diff --git a/runtime/triton_trtllm/README.md b/runtime/triton_trtllm/README.md index b1e091c..526bb63 100644 --- a/runtime/triton_trtllm/README.md +++ b/runtime/triton_trtllm/README.md @@ -1,15 +1,17 @@ -## Best Practices for Serving CosyVoice with NVIDIA Triton Inference Server +## Serving CosyVoice with NVIDIA Triton Inference Server -Thanks to the contribution from NVIDIA Yuekai Zhang. +Contributed by Yuekai Zhang (NVIDIA). ### Quick Start + Launch the service directly with Docker Compose: ```sh docker compose up ``` ### Build the Docker Image -Build the image from scratch: + +To build the image from scratch: ```sh docker build . -f Dockerfile.server -t soar97/triton-cosyvoice:25.06 ``` @@ -21,71 +23,89 @@ docker run -it --name "cosyvoice-server" --gpus all --net host -v $your_mount_di ``` ### Understanding `run.sh` + The `run.sh` script orchestrates the entire workflow through numbered stages. -Run a subset of stages with: +You can run a subset of stages with: ```sh bash run.sh [service_type] ``` -- `` – stage to start from (0-5). -- `` – stage to stop after (0-5). +- ``: The stage to start from (0-5). +- ``: The stage to stop after (0-5). -Stages: -- **Stage 0** – Download the cosyvoice-2 0.5B model from HuggingFace. -- **Stage 1** – Convert the HuggingFace checkpoint to TensorRT-LLM format and build TensorRT engines. -- **Stage 2** – Create the Triton model repository and configure the model files (adjusts depending on whether `Decoupled=True/False` will be used later). -- **Stage 3** – Launch the Triton Inference Server. -- **Stage 4** – Run the single-utterance HTTP client. -- **Stage 5** – Run the gRPC benchmark client. +**Stages:** + +- **Stage 0**: Downloads the `cosyvoice-2 0.5B` model from HuggingFace. +- **Stage 1**: Converts the HuggingFace checkpoint to the TensorRT-LLM format and builds the TensorRT engines. +- **Stage 2**: Creates the Triton model repository and configures the model files. The configuration is adjusted based on whether `Decoupled=True` (streaming) or `Decoupled=False` (offline) will be used. +- **Stage 3**: Launches the Triton Inference Server. +- **Stage 4**: Runs the single-utterance HTTP client for testing. +- **Stage 5**: Runs the gRPC benchmark client. + +### Export Models and Launch Server -### Export Models to TensorRT-LLM and Launch the Server Inside the Docker container, prepare the models and start the Triton server by running stages 0-3: ```sh -# Runs stages 0, 1, 2, and 3 +# This command runs stages 0, 1, 2, and 3 bash run.sh 0 3 ``` -*Note: Stage 2 prepares the model repository differently depending on whether you intend to run with `Decoupled=False` or `Decoupled=True`. Rerun stage 2 if you switch the service type.* +> [!TIP] +> Both streaming and offline (non-streaming) TTS modes are supported. For streaming TTS, set `Decoupled=True`. For offline TTS, set `Decoupled=False`. You need to rerun stage 2 if you switch between modes. ### Single-Utterance HTTP Client -Send a single HTTP inference request: + +Sends a single HTTP inference request. This is intended for testing the offline TTS mode (`Decoupled=False`): ```sh bash run.sh 4 4 ``` ### Benchmark with a Dataset -Benchmark the running Triton server. Pass either `streaming` or `offline` as the third argument. -```sh -bash run.sh 5 5 -# You can also customise parameters such as num_task and dataset split directly: +To benchmark the running Triton server, pass `streaming` or `offline` as the third argument: +```sh +bash run.sh 5 5 # [streaming|offline] + +# You can also customize parameters such as the number of tasks and the dataset split: # python3 client_grpc.py --num-tasks 2 --huggingface-dataset yuekai/seed_tts_cosy2 --split-name test_zh --mode [streaming|offline] ``` > [!TIP] -> Only offline CosyVoice TTS is currently supported. Setting the client to `streaming` simply enables NVIDIA Triton’s decoupled mode so that responses are returned as soon as they are ready. +> It is recommended to run the benchmark multiple times to get stable results after the initial server warm-up. ### Benchmark Results -Decoding on a single L20 GPU with 26 prompt_audio/target_text [pairs](https://huggingface.co/datasets/yuekai/seed_tts) (≈221 s of audio): +The following results were obtained by decoding on a single L20 GPU with 26 prompt audio/target text pairs from the [yuekai/seed_tts](https://huggingface.co/datasets/yuekai/seed_tts) dataset (approximately 170 seconds of audio): +**Streaming TTS (First Chunk Latency)** +| Mode | Concurrency | Avg Latency (ms) | P50 Latency (ms) | RTF | +|---|---|---|---|---| +| Streaming, Decoupled=True | 1 | 220.43 | 218.07 | 0.1237 | +| Streaming, Decoupled=True | 2 | 476.97 | 369.25 | 0.1022 | +| Streaming, Decoupled=True | 4 | 1107.34 | 1243.75| 0.0922 | + +**Offline TTS (Full Sentence Latency)** | Mode | Note | Concurrency | Avg Latency (ms) | P50 Latency (ms) | RTF | -|------|------|-------------|------------------|------------------|-----| -| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 758.04 | 615.79 | 0.0891 | -| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1025.93 | 901.68 | 0.0657 | -| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1914.13 | 1783.58 | 0.0610 | -| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 659.87 | 655.63 | 0.0891 | -| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1103.16 | 992.96 | 0.0693 | -| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1790.91 | 1668.63 | 0.0604 | +|---|---|---|---|---|---| +| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 758.04 | 615.79 | 0.0891 | +| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1025.93 | 901.68 | 0.0657 | +| Offline, Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1914.13 | 1783.58 | 0.0610 | ### OpenAI-Compatible Server -To launch an OpenAI-compatible service, run: + +To launch an OpenAI-compatible API service, run the following commands: ```sh git clone https://github.com/yuekaizhang/Triton-OpenAI-Speech.git +cd Triton-OpenAI-Speech pip install -r requirements.txt -# After the Triton service is up, start the FastAPI bridