|
||||
# here we simply pass along all tensors to the selected processor class
|
||||
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
||||
|
||||
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
|
||||
unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
|
||||
if len(unused_kwargs) > 0:
|
||||
logger.warning(
|
||||
f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
|
||||
)
|
||||
cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}
|
||||
|
||||
return self.processor(
|
||||
self,
|
||||
hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
cache=cache,
|
||||
**cross_attention_kwargs,
|
||||
)
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class CausalBasicTransformerBlock(BasicTransformerBlock):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
dropout=0.0,
|
||||
cross_attention_dim: Optional[int] = None,
|
||||
activation_fn: str = "geglu",
|
||||
num_embeds_ada_norm: Optional[int] = None,
|
||||
attention_bias: bool = False,
|
||||
only_cross_attention: bool = False,
|
||||
double_self_attention: bool = False,
|
||||
upcast_attention: bool = False,
|
||||
norm_elementwise_affine: bool = True,
|
||||
norm_type: str = "layer_norm",
|
||||
final_dropout: bool = False,
|
||||
):
|
||||
super(CausalBasicTransformerBlock, self).__init__(dim, num_attention_heads, attention_head_dim, dropout, cross_attention_dim, activation_fn, num_embeds_ada_norm,
|
||||
attention_bias, only_cross_attention, double_self_attention, upcast_attention, norm_elementwise_affine, norm_type, final_dropout)
|
||||
self.attn1 = CausalAttention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
dropout=dropout,
|
||||
bias=attention_bias,
|
||||
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
||||
upcast_attention=upcast_attention,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
timestep: Optional[torch.LongTensor] = None,
|
||||
cross_attention_kwargs: Dict[str, Any] = None,
|
||||
class_labels: Optional[torch.LongTensor] = None,
|
||||
cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Notice that normalization is always applied before the real computation in the following blocks.
|
||||
# 1. Self-Attention
|
||||
if self.use_ada_layer_norm:
|
||||
norm_hidden_states = self.norm1(hidden_states, timestep)
|
||||
elif self.use_ada_layer_norm_zero:
|
||||
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
||||
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
||||
)
|
||||
else:
|
||||
norm_hidden_states = self.norm1(hidden_states)
|
||||
|
||||
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
||||
|
||||
attn_output, cache = self.attn1(
|
||||
norm_hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
||||
attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
|
||||
cache=cache,
|
||||
**cross_attention_kwargs,
|
||||
)
|
||||
if self.use_ada_layer_norm_zero:
|
||||
attn_output = gate_msa.unsqueeze(1) * attn_output
|
||||
hidden_states = attn_output + hidden_states
|
||||
|
||||
# 2. Cross-Attention
|
||||
if self.attn2 is not None:
|
||||
norm_hidden_states = (
|
||||
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
||||
)
|
||||
|
||||
attn_output = self.attn2(
|
||||
norm_hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=encoder_attention_mask,
|
||||
**cross_attention_kwargs,
|
||||
)
|
||||
hidden_states = attn_output + hidden_states
|
||||
|
||||
# 3. Feed-forward
|
||||
norm_hidden_states = self.norm3(hidden_states)
|
||||
|
||||
if self.use_ada_layer_norm_zero:
|
||||
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||
|
||||
if self._chunk_size is not None:
|
||||
# "feed_forward_chunk_size" can be used to save memory
|
||||
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
||||
raise ValueError(
|
||||
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
||||
)
|
||||
|
||||
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
||||
ff_output = torch.cat(
|
||||
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
||||
dim=self._chunk_dim,
|
||||
)
|
||||
else:
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
|
||||
if self.use_ada_layer_norm_zero:
|
||||
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
||||
|
||||
hidden_states = ff_output + hidden_states
|
||||
|
||||
return hidden_states, cache
|
||||
|
||||
|
||||
class ConditionalDecoder(nn.Module):
|
||||
@@ -89,7 +388,6 @@ class ConditionalDecoder(nn.Module):
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
causal=False,
|
||||
channels=(256, 256),
|
||||
dropout=0.05,
|
||||
attention_head_dim=64,
|
||||
@@ -106,7 +404,7 @@ class ConditionalDecoder(nn.Module):
|
||||
channels = tuple(channels)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.causal = causal
|
||||
|
||||
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
||||
time_embed_dim = channels[0] * 4
|
||||
self.time_mlp = TimestepEmbedding(
|
||||
@@ -123,8 +421,7 @@ class ConditionalDecoder(nn.Module):
|
||||
input_channel = output_channel
|
||||
output_channel = channels[i]
|
||||
is_last = i == len(channels) - 1
|
||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
||||
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
@@ -138,16 +435,14 @@ class ConditionalDecoder(nn.Module):
|
||||
]
|
||||
)
|
||||
downsample = (
|
||||
Downsample1D(output_channel) if not is_last else
|
||||
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
)
|
||||
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
||||
|
||||
for _ in range(num_mid_blocks):
|
||||
input_channel = channels[-1]
|
||||
out_channels = channels[-1]
|
||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
||||
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
@@ -169,11 +464,7 @@ class ConditionalDecoder(nn.Module):
|
||||
input_channel = channels[i] * 2
|
||||
output_channel = channels[i + 1]
|
||||
is_last = i == len(channels) - 2
|
||||
resnet = CausalResnetBlock1D(
|
||||
dim=input_channel,
|
||||
dim_out=output_channel,
|
||||
time_emb_dim=time_embed_dim,
|
||||
) if self.causal else ResnetBlock1D(
|
||||
resnet = ResnetBlock1D(
|
||||
dim=input_channel,
|
||||
dim_out=output_channel,
|
||||
time_emb_dim=time_embed_dim,
|
||||
@@ -193,10 +484,10 @@ class ConditionalDecoder(nn.Module):
|
||||
upsample = (
|
||||
Upsample1D(output_channel, use_conv_transpose=True)
|
||||
if not is_last
|
||||
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
||||
)
|
||||
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
||||
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
|
||||
self.final_block = Block1D(channels[-1], channels[-1])
|
||||
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
||||
self.initialize_weights()
|
||||
|
||||
@@ -249,9 +540,8 @@ class ConditionalDecoder(nn.Module):
|
||||
mask_down = masks[-1]
|
||||
x = resnet(x, mask_down, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
# attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||
attn_mask = (torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down) == 1)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
@@ -268,9 +558,8 @@ class ConditionalDecoder(nn.Module):
|
||||
for resnet, transformer_blocks in self.mid_blocks:
|
||||
x = resnet(x, mask_mid, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
# attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||
attn_mask = (torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid) == 1)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
@@ -285,9 +574,8 @@ class ConditionalDecoder(nn.Module):
|
||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||
x = resnet(x, mask_up, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
# attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
||||
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
||||
attn_mask = (torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up) == 1)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x = transformer_block(
|
||||
hidden_states=x,
|
||||
@@ -299,3 +587,296 @@ class ConditionalDecoder(nn.Module):
|
||||
x = self.final_block(x, mask_up)
|
||||
output = self.final_proj(x * mask_up)
|
||||
return output * mask
|
||||
|
||||
|
||||
class CausalConditionalDecoder(ConditionalDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
channels=(256, 256),
|
||||
dropout=0.05,
|
||||
attention_head_dim=64,
|
||||
n_blocks=1,
|
||||
num_mid_blocks=2,
|
||||
num_heads=4,
|
||||
act_fn="snake",
|
||||
static_chunk_size=50,
|
||||
num_decoding_left_chunks=2,
|
||||
):
|
||||
"""
|
||||
This decoder requires an input with the same shape of the target. So, if your text content
|
||||
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
||||
"""
|
||||
torch.nn.Module.__init__(self)
|
||||
channels = tuple(channels)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
||||
time_embed_dim = channels[0] * 4
|
||||
self.time_mlp = TimestepEmbedding(
|
||||
in_channels=in_channels,
|
||||
time_embed_dim=time_embed_dim,
|
||||
act_fn="silu",
|
||||
)
|
||||
self.static_chunk_size = static_chunk_size
|
||||
self.num_decoding_left_chunks = num_decoding_left_chunks
|
||||
self.down_blocks = nn.ModuleList([])
|
||||
self.mid_blocks = nn.ModuleList([])
|
||||
self.up_blocks = nn.ModuleList([])
|
||||
|
||||
output_channel = in_channels
|
||||
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
||||
input_channel = output_channel
|
||||
output_channel = channels[i]
|
||||
is_last = i == len(channels) - 1
|
||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
CausalBasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
downsample = (
|
||||
Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3)
|
||||
)
|
||||
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
||||
|
||||
for _ in range(num_mid_blocks):
|
||||
input_channel = channels[-1]
|
||||
out_channels = channels[-1]
|
||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
CausalBasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
||||
|
||||
channels = channels[::-1] + (channels[0],)
|
||||
for i in range(len(channels) - 1):
|
||||
input_channel = channels[i] * 2
|
||||
output_channel = channels[i + 1]
|
||||
is_last = i == len(channels) - 2
|
||||
resnet = CausalResnetBlock1D(
|
||||
dim=input_channel,
|
||||
dim_out=output_channel,
|
||||
time_emb_dim=time_embed_dim,
|
||||
)
|
||||
transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
CausalBasicTransformerBlock(
|
||||
dim=output_channel,
|
||||
num_attention_heads=num_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dropout=dropout,
|
||||
activation_fn=act_fn,
|
||||
)
|
||||
for _ in range(n_blocks)
|
||||
]
|
||||
)
|
||||
upsample = (
|
||||
Upsample1D(output_channel, use_conv_transpose=True)
|
||||
if not is_last
|
||||
else CausalConv1d(output_channel, output_channel, 3)
|
||||
)
|
||||
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
||||
self.final_block = CausalBlock1D(channels[-1], channels[-1])
|
||||
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
||||
self.initialize_weights()
|
||||
|
||||
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
||||
"""Forward pass of the UNet1DConditional model.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): shape (batch_size, in_channels, time)
|
||||
mask (_type_): shape (batch_size, 1, time)
|
||||
t (_type_): shape (batch_size)
|
||||
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
||||
cond (_type_, optional): placeholder for future use. Defaults to None.
|
||||
|
||||
Raises:
|
||||
ValueError: _description_
|
||||
ValueError: _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
|
||||
t = self.time_embeddings(t).to(t.dtype)
|
||||
t = self.time_mlp(t)
|
||||
|
||||
x = pack([x, mu], "b * t")[0]
|
||||
|
||||
if spks is not None:
|
||||
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
||||
x = pack([x, spks], "b * t")[0]
|
||||
if cond is not None:
|
||||
x = pack([x, cond], "b * t")[0]
|
||||
|
||||
hiddens = []
|
||||
masks = [mask]
|
||||
for resnet, transformer_blocks, downsample in self.down_blocks:
|
||||
mask_down = masks[-1]
|
||||
x, _, _ = resnet(x, mask_down, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x, _ = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
hiddens.append(x) # Save hidden states for skip connections
|
||||
x, _ = downsample(x * mask_down)
|
||||
masks.append(mask_down[:, :, ::2])
|
||||
masks = masks[:-1]
|
||||
mask_mid = masks[-1]
|
||||
|
||||
for resnet, transformer_blocks in self.mid_blocks:
|
||||
x, _, _ = resnet(x, mask_mid, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x, _ = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
|
||||
for resnet, transformer_blocks, upsample in self.up_blocks:
|
||||
mask_up = masks.pop()
|
||||
skip = hiddens.pop()
|
||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||
x, _, _ = resnet(x, mask_up, t)
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for transformer_block in transformer_blocks:
|
||||
x, _ = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
x, _ = upsample(x * mask_up)
|
||||
x, _ = self.final_block(x, mask_up)
|
||||
output = self.final_proj(x * mask_up)
|
||||
return output * mask
|
||||
|
||||
def forward_chunk(self, x, mask, mu, t, spks=None, cond=None,
|
||||
down_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
down_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||
mid_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
mid_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||
up_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
||||
up_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
||||
final_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0)
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Forward pass of the UNet1DConditional model.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): shape (batch_size, in_channels, time)
|
||||
mask (_type_): shape (batch_size, 1, time)
|
||||
t (_type_): shape (batch_size)
|
||||
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
||||
cond (_type_, optional): placeholder for future use. Defaults to None.
|
||||
|
||||
Raises:
|
||||
ValueError: _description_
|
||||
ValueError: _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
|
||||
t = self.time_embeddings(t).to(t.dtype)
|
||||
t = self.time_mlp(t)
|
||||
|
||||
x = pack([x, mu], "b * t")[0]
|
||||
|
||||
if spks is not None:
|
||||
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
||||
x = pack([x, spks], "b * t")[0]
|
||||
if cond is not None:
|
||||
x = pack([x, cond], "b * t")[0]
|
||||
|
||||
hiddens = []
|
||||
masks = [mask]
|
||||
|
||||
down_blocks_kv_cache_new = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||
mid_blocks_kv_cache_new = torch.zeros(12, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||
up_blocks_kv_cache_new = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||
for index, (resnet, transformer_blocks, downsample) in enumerate(self.down_blocks):
|
||||
mask_down = masks[-1]
|
||||
x, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576] = resnet(x, mask_down, t, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576])
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + down_blocks_kv_cache.size(3), device=x.device).bool()
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for i, transformer_block in enumerate(transformer_blocks):
|
||||
x, down_blocks_kv_cache_new[index, i] = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
cache=down_blocks_kv_cache[index, i],
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
hiddens.append(x) # Save hidden states for skip connections
|
||||
x, down_blocks_conv_cache[index][:, 576:] = downsample(x * mask_down, down_blocks_conv_cache[index][:, 576:])
|
||||
masks.append(mask_down[:, :, ::2])
|
||||
masks = masks[:-1]
|
||||
mask_mid = masks[-1]
|
||||
|
||||
for index, (resnet, transformer_blocks) in enumerate(self.mid_blocks):
|
||||
x, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:] = resnet(x, mask_mid, t, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:])
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + mid_blocks_kv_cache.size(3), device=x.device).bool()
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for i, transformer_block in enumerate(transformer_blocks):
|
||||
x, mid_blocks_kv_cache_new[index, i] = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
cache=mid_blocks_kv_cache[index, i]
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
|
||||
for index, (resnet, transformer_blocks, upsample) in enumerate(self.up_blocks):
|
||||
mask_up = masks.pop()
|
||||
skip = hiddens.pop()
|
||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||
x, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768] = resnet(x, mask_up, t, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768])
|
||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + up_blocks_kv_cache.size(3), device=x.device).bool()
|
||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||
for i, transformer_block in enumerate(transformer_blocks):
|
||||
x, up_blocks_kv_cache_new[index, i] = transformer_block(
|
||||
hidden_states=x,
|
||||
attention_mask=attn_mask,
|
||||
timestep=t,
|
||||
cache=up_blocks_kv_cache[index, i]
|
||||
)
|
||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||
x, up_blocks_conv_cache[index][:, 768:] = upsample(x * mask_up, up_blocks_conv_cache[index][:, 768:])
|
||||
x, final_blocks_conv_cache = self.final_block(x, mask_up, final_blocks_conv_cache)
|
||||
output = self.final_proj(x * mask_up)
|
||||
return output * mask, down_blocks_conv_cache, down_blocks_kv_cache_new, mid_blocks_conv_cache, mid_blocks_kv_cache_new, up_blocks_conv_cache, up_blocks_kv_cache_new, final_blocks_conv_cache
|
||||
|
||||
@@ -91,6 +91,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(feat_len)).to(h)
|
||||
# NOTE 这一句应该是不需要的,应该h已经过length_regulator跟feat一样的shape了
|
||||
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
||||
loss, _ = self.decoder.compute_loss(
|
||||
feat.transpose(1, 2).contiguous(),
|
||||
@@ -190,6 +191,49 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
self.token_mel_ratio = token_mel_ratio
|
||||
self.pre_lookahead_len = pre_lookahead_len
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
token = batch['speech_token'].to(device)
|
||||
token_len = batch['speech_token_len'].to(device)
|
||||
feat = batch['speech_feat'].to(device)
|
||||
feat_len = batch['speech_feat_len'].to(device)
|
||||
embedding = batch['embedding'].to(device)
|
||||
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
|
||||
# concat text and prompt_text
|
||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len)
|
||||
h = self.encoder_proj(h)
|
||||
|
||||
# get conditions
|
||||
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
||||
conds = torch.zeros(feat.shape, device=token.device)
|
||||
for i, j in enumerate(feat_len):
|
||||
if random.random() < 0.5:
|
||||
continue
|
||||
index = random.randint(0, int(0.3 * j))
|
||||
conds[i, :index] = feat[i, :index]
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(h_lengths.sum(dim=-1).squeeze(dim=1))).to(h)
|
||||
loss, _ = self.decoder.compute_loss(
|
||||
feat.transpose(1, 2).contiguous(),
|
||||
mask.unsqueeze(1),
|
||||
h.transpose(1, 2).contiguous(),
|
||||
embedding,
|
||||
cond=conds
|
||||
)
|
||||
return {'loss': loss}
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self,
|
||||
token,
|
||||
@@ -199,6 +243,7 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
prompt_feat,
|
||||
prompt_feat_len,
|
||||
embedding,
|
||||
cache,
|
||||
finalize):
|
||||
if self.fp16 is True:
|
||||
prompt_feat = prompt_feat.half()
|
||||
@@ -215,9 +260,17 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len)
|
||||
if finalize is False:
|
||||
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
|
||||
if finalize is True:
|
||||
h, h_lengths, encoder_cache = self.encoder.forward_chunk(token, token_len, **cache['encoder_cache'])
|
||||
else:
|
||||
token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
|
||||
h, h_lengths, encoder_cache = self.encoder.forward_chunk(token, token_len, context=context, **cache['encoder_cache'])
|
||||
cache['encoder_cache']['offset'] = encoder_cache[0]
|
||||
cache['encoder_cache']['pre_lookahead_layer_conv2_cache'] = encoder_cache[1]
|
||||
cache['encoder_cache']['encoders_kv_cache'] = encoder_cache[2]
|
||||
cache['encoder_cache']['upsample_offset'] = encoder_cache[3]
|
||||
cache['encoder_cache']['upsample_conv_cache'] = encoder_cache[4]
|
||||
cache['encoder_cache']['upsample_kv_cache'] = encoder_cache[5]
|
||||
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
||||
h = self.encoder_proj(h)
|
||||
|
||||
@@ -227,13 +280,14 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
||||
feat, _ = self.decoder(
|
||||
feat, cache['decoder_cache'] = self.decoder(
|
||||
mu=h.transpose(1, 2).contiguous(),
|
||||
mask=mask.unsqueeze(1),
|
||||
spks=embedding,
|
||||
cond=conds,
|
||||
n_timesteps=10
|
||||
n_timesteps=10,
|
||||
cache=cache['decoder_cache']
|
||||
)
|
||||
feat = feat[:, :, mel_len1:]
|
||||
assert feat.shape[2] == mel_len2
|
||||
return feat.float(), None
|
||||
return feat.float(), cache
|
||||
|
||||
@@ -34,7 +34,7 @@ class ConditionalCFM(BASECFM):
|
||||
self.lock = threading.Lock()
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, cache=torch.zeros(1, 80, 0, 2)):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
@@ -54,19 +54,19 @@ class ConditionalCFM(BASECFM):
|
||||
"""
|
||||
|
||||
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
|
||||
cache_size = flow_cache.shape[2]
|
||||
cache_size = cache.shape[2]
|
||||
# fix prompt and overlap part mu and z
|
||||
if cache_size != 0:
|
||||
z[:, :, :cache_size] = flow_cache[:, :, :, 0]
|
||||
mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
|
||||
z[:, :, :cache_size] = cache[:, :, :, 0]
|
||||
mu[:, :, :cache_size] = cache[:, :, :, 1]
|
||||
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
||||
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
||||
flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
|
||||
cache = torch.stack([z_cache, mu_cache], dim=-1)
|
||||
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||
if self.t_scheduler == 'cosine':
|
||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), cache
|
||||
|
||||
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
||||
"""
|
||||
@@ -123,7 +123,7 @@ class ConditionalCFM(BASECFM):
|
||||
|
||||
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
||||
if isinstance(self.estimator, torch.nn.Module):
|
||||
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
||||
return self.estimator(x, mask, mu, t, spks, cond)
|
||||
else:
|
||||
with self.lock:
|
||||
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
||||
@@ -181,6 +181,9 @@ class ConditionalCFM(BASECFM):
|
||||
|
||||
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
||||
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
||||
if loss.isnan():
|
||||
print(123)
|
||||
pred_new = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
||||
return loss, y
|
||||
|
||||
|
||||
@@ -190,7 +193,7 @@ class CausalConditionalCFM(ConditionalCFM):
|
||||
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, cache={}):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
@@ -209,9 +212,105 @@ class CausalConditionalCFM(ConditionalCFM):
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
|
||||
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
|
||||
offset = cache.pop('offset')
|
||||
z = self.rand_noise[:, :, :mu.size(2) + offset].to(mu.device).to(mu.dtype) * temperature
|
||||
z = z[:, :, offset:]
|
||||
offset += mu.size(2)
|
||||
# fix prompt and overlap part mu and z
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||
if self.t_scheduler == 'cosine':
|
||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|
||||
mel, cache = self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, cache=cache)
|
||||
cache['offset'] = offset
|
||||
return mel, cache
|
||||
|
||||
def solve_euler(self, x, t_span, mu, mask, spks, cond, cache):
|
||||
"""
|
||||
Fixed euler solver for ODEs.
|
||||
Args:
|
||||
x (torch.Tensor): random noise
|
||||
t_span (torch.Tensor): n_timesteps interpolated
|
||||
shape: (n_timesteps + 1,)
|
||||
mu (torch.Tensor): output of encoder
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
mask (torch.Tensor): output_mask
|
||||
shape: (batch_size, 1, mel_timesteps)
|
||||
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||||
shape: (batch_size, spk_emb_dim)
|
||||
cond: Not used but kept for future purposes
|
||||
"""
|
||||
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||
t = t.unsqueeze(dim=0)
|
||||
|
||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||
# Or in future might add like a return_all_steps flag
|
||||
sol = []
|
||||
|
||||
# estimator cache for each step
|
||||
down_blocks_kv_cache_new = torch.zeros(10, 1, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||
mid_blocks_kv_cache_new = torch.zeros(10, 12, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||
up_blocks_kv_cache_new = torch.zeros(10, 1, 4, 2, x.size(2), 512, 2).to(x.device)
|
||||
|
||||
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
||||
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
|
||||
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
|
||||
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
|
||||
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
||||
for step in range(1, len(t_span)):
|
||||
# Classifier-Free Guidance inference introduced in VoiceBox
|
||||
x_in[:] = x
|
||||
mask_in[:] = mask
|
||||
mu_in[0] = mu
|
||||
t_in[:] = t.unsqueeze(0)
|
||||
spks_in[0] = spks
|
||||
cond_in[0] = cond
|
||||
cache_step = {k: v[step - 1] for k, v in cache.items()}
|
||||
dphi_dt, cache_step = self.forward_estimator(
|
||||
x_in, mask_in,
|
||||
mu_in, t_in,
|
||||
spks_in,
|
||||
cond_in,
|
||||
cache_step
|
||||
)
|
||||
cache['down_blocks_conv_cache'][step - 1] = cache_step[0]
|
||||
down_blocks_kv_cache_new[step - 1] = cache_step[1]
|
||||
cache['mid_blocks_conv_cache'][step - 1] = cache_step[2]
|
||||
mid_blocks_kv_cache_new[step - 1] = cache_step[3]
|
||||
cache['up_blocks_conv_cache'][step - 1] = cache_step[4]
|
||||
up_blocks_kv_cache_new[step - 1] = cache_step[5]
|
||||
cache['final_blocks_conv_cache'][step - 1] = cache_step[6]
|
||||
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
||||
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
||||
x = x + dt * dphi_dt
|
||||
t = t + dt
|
||||
sol.append(x)
|
||||
if step < len(t_span) - 1:
|
||||
dt = t_span[step + 1] - t
|
||||
cache['down_blocks_kv_cache'] = torch.concat([cache['down_blocks_kv_cache'], down_blocks_kv_cache_new], dim=4)
|
||||
cache['mid_blocks_kv_cache'] = torch.concat([cache['mid_blocks_kv_cache'], mid_blocks_kv_cache_new], dim=4)
|
||||
cache['up_blocks_kv_cache'] = torch.concat([cache['up_blocks_kv_cache'], up_blocks_kv_cache_new], dim=4)
|
||||
return sol[-1].float(), cache
|
||||
|
||||
def forward_estimator(self, x, mask, mu, t, spks, cond, cache):
|
||||
if isinstance(self.estimator, torch.nn.Module):
|
||||
x, cache1, cache2, cache3, cache4, cache5, cache6, cache7 = self.estimator.forward_chunk(x, mask, mu, t, spks, cond, **cache)
|
||||
cache = (cache1, cache2, cache3, cache4, cache5, cache6, cache7)
|
||||
else:
|
||||
with self.lock:
|
||||
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
||||
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
||||
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
||||
self.estimator.set_input_shape('t', (2,))
|
||||
self.estimator.set_input_shape('spks', (2, 80))
|
||||
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||
# run trt engine
|
||||
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
||||
mask.contiguous().data_ptr(),
|
||||
mu.contiguous().data_ptr(),
|
||||
t.contiguous().data_ptr(),
|
||||
spks.contiguous().data_ptr(),
|
||||
cond.contiguous().data_ptr(),
|
||||
x.data_ptr()])
|
||||
return x, cache
|
||||
|
||||
@@ -1,6 +1,9 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
try:
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
except ImportError:
|
||||
from torch.nn.utils import weight_norm
|
||||
from typing import List, Optional, Tuple
|
||||
from einops import rearrange
|
||||
from torchaudio.transforms import Spectrogram
|
||||
|
||||
@@ -13,7 +13,10 @@
|
||||
# limitations under the License.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
try:
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
except ImportError:
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
|
||||
class ConvRNNF0Predictor(nn.Module):
|
||||
|
||||
@@ -23,7 +23,10 @@ import torch.nn.functional as F
|
||||
from torch.nn import Conv1d
|
||||
from torch.nn import ConvTranspose1d
|
||||
from torch.nn.utils import remove_weight_norm
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
try:
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
except ImportError:
|
||||
from torch.nn.utils import weight_norm
|
||||
from torch.distributions.uniform import Uniform
|
||||
|
||||
from cosyvoice.transformer.activation import Snake
|
||||
|
||||
@@ -287,8 +287,16 @@ class EspnetRelPositionalEncoding(torch.nn.Module):
|
||||
Returns:
|
||||
torch.Tensor: Corresponding encoding
|
||||
"""
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
|
||||
]
|
||||
# How to subscript a Union type:
|
||||
# https://github.com/pytorch/pytorch/issues/69434
|
||||
if isinstance(offset, int):
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
|
||||
]
|
||||
elif isinstance(offset, torch.Tensor):
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
|
||||
]
|
||||
return pos_emb
|
||||
|
||||
@@ -56,11 +56,16 @@ class Upsample1D(nn.Module):
|
||||
# In this mode, first repeat interpolate, than conv with stride=1
|
||||
self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
|
||||
|
||||
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor):
|
||||
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor, conv_cache: torch.Tensor=torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
|
||||
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
|
||||
if conv_cache.size(2) == 0:
|
||||
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
|
||||
else:
|
||||
assert conv_cache.size(2) == self.stride * 2
|
||||
outputs = torch.concat([conv_cache, outputs], dim=2)
|
||||
conv_cache_new = outputs[:, :, -self.stride * 2:]
|
||||
outputs = self.conv(outputs)
|
||||
return outputs, input_lengths * self.stride
|
||||
return outputs, input_lengths * self.stride, conv_cache_new
|
||||
|
||||
|
||||
class PreLookaheadLayer(nn.Module):
|
||||
@@ -78,22 +83,32 @@ class PreLookaheadLayer(nn.Module):
|
||||
kernel_size=3, stride=1, padding=0,
|
||||
)
|
||||
|
||||
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
||||
def forward(self, inputs: torch.Tensor, context: torch.Tensor = torch.zeros(0, 0, 0), conv2_cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
inputs: (batch_size, seq_len, channels)
|
||||
"""
|
||||
outputs = inputs.transpose(1, 2).contiguous()
|
||||
context = context.transpose(1, 2).contiguous()
|
||||
# look ahead
|
||||
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
||||
if context.size(2) == 0:
|
||||
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
||||
else:
|
||||
assert context.size(2) == self.pre_lookahead_len
|
||||
outputs = F.pad(torch.concat([outputs, context], dim=2), (0, self.pre_lookahead_len - context.size(2)), mode='constant', value=0.0)
|
||||
outputs = F.leaky_relu(self.conv1(outputs))
|
||||
# outputs
|
||||
outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0)
|
||||
if conv2_cache.size(2) == 0:
|
||||
outputs = F.pad(outputs, (self.conv2.kernel_size[0] - 1, 0), mode='constant', value=0.0)
|
||||
else:
|
||||
assert conv2_cache.size(2) == self.conv2.kernel_size[0] - 1
|
||||
outputs = torch.concat([conv2_cache, outputs], dim=2)
|
||||
conv2_cache_new = outputs[:, :, -(self.conv2.kernel_size[0] - 1):]
|
||||
outputs = self.conv2(outputs)
|
||||
outputs = outputs.transpose(1, 2).contiguous()
|
||||
|
||||
# residual connection
|
||||
outputs = outputs + inputs
|
||||
return outputs
|
||||
return outputs, conv2_cache_new
|
||||
|
||||
|
||||
class UpsampleConformerEncoder(torch.nn.Module):
|
||||
@@ -277,12 +292,12 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
||||
self.static_chunk_size,
|
||||
num_decoding_left_chunks)
|
||||
# lookahead + conformer encoder
|
||||
xs = self.pre_lookahead_layer(xs)
|
||||
xs, _ = self.pre_lookahead_layer(xs)
|
||||
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
||||
|
||||
# upsample + conformer encoder
|
||||
xs = xs.transpose(1, 2).contiguous()
|
||||
xs, xs_lens = self.up_layer(xs, xs_lens)
|
||||
xs, xs_lens, _ = self.up_layer(xs, xs_lens)
|
||||
xs = xs.transpose(1, 2).contiguous()
|
||||
T = xs.size(1)
|
||||
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
||||
@@ -316,3 +331,99 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
||||
for layer in self.up_encoders:
|
||||
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||
return xs
|
||||
|
||||
@torch.jit.export
|
||||
def forward_chunk(
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
xs_lens: torch.Tensor,
|
||||
offset: int = 0,
|
||||
context: torch.Tensor = torch.zeros(0, 0, 0),
|
||||
pre_lookahead_layer_conv2_cache: torch.Tensor = torch.zeros(0, 0, 0),
|
||||
encoders_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0),
|
||||
upsample_offset: int = 0,
|
||||
upsample_conv_cache: torch.Tensor = torch.zeros(0, 0, 0),
|
||||
upsample_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0)
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, Tuple[int, torch.Tensor, torch.Tensor, int, torch.Tensor, torch.Tensor]]:
|
||||
"""Embed positions in tensor.
|
||||
|
||||
Args:
|
||||
xs: padded input tensor (B, T, D)
|
||||
xs_lens: input length (B)
|
||||
decoding_chunk_size: decoding chunk size for dynamic chunk
|
||||
0: default for training, use random dynamic chunk.
|
||||
<0: for decoding, use full chunk.
|
||||
>0: for decoding, use fixed chunk size as set.
|
||||
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
||||
the chunk size is decoding_chunk_size.
|
||||
>=0: use num_decoding_left_chunks
|
||||
<0: use all left chunks
|
||||
Returns:
|
||||
encoder output tensor xs, and subsampled masks
|
||||
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
||||
masks: torch.Tensor batch padding mask after subsample
|
||||
(B, 1, T' ~= T/subsample_rate)
|
||||
NOTE(xcsong):
|
||||
We pass the `__call__` method of the modules instead of `forward` to the
|
||||
checkpointing API because `__call__` attaches all the hooks of the module.
