mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
update readme
This commit is contained in:
@@ -1,15 +1,17 @@
|
||||
## Best Practices for Serving CosyVoice with NVIDIA Triton Inference Server
|
||||
## Serving CosyVoice with NVIDIA Triton Inference Server
|
||||
|
||||
Thanks to the contribution from NVIDIA Yuekai Zhang.
|
||||
Contributed by Yuekai Zhang (NVIDIA).
|
||||
|
||||
### Quick Start
|
||||
|
||||
Launch the service directly with Docker Compose:
|
||||
```sh
|
||||
docker compose up
|
||||
```
|
||||
|
||||
### Build the Docker Image
|
||||
Build the image from scratch:
|
||||
|
||||
To build the image from scratch:
|
||||
```sh
|
||||
docker build . -f Dockerfile.server -t soar97/triton-cosyvoice:25.06
|
||||
```
|
||||
@@ -21,71 +23,89 @@ docker run -it --name "cosyvoice-server" --gpus all --net host -v $your_mount_di
|
||||
```
|
||||
|
||||
### Understanding `run.sh`
|
||||
|
||||
The `run.sh` script orchestrates the entire workflow through numbered stages.
|
||||
|
||||
Run a subset of stages with:
|
||||
You can run a subset of stages with:
|
||||
```sh
|
||||
bash run.sh <start_stage> <stop_stage> [service_type]
|
||||
```
|
||||
- `<start_stage>` – stage to start from (0-5).
|
||||
- `<stop_stage>` – stage to stop after (0-5).
|
||||
- `<start_stage>`: The stage to start from (0-5).
|
||||
- `<stop_stage>`: The stage to stop after (0-5).
|
||||
|
||||
Stages:
|
||||
- **Stage 0** – Download the cosyvoice-2 0.5B model from HuggingFace.
|
||||
- **Stage 1** – Convert the HuggingFace checkpoint to TensorRT-LLM format and build TensorRT engines.
|
||||
- **Stage 2** – Create the Triton model repository and configure the model files (adjusts depending on whether `Decoupled=True/False` will be used later).
|
||||
- **Stage 3** – Launch the Triton Inference Server.
|
||||
- **Stage 4** – Run the single-utterance HTTP client.
|
||||
- **Stage 5** – Run the gRPC benchmark client.
|
||||
**Stages:**
|
||||
|
||||
- **Stage 0**: Downloads the `cosyvoice-2 0.5B` model from HuggingFace.
|
||||
- **Stage 1**: Converts the HuggingFace checkpoint to the TensorRT-LLM format and builds the TensorRT engines.
|
||||
- **Stage 2**: Creates the Triton model repository and configures the model files. The configuration is adjusted based on whether `Decoupled=True` (streaming) or `Decoupled=False` (offline) will be used.
|
||||
- **Stage 3**: Launches the Triton Inference Server.
|
||||
- **Stage 4**: Runs the single-utterance HTTP client for testing.
|
||||
- **Stage 5**: Runs the gRPC benchmark client.
|
||||
|
||||
### Export Models and Launch Server
|
||||
|
||||
### Export Models to TensorRT-LLM and Launch the Server
|
||||
Inside the Docker container, prepare the models and start the Triton server by running stages 0-3:
|
||||
```sh
|
||||
# Runs stages 0, 1, 2, and 3
|
||||
# This command runs stages 0, 1, 2, and 3
|
||||
bash run.sh 0 3
|
||||
```
|
||||
*Note: Stage 2 prepares the model repository differently depending on whether you intend to run with `Decoupled=False` or `Decoupled=True`. Rerun stage 2 if you switch the service type.*
|
||||
> [!TIP]
|
||||
> Both streaming and offline (non-streaming) TTS modes are supported. For streaming TTS, set `Decoupled=True`. For offline TTS, set `Decoupled=False`. You need to rerun stage 2 if you switch between modes.
|
||||
|
||||
### Single-Utterance HTTP Client
|
||||
Send a single HTTP inference request:
|
||||
|
||||
Sends a single HTTP inference request. This is intended for testing the offline TTS mode (`Decoupled=False`):
|
||||
```sh
|
||||
bash run.sh 4 4
|
||||
```
|
||||
|
||||
### Benchmark with a Dataset
|
||||
Benchmark the running Triton server. Pass either `streaming` or `offline` as the third argument.
|
||||
```sh
|
||||
bash run.sh 5 5
|
||||
|
||||
# You can also customise parameters such as num_task and dataset split directly:
|
||||
To benchmark the running Triton server, pass `streaming` or `offline` as the third argument:
|
||||
```sh
|
||||
bash run.sh 5 5 # [streaming|offline]
|
||||
|
||||
# You can also customize parameters such as the number of tasks and the dataset split:
|
||||
# python3 client_grpc.py --num-tasks 2 --huggingface-dataset yuekai/seed_tts_cosy2 --split-name test_zh --mode [streaming|offline]
|
||||
```
|
||||
> [!TIP]
|
||||
> Only offline CosyVoice TTS is currently supported. Setting the client to `streaming` simply enables NVIDIA Triton’s decoupled mode so that responses are returned as soon as they are ready.
|
||||
> It is recommended to run the benchmark multiple times to get stable results after the initial server warm-up.
|
||||
|
||||
### Benchmark Results
|
||||
Decoding on a single L20 GPU with 26 prompt_audio/target_text [pairs](https://huggingface.co/datasets/yuekai/seed_tts) (≈221 s of audio):
|
||||
The following results were obtained by decoding on a single L20 GPU with 26 prompt audio/target text pairs from the [yuekai/seed_tts](https://huggingface.co/datasets/yuekai/seed_tts) dataset (approximately 170 seconds of audio):
|
||||
|
||||
**Streaming TTS (First Chunk Latency)**
|
||||
| Mode | Concurrency | Avg Latency (ms) | P50 Latency (ms) | RTF |
|
||||
|---|---|---|---|---|
|
||||
| Streaming, Decoupled=True | 1 | 220.43 | 218.07 | 0.1237 |
|
||||
| Streaming, Decoupled=True | 2 | 476.97 | 369.25 | 0.1022 |
|
||||
| Streaming, Decoupled=True | 4 | 1107.34 | 1243.75| 0.0922 |
|
||||
|
||||
**Offline TTS (Full Sentence Latency)**
|
||||
| Mode | Note | Concurrency | Avg Latency (ms) | P50 Latency (ms) | RTF |
|
||||
|------|------|-------------|------------------|------------------|-----|
|
||||
| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 758.04 | 615.79 | 0.0891 |
|
||||
| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1025.93 | 901.68 | 0.0657 |
|
||||
| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1914.13 | 1783.58 | 0.0610 |
|
||||
| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 659.87 | 655.63 | 0.0891 |
|
||||
| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1103.16 | 992.96 | 0.0693 |
|
||||
| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1790.91 | 1668.63 | 0.0604 |
|
||||
|---|---|---|---|---|---|
|
||||
| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 758.04 | 615.79 | 0.0891 |
|
||||
| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1025.93 | 901.68 | 0.0657 |
|
||||
| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1914.13 | 1783.58 | 0.0610 |
|
||||
|
||||
### OpenAI-Compatible Server
|
||||
To launch an OpenAI-compatible service, run:
|
||||
|
||||
To launch an OpenAI-compatible API service, run the following commands:
|
||||
```sh
|
||||
git clone https://github.com/yuekaizhang/Triton-OpenAI-Speech.git
|
||||
cd Triton-OpenAI-Speech
|
||||
pip install -r requirements.txt
|
||||
# After the Triton service is up, start the FastAPI bridge:
|
||||
|
||||
# After the Triton service is running, start the FastAPI bridge:
|
||||
python3 tts_server.py --url http://localhost:8000 --ref_audios_dir ./ref_audios/ --port 10086 --default_sample_rate 24000
|
||||
# Test with curl
|
||||
|
||||
# Test the service with curl:
|
||||
bash test/test_cosyvoice.sh
|
||||
```
|
||||
> [!NOTE]
|
||||
> Currently, only the offline TTS mode is compatible with the OpenAI-compatible server.
|
||||
|
||||
### Acknowledgements
|
||||
This section originates from the NVIDIA CISI project. We also provide other multimodal resources—see [mair-hub](https://github.com/nvidia-china-sae/mair-hub) for details.
|
||||
|
||||
This work originates from the NVIDIA CISI project. For more multimodal resources, please see [mair-hub](https://github.com/nvidia-china-sae/mair-hub).