|
||||
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
||||
"""
|
||||
assert xs.size(0) == 1
|
||||
# tmp_masks is just for interface compatibility
|
||||
tmp_masks = torch.ones(1,
|
||||
xs.size(1),
|
||||
device=xs.device,
|
||||
dtype=torch.bool)
|
||||
tmp_masks = tmp_masks.unsqueeze(1)
|
||||
if self.global_cmvn is not None:
|
||||
xs = self.global_cmvn(xs)
|
||||
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
|
||||
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
|
||||
offset += xs.size(1)
|
||||
tmp_masks = torch.ones(1,
|
||||
context.size(1),
|
||||
device=context.device,
|
||||
dtype=torch.bool)
|
||||
tmp_masks = tmp_masks.unsqueeze(1)
|
||||
if context.size(1) != 0:
|
||||
context, _, _ = self.embed(context, tmp_masks, offset)
|
||||
|
||||
# lookahead + conformer encoder
|
||||
xs, pre_lookahead_layer_conv2_cache = self.pre_lookahead_layer(xs, context, pre_lookahead_layer_conv2_cache)
|
||||
# NOTE in cache mode we do not need to call add_optional_chunk_mask
|
||||
chunk_masks = torch.ones((1, xs.size(1), offset), dtype=torch.bool, device=xs.device)
|
||||
mask_pad = torch.ones((0, 0, 0), dtype=torch.bool, device=xs.device)
|
||||
encoders_kv_cache_list = []
|
||||
for index, layer in enumerate(self.encoders):
|
||||
xs, chunk_masks, encoders_kv_cache_new, _ = layer(xs, chunk_masks, pos_emb, mask_pad, encoders_kv_cache[index])
|
||||
encoders_kv_cache = torch.stack(encoders_kv_cache_list, dim=0)
|
||||
|
||||
# upsample
|
||||
xs = xs.transpose(1, 2).contiguous()
|
||||
xs, xs_lens, upsample_conv_cache = self.up_layer(xs, xs_lens, upsample_conv_cache)
|
||||
xs = xs.transpose(1, 2).contiguous()
|
||||
|
||||
# tmp_masks is just for interface compatibility
|
||||
tmp_masks = torch.ones(1,
|
||||
xs.size(1),
|
||||
device=xs.device,
|
||||
dtype=torch.bool)
|
||||
tmp_masks = tmp_masks.unsqueeze(1)
|
||||
xs, pos_emb, masks = self.up_embed(xs, tmp_masks, upsample_offset)
|
||||
upsample_offset += xs.size(1)
|
||||
|
||||
# conformer encoder
|
||||
chunk_masks = torch.ones((1, xs.size(1), upsample_offset), dtype=torch.bool, device=xs.device)
|
||||
mask_pad = torch.ones((0, 0, 0), dtype=torch.bool, device=xs.device)
|
||||
upsample_kv_cache_list = []
|
||||
for index, layer in enumerate(self.up_encoders):
|
||||
xs, chunk_masks, upsample_kv_cache_new, _ = layer(xs, chunk_masks, pos_emb, mask_pad, upsample_kv_cache[index])
|
||||
upsample_kv_cache_list.append(upsample_kv_cache_new)
|
||||
upsample_kv_cache = torch.stack(upsample_kv_cache_list, dim=0)
|
||||
|
||||
if self.normalize_before:
|
||||
xs = self.after_norm(xs)
|
||||
# Here we assume the mask is not changed in encoder layers, so just
|
||||
# return the masks before encoder layers, and the masks will be used
|
||||
# for cross attention with decoder later
|
||||
return xs, masks, (offset, pre_lookahead_layer_conv2_cache, encoders_kv_cache_new, upsample_offset, upsample_conv_cache, upsample_kv_cache_new)
|
||||
|
||||
@@ -87,7 +87,7 @@ def subsequent_mask(
|
||||
return mask
|
||||
|
||||
|
||||
def subsequent_chunk_mask_deprecated(
|
||||
def subsequent_chunk_mask(
|
||||
size: int,
|
||||
chunk_size: int,
|
||||
num_left_chunks: int = -1,
|
||||
@@ -125,41 +125,6 @@ def subsequent_chunk_mask_deprecated(
|
||||
return ret
|
||||
|
||||
|
||||
def subsequent_chunk_mask(
|
||||
size: int,
|
||||
chunk_size: int,
|
||||
num_left_chunks: int = -1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> torch.Tensor:
|
||||
"""Create mask for subsequent steps (size, size) with chunk size,
|
||||
this is for streaming encoder
|
||||
|
||||
Args:
|
||||
size (int): size of mask
|
||||
chunk_size (int): size of chunk
|
||||
num_left_chunks (int): number of left chunks
|
||||
<0: use full chunk
|
||||
>=0: use num_left_chunks
|
||||
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
||||
|
||||
Returns:
|
||||
torch.Tensor: mask
|
||||
|
||||
Examples:
|
||||
>>> subsequent_chunk_mask(4, 2)
|
||||
[[1, 1, 0, 0],
|
||||
[1, 1, 0, 0],
|
||||
[1, 1, 1, 1],
|
||||
[1, 1, 1, 1]]
|
||||
"""
|
||||
# NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
|
||||
# actually this is not needed after we have inference cache implemented, will remove it later
|
||||
pos_idx = torch.arange(size, device=device)
|
||||
block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
|
||||
ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
|
||||
return ret
|
||||
|
||||
|
||||
def add_optional_chunk_mask(xs: torch.Tensor,
|
||||
masks: torch.Tensor,
|
||||
use_dynamic_chunk: bool,
|
||||
|
||||
232
examples/libritts/cosyvoice2/conf/cosyvoice2.yaml
Normal file
232
examples/libritts/cosyvoice2/conf/cosyvoice2.yaml
Normal file
@@ -0,0 +1,232 @@
|
||||
# set random seed, so that you may reproduce your result.
|
||||
__set_seed1: !apply:random.seed [1986]
|
||||
__set_seed2: !apply:numpy.random.seed [1986]
|
||||
__set_seed3: !apply:torch.manual_seed [1986]
|
||||
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
||||
|
||||
# fixed params
|
||||
sample_rate: 24000
|
||||
llm_input_size: 896
|
||||
llm_output_size: 896
|
||||
spk_embed_dim: 192
|
||||
qwen_pretrain_path: ''
|
||||
token_frame_rate: 25
|
||||
token_mel_ratio: 2
|
||||
|
||||
# model params
|
||||
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
||||
# for system/third_party class/function, we do not require this.
|
||||
llm: !new:cosyvoice.llm.llm.Qwen2LM
|
||||
llm_input_size: !ref <llm_input_size>
|
||||
llm_output_size: !ref <llm_output_size>
|
||||
speech_token_size: 6561
|
||||
length_normalized_loss: True
|
||||
lsm_weight: 0
|
||||
mix_ratio: [5, 15]
|
||||
llm: !new:cosyvoice.llm.llm.Qwen2Encoder
|
||||
pretrain_path: !ref <qwen_pretrain_path>
|
||||
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||
top_p: 0.8
|
||||
top_k: 25
|
||||
win_size: 10
|
||||
tau_r: 0.1
|
||||
|
||||
flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithXvec
|
||||
input_size: 512
|
||||
output_size: 80
|
||||
spk_embed_dim: !ref <spk_embed_dim>
|
||||
output_type: 'mel'
|
||||
vocab_size: 6561
|
||||
input_frame_rate: !ref <token_frame_rate>
|
||||
only_mask_loss: True
|
||||
token_mel_ratio: !ref <token_mel_ratio>
|
||||
pre_lookahead_len: 3
|
||||
encoder: !new:cosyvoice.transformer.upsample_encoder.UpsampleConformerEncoder
|
||||
output_size: 512
|
||||
attention_heads: 8
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.1
|
||||
normalize_before: True
|
||||
input_layer: 'linear'
|
||||
pos_enc_layer_type: 'rel_pos_espnet'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
input_size: 512
|
||||
use_cnn_module: False
|
||||
macaron_style: False
|
||||
use_dynamic_chunk: True
|
||||
decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
|
||||
in_channels: 240
|
||||
n_spks: 1
|
||||
spk_emb_dim: 80
|
||||
cfm_params: !new:omegaconf.DictConfig
|
||||
content:
|
||||
sigma_min: 1e-06
|
||||
solver: 'euler'
|
||||
t_scheduler: 'cosine'
|
||||
training_cfg_rate: 0.2
|
||||
inference_cfg_rate: 0.7
|
||||
reg_loss_type: 'l1'
|
||||
estimator: !new:cosyvoice.flow.decoder.CausalConditionalDecoder
|
||||
in_channels: 320
|
||||
out_channels: 80
|
||||
channels: [256]
|
||||
dropout: 0.0
|
||||
attention_head_dim: 64
|
||||
n_blocks: 4
|
||||
num_mid_blocks: 12
|
||||
num_heads: 8
|
||||
act_fn: 'gelu'
|
||||
static_chunk_size: !ref <token_frame_rate> * <token_mel_ratio> # here we use static_chunk_size because we want to fix kv cache size during inference
|
||||
num_decoding_left_chunks: 2
|
||||
|
||||
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||
in_channels: 80
|
||||
base_channels: 512
|
||||
nb_harmonics: 8
|
||||
sampling_rate: !ref <sample_rate>
|
||||
nsf_alpha: 0.1
|
||||
nsf_sigma: 0.003
|
||||
nsf_voiced_threshold: 10
|
||||
upsample_rates: [8, 5, 3]
|
||||
upsample_kernel_sizes: [16, 11, 7]
|
||||
istft_params:
|
||||
n_fft: 16
|
||||
hop_len: 4
|
||||
resblock_kernel_sizes: [3, 7, 11]
|
||||
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||
source_resblock_kernel_sizes: [7, 7, 11]
|
||||
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||
lrelu_slope: 0.1
|
||||
audio_limit: 0.99
|
||||
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
||||
num_class: 1
|
||||
in_channels: 80
|
||||
cond_channels: 512
|
||||
|
||||
# gan related module
|
||||
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1024
|
||||
num_mels: 80
|
||||
sampling_rate: !ref <sample_rate>
|
||||
hop_size: 256
|
||||
win_size: 1024
|
||||
fmin: 0
|
||||
fmax: null
|
||||
center: False
|
||||
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||
generator: !ref <hift>
|
||||
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
||||
mel_spec_transform: [
|
||||
!ref <mel_spec_transform1>
|
||||
]
|
||||
|
||||
# processor functions
|
||||
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||
get_tokenizer: !name:cosyvoice.tokenizer.tokenizer.get_qwen_tokenizer
|
||||
token_path: !ref <qwen_pretrain_path>
|
||||
skip_special_tokens: True
|
||||
allowed_special: 'all'
|
||||
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
||||
get_tokenizer: !ref <get_tokenizer>
|
||||
allowed_special: !ref <allowed_special>
|
||||
filter: !name:cosyvoice.dataset.processor.filter
|
||||
max_length: 40960
|
||||
min_length: 100
|
||||
token_max_length: 200
|
||||
token_min_length: 1
|
||||
resample: !name:cosyvoice.dataset.processor.resample
|
||||
resample_rate: !ref <sample_rate>
|
||||
truncate: !name:cosyvoice.dataset.processor.truncate
|
||||
truncate_length: 24480 # must be a multiplier of hop_size
|
||||
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
n_fft: 1920
|
||||
num_mels: 80
|
||||
sampling_rate: !ref <sample_rate>
|
||||
hop_size: 480
|
||||
win_size: 1920
|
||||
fmin: 0
|
||||
fmax: 8000
|
||||
center: False
|
||||
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||
feat_extractor: !ref <feat_extractor>
|
||||
# pitch_extractor: !name:torchaudio.functional.compute_kaldi_pitch # TODO need to replace it
|
||||
# sample_rate: !ref <sample_rate>
|
||||
# frame_length: 46.4 # match feat_extractor win_size/sampling_rate
|
||||
# frame_shift: 11.6 # match feat_extractor hop_size/sampling_rate
|
||||
# compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||
# pitch_extractor: !ref <pitch_extractor>
|
||||
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||
normalize: True
|
||||
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||
shuffle_size: 1000
|
||||
sort: !name:cosyvoice.dataset.processor.sort
|
||||
sort_size: 500 # sort_size should be less than shuffle_size
|
||||
batch: !name:cosyvoice.dataset.processor.batch
|
||||
batch_type: 'dynamic'
|
||||
max_frames_in_batch: 2500
|
||||
padding: !name:cosyvoice.dataset.processor.padding
|
||||
use_spk_embedding: False # change to True during sft
|
||||
|
||||
|
||||
# dataset processor pipeline
|
||||
data_pipeline: [
|
||||
!ref <parquet_opener>,
|
||||
!ref <tokenize>,
|
||||
!ref <filter>,
|
||||
!ref <resample>,
|
||||
!ref <compute_fbank>,
|
||||
!ref <parse_embedding>,
|
||||
!ref <shuffle>,
|
||||
!ref <sort>,
|
||||
!ref <batch>,
|
||||
!ref <padding>,
|
||||
]
|
||||
# data_pipeline_gan: [
|
||||
# !ref <parquet_opener>,
|
||||
# !ref <tokenize>,
|
||||
# !ref <filter>,
|
||||
# !ref <resample>,
|
||||
# !ref <truncate>,
|
||||
# !ref <compute_fbank>,
|
||||
# !ref <compute_f0>,
|
||||
# !ref <parse_embedding>,
|
||||
# !ref <shuffle>,
|
||||
# !ref <sort>,
|
||||
# !ref <batch>,
|
||||
# !ref <padding>,
|
||||
# ]
|
||||
|
||||
# llm flow train conf
|
||||
train_conf:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 1e-5 # change to 1e-5 during sft
|
||||
scheduler: constantlr # change to constantlr during sft
|
||||
scheduler_conf:
|
||||
warmup_steps: 2500
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 2
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
|
||||