|
||||
|
||||
|
||||
@@ -32,7 +32,7 @@ import triton_python_backend_utils as pb_utils
|
||||
import os
|
||||
import numpy as np
|
||||
import s3tokenizer
|
||||
|
||||
torch.set_num_threads(1)
|
||||
ORIGINAL_VOCAB_SIZE = 151663
|
||||
|
||||
|
||||
|
||||
@@ -28,6 +28,8 @@ import json
|
||||
import math
|
||||
import os
|
||||
import re
|
||||
import threading
|
||||
import time
|
||||
from typing import Dict, List, Tuple, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
@@ -42,6 +44,7 @@ import torchaudio
|
||||
|
||||
from matcha.utils.audio import mel_spectrogram
|
||||
|
||||
torch.set_num_threads(1)
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Triton Python model for Spark TTS.
|
||||
@@ -62,6 +65,8 @@ class TritonPythonModel:
|
||||
parameters = self.model_config['parameters']
|
||||
model_params = {k: v["string_value"] for k, v in parameters.items()}
|
||||
self.logger.log_info(f"model_params:{model_params}")
|
||||
self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based"
|
||||
self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}")
|
||||
|
||||
# Initialize tokenizer
|
||||
llm_tokenizer_dir = model_params["llm_tokenizer_dir"]
|
||||
@@ -72,6 +77,10 @@ class TritonPythonModel:
|
||||
self.device = torch.device("cuda")
|
||||
self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config)
|
||||
|
||||
self.token_frame_rate = 25
|
||||
self.flow_pre_lookahead_len = 3
|
||||
self.token_hop_len = 15
|
||||
|
||||
def forward_llm(self, input_ids):
|
||||
"""
|
||||
Prepares the response from the language model based on the provided
|
||||
@@ -99,7 +108,7 @@ class TritonPythonModel:
|
||||
"""
|
||||
# convert input_ids to numpy, with shape [1, sequence_length]
|
||||
input_ids = input_ids.cpu().numpy()
|
||||
max_tokens = 1024
|
||||
max_tokens = 750
|
||||
input_dict = {
|
||||
"request_output_len": np.array([[max_tokens]], dtype=np.int32),
|
||||
"end_id": np.array([[self.eos_token_id]], dtype=np.int32),
|
||||
@@ -109,6 +118,7 @@ class TritonPythonModel:
|
||||
"runtime_top_k": np.array([[50]], dtype=np.int32),
|
||||
"temperature": np.array([[0.8]], dtype=np.float32),
|
||||
"repetition_penalty": np.array([[1.1]], dtype=np.float32),
|
||||
"random_seed": np.array([[42]], dtype=np.uint64),
|
||||
"input_ids": input_ids,
|
||||
"input_lengths": np.array([[input_ids.shape[1]]], dtype=np.int32),
|
||||
}
|
||||
@@ -139,7 +149,6 @@ class TritonPythonModel:
|
||||
|
||||
# Get actual output IDs up to the sequence length
|
||||
actual_output_ids = output_ids[0][0][:seq_lens[0][0]]
|
||||
print(f"actual_output_ids: {actual_output_ids}")
|
||||
|
||||
yield actual_output_ids
|
||||
else:
|
||||
@@ -290,6 +299,15 @@ class TritonPythonModel:
|
||||
speech_feat = speech_feat.unsqueeze(dim=0)
|
||||
return speech_feat
|
||||
|
||||
|
||||
def _llm_gen_thread(self, generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag):
|
||||
for generated_ids in generated_ids_iter:
|
||||
generated_ids = generated_ids.tolist()
|
||||
if len(generated_ids) == 0:
|
||||
break
|
||||
semantic_token_ids_arr.extend(generated_ids)
|
||||
llm_is_done_flag[0] = True
|
||||
|
||||
def execute(self, requests):
|
||||
"""Execute inference on the batched requests.