# gan train conf
|
||||
train_conf_gan:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.0002 # use small lr for gan training
|
||||
scheduler: constantlr
|
||||
optim_d: adam
|
||||
optim_conf_d:
|
||||
lr: 0.0002 # use small lr for gan training
|
||||
scheduler_d: constantlr
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 1 # in gan training, accum_grad must be 1
|
||||
log_interval: 100
|
||||
save_per_step: -1
|
||||
42
examples/libritts/cosyvoice2/conf/ds_stage2.json
Normal file
42
examples/libritts/cosyvoice2/conf/ds_stage2.json
Normal file
@@ -0,0 +1,42 @@
|
||||
{
|
||||
"train_micro_batch_size_per_gpu": 1,
|
||||
"gradient_accumulation_steps": 1,
|
||||
"steps_per_print": 100,
|
||||
"gradient_clipping": 5,
|
||||
"fp16": {
|
||||
"enabled": false,
|
||||
"auto_cast": false,
|
||||
"loss_scale": 0,
|
||||
"initial_scale_power": 16,
|
||||
"loss_scale_window": 256,
|
||||
"hysteresis": 2,
|
||||
"consecutive_hysteresis": false,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
"bf16": {
|
||||
"enabled": false
|
||||
},
|
||||
"zero_force_ds_cpu_optimizer": false,
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"offload_optimizer": {
|
||||
"device": "none",
|
||||
"pin_memory": true
|
||||
},
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 5e8,
|
||||
"overlap_comm": false,
|
||||
"reduce_scatter": true,
|
||||
"reduce_bucket_size": 5e8,
|
||||
"contiguous_gradients" : true
|
||||
},
|
||||
"optimizer": {
|
||||
"type": "AdamW",
|
||||
"params": {
|
||||
"lr": 0.001,
|
||||
"weight_decay": 0.0001,
|
||||
"torch_adam": true,
|
||||
"adam_w_mode": true
|
||||
}
|
||||
}
|
||||
}
|
||||
3
examples/libritts/cosyvoice2/path.sh
Normal file
3
examples/libritts/cosyvoice2/path.sh
Normal file
@@ -0,0 +1,3 @@
|
||||
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PYTHONPATH=../../../:../../../third_party/Matcha-TTS:$PYTHONPATH
|
||||
130
examples/libritts/cosyvoice2/run.sh
Normal file
130
examples/libritts/cosyvoice2/run.sh
Normal file
@@ -0,0 +1,130 @@
|
||||
#!/bin/bash
|
||||
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
||||
. ./path.sh || exit 1;
|
||||
|
||||
stage=-1
|
||||
stop_stage=3
|
||||
|
||||
data_url=www.openslr.org/resources/60
|
||||
data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
|
||||
pretrained_model_dir=/mnt/lyuxiang.lx/data/tts/models/IIC/CosyVoice2-0.5B/
|
||||
|
||||
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
||||
echo "Data Download"
|
||||
for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
|
||||
local/download_and_untar.sh ${data_dir} ${data_url} ${part}
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||
mkdir -p data/$x
|
||||
python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||
tools/extract_embedding.py --dir data/$x \
|
||||
--onnx_path $pretrained_model_dir/campplus.onnx
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||
tools/extract_speech_token.py --dir data/$x \
|
||||
--onnx_path $pretrained_model_dir/speech_tokenizer_v2.onnx
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
|
||||
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
|
||||
mkdir -p data/$x/parquet
|
||||
tools/make_parquet_list.py --num_utts_per_parquet 1000 \
|
||||
--num_processes 10 \
|
||||
--src_dir data/$x \
|
||||
--des_dir data/$x/parquet
|
||||
done
|
||||
fi
|
||||
|
||||
# inference
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
echo "Run inference. Please make sure utt in tts_text is in prompt_data"
|
||||
# TODO consider remove bin/inference.py, or use similar initilization method as in readme
|
||||
for mode in sft zero_shot; do
|
||||
python cosyvoice/bin/inference.py --mode $mode \
|
||||
--gpu 0 \
|
||||
--config conf/cosyvoice2.yaml \
|
||||
--prompt_data data/test-clean/parquet/data.list \
|
||||
--prompt_utt2data data/test-clean/parquet/utt2data.list \
|
||||
--tts_text `pwd`/tts_text.json \
|
||||
--qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
|
||||
--llm_model $pretrained_model_dir/llm.pt \
|
||||
--flow_model $pretrained_model_dir/flow.pt \
|
||||
--hifigan_model $pretrained_model_dir/hift.pt \
|
||||
--result_dir `pwd`/exp/cosyvoice/test-clean/$mode
|
||||
done
|
||||
fi
|
||||
|
||||
# train llm
|
||||
export CUDA_VISIBLE_DEVICES="2,3,4,5,6,7"
|
||||
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
job_id=1986
|
||||
dist_backend="nccl"
|
||||
num_workers=2
|
||||
prefetch=100
|
||||
train_engine=torch_ddp
|
||||
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
|
||||
if [ $train_engine == 'deepspeed' ]; then
|
||||
echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
|
||||
fi
|
||||
cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
|
||||
cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
|
||||
# NOTE will update llm/hift training later
|
||||
for model in flow; do
|
||||
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
||||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
|
||||
cosyvoice/bin/train.py \
|
||||
--train_engine $train_engine \
|
||||
--config conf/cosyvoice2.yaml \
|
||||
--train_data data/train.data.list \
|
||||
--cv_data data/dev.data.list \
|
||||
--qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
|
||||
--model $model \
|
||||
--checkpoint $pretrained_model_dir/$model.pt \
|
||||
--model_dir `pwd`/exp/cosyvoice2/$model/$train_engine \
|
||||
--tensorboard_dir `pwd`/tensorboard/cosyvoice2/$model/$train_engine \
|
||||
--ddp.dist_backend $dist_backend \
|
||||
--num_workers ${num_workers} \
|
||||
--prefetch ${prefetch} \
|
||||
--pin_memory \
|
||||
--use_amp \
|
||||
--deepspeed_config ./conf/ds_stage2.json \
|
||||
--deepspeed.save_states model+optimizer
|
||||
done
|
||||
fi
|
||||
|
||||
# average model
|
||||
average_num=5
|
||||
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||
for model in llm flow hifigan; do
|
||||
decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
|
||||
echo "do model average and final checkpoint is $decode_checkpoint"
|
||||
python cosyvoice/bin/average_model.py \
|
||||
--dst_model $decode_checkpoint \
|
||||
--src_path `pwd`/exp/cosyvoice/$model/$train_engine \
|
||||
--num ${average_num} \
|
||||
--val_best
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
|
||||
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
||||
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
||||
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
||||
fi
|
||||
5
examples/libritts/cosyvoice2/tts_text.json
Normal file
5
examples/libritts/cosyvoice2/tts_text.json
Normal file
@@ -0,0 +1,5 @@
|
||||
{
|
||||
"1089_134686_000002_000000": [
|
||||
"hello, my name is Jack. What is your name?"
|
||||
]
|
||||
}
|
||||
Reference in New Issue
Block a user