|
||||
|
||||
@@ -322,9 +340,7 @@ class TritonPythonModel:
|
||||
|
||||
|
||||
flow_prompt_speech_token_len = prompt_speech_tokens.shape[-1]
|
||||
token_hop_len = 25
|
||||
flow_pre_lookahead_len = 3
|
||||
|
||||
|
||||
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
||||
reference_text = reference_text[0][0].decode('utf-8')
|
||||
|
||||
@@ -340,47 +356,75 @@ class TritonPythonModel:
|
||||
|
||||
# Generate semantic tokens with LLM
|
||||
generated_ids_iter = self.forward_llm(input_ids)
|
||||
|
||||
prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
print(f"here2")
|
||||
|
||||
if self.decoupled:
|
||||
response_sender = request.get_response_sender()
|
||||
|
||||
semantic_token_ids_arr = []
|
||||
llm_is_done_flag = [False]
|
||||
|
||||
llm_thread = threading.Thread(
|
||||
target=self._llm_gen_thread,
|
||||
args=(generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag)
|
||||
)
|
||||
|
||||
semantic_token_ids_arr, token_offset = [], 0
|
||||
for generated_ids in generated_ids_iter:
|
||||
llm_thread.start()
|
||||
|
||||
generated_ids = generated_ids.tolist()
|
||||
print(f"generated_id: {generated_ids}")
|
||||
semantic_token_ids_arr.extend(generated_ids)
|
||||
token_offset, chunk_index = 0, 0
|
||||
start_time = time.time()
|
||||
this_token_hop_len = self.token_hop_len
|
||||
|
||||
prompt_token_pad = int(np.ceil(flow_prompt_speech_token_len / token_hop_len) * token_hop_len - flow_prompt_speech_token_len)
|
||||
this_token_hop_len = token_hop_len + prompt_token_pad if token_offset == 0 else token_hop_len
|
||||
print(f"this_token_hop_len: {this_token_hop_len}")
|
||||
if len(semantic_token_ids_arr) - token_offset >= this_token_hop_len + flow_pre_lookahead_len:
|
||||
this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + flow_pre_lookahead_len]
|
||||
print(f"this_tts_speech_token: {this_tts_speech_token}")
|
||||
while True:
|
||||
pending_num = len(semantic_token_ids_arr) - token_offset
|
||||
|
||||
if llm_is_done_flag[0]:
|
||||
break
|
||||
|
||||
if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
|
||||
this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
|
||||
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
print(f"here3")
|
||||
|
||||
|
||||
sub_tts_speech = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, this_tts_speech_token, request_id, token_offset, False)
|
||||
print(f"here4")
|
||||
# Prepare response to send
|
||||
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
response_sender.send(inference_response)
|
||||
|
||||
self.logger.log_info(f"[{request_id}]")
|
||||
token_offset += this_token_hop_len
|
||||
print(f"here")
|
||||
self.logger.log_info(f"chunk_index: {chunk_index}, current_token_hop_len: {this_token_hop_len}")
|
||||
|
||||
if self.dynamic_chunk_strategy == "exponential":
|
||||
this_token_hop_len = self.token_frame_rate * (2 ** chunk_index)
|
||||
elif self.dynamic_chunk_strategy == "time_based":
|
||||
# see https://github.com/qi-hua/async_cosyvoice/blob/main/model.py#L306
|
||||
cost_time = time.time() - start_time
|
||||
duration = token_offset / self.token_frame_rate
|
||||
if chunk_index > 0 and cost_time > 0:
|
||||
avg_chunk_processing_time = cost_time / (chunk_index + 1)
|
||||
if avg_chunk_processing_time > 0:
|
||||
multiples = (duration - cost_time) / avg_chunk_processing_time
|
||||
self.logger.log_info(f"multiples: {multiples}")
|
||||
next_pending_num = len(semantic_token_ids_arr) - token_offset
|
||||
if multiples > 4:
|
||||
this_token_hop_len = (next_pending_num // self.token_hop_len + 1) * self.token_hop_len
|
||||
elif multiples > 2:
|
||||
this_token_hop_len = (next_pending_num // self.token_hop_len) * self.token_hop_len
|
||||
else:
|
||||
this_token_hop_len = self.token_hop_len
|
||||
this_token_hop_len = max(self.token_hop_len, this_token_hop_len)
|
||||
|
||||
chunk_index += 1
|
||||
else:
|
||||
time.sleep(0.02)
|
||||
|
||||
this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
sub_tts_speech = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, this_tts_speech_token, request_id, token_offset, True)
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
response_sender.send(inference_response)
|
||||
|
||||
|
||||
llm_thread.join()
|
||||
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
|
||||
self.logger.log_info("send tritonserver_response_complete_final to end")
|
||||
else:
|
||||
|
||||
@@ -47,11 +47,11 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(level
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
ORIGINAL_VOCAB_SIZE = 151663
|
||||
|
||||
torch.set_num_threads(1)
|
||||
|
||||
class CosyVoice2:
|
||||
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1, device='cuda'):
|
||||
|
||||
self.model_dir = model_dir
|
||||
self.fp16 = fp16
|
||||
@@ -61,7 +61,7 @@ class CosyVoice2:
|
||||
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
||||
with open(hyper_yaml_path, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
||||
self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16)
|
||||
self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16, device)
|
||||
self.model.load('{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir))
|
||||
if load_jit:
|
||||
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||
@@ -77,8 +77,9 @@ class CosyVoice2Model:
|
||||
def __init__(self,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module,
|
||||
fp16: bool = False):
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
fp16: bool = False,
|
||||
device: str = 'cuda'):
|
||||
self.device = device
|
||||
self.flow = flow
|
||||
self.hift = hift
|
||||
self.fp16 = fp16
|
||||
@@ -179,11 +180,11 @@ class TritonPythonModel:
|
||||
model_dir = model_params["model_dir"]
|
||||
|
||||
# Initialize device and vocoder
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
logger.info(f"Initializing vocoder from {model_dir} on {self.device}")
|
||||
|
||||
self.token2wav_model = CosyVoice2(
|
||||
model_dir, load_jit=True, load_trt=True, fp16=True
|
||||
model_dir, load_jit=False, load_trt=True, fp16=True, device=self.device
|
||||
)
|
||||
|
||||
logger.info("Token2Wav initialized successfully")
|
||||
@@ -224,7 +225,6 @@ class TritonPythonModel:
|
||||
else:
|
||||
stream = False
|
||||
request_id = request.request_id()
|
||||
print(f"token_offset: {token_offset}, finalize: {finalize}, request_id: {request_id}")
|
||||
audio_hat = self.token2wav_model.model.token2wav(token=target_speech_tokens,
|
||||
prompt_token=prompt_speech_tokens,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
@@ -234,7 +234,6 @@ class TritonPythonModel:
|
||||
stream=stream,
|
||||
finalize=finalize)
|
||||
if finalize:
|
||||
print(f"dict keys: {self.token2wav_model.model.hift_cache_dict.keys()}")
|
||||
self.token2wav_model.model.hift_cache_dict.pop(request_id)
|
||||
|
||||
else:
|
||||
|
||||
@@ -60,6 +60,7 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
cp -r ./model_repo/audio_tokenizer $model_repo
|
||||
cp -r ./model_repo/tensorrt_llm $model_repo
|
||||
cp -r ./model_repo/token2wav $model_repo
|
||||
cp -r ./model_repo/speaker_embedding $model_repo
|
||||
|
||||
ENGINE_PATH=$trt_engines_dir
|
||||
MAX_QUEUE_DELAY_MICROSECONDS=0
|
||||
@@ -67,11 +68,12 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
LLM_TOKENIZER_DIR=$huggingface_model_local_dir
|
||||
BLS_INSTANCE_NUM=4
|
||||
TRITON_MAX_BATCH_SIZE=16
|
||||
DECOUPLED_MODE=False
|
||||
DECOUPLED_MODE=True # True for streaming, False for offline
|
||||
|
||||
python3 scripts/fill_template.py -i ${model_repo}/token2wav/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_beam_width:1,engine_dir:${ENGINE_PATH},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:inflight_fused_batching,max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS},encoder_input_features_data_type:TYPE_FP16,logits_datatype:TYPE_FP32
|
||||
|
||||
fi
|
||||
@@ -82,7 +84,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
echo "Single request test http"
|
||||
echo "Single request test http, only work for offline TTS mode"
|
||||
python3 client_http.py \
|
||||
--reference-audio ./assets/prompt_audio.wav \
|
||||
--reference-text "吃燕窝就选燕之屋,本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝,营养更均衡,本节目由豆本豆豆奶特约播出。" \
|
||||
@@ -92,15 +94,16 @@ fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
echo "Running benchmark client grpc"
|
||||
num_task=4
|
||||
# set mode=streaming, when decoupled=True
|
||||
# set mode=offline, when decoupled=False
|
||||
mode=offline
|
||||
num_task=1
|
||||
|
||||
mode=streaming
|
||||
BLS_INSTANCE_NUM=4
|
||||
|
||||
python3 client_grpc.py \
|
||||
--server-addr localhost \
|
||||
--model-name cosyvoice2 \
|
||||
--num-tasks $num_task \
|
||||
--mode $mode \
|
||||
--huggingface-dataset yuekai/seed_tts_cosy2 \
|
||||
--log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_4_${trt_dtype}
|
||||
fi
|
||||
--log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM}
|
||||
fi
|
||||
|
||||
Reference in New Issue
Block a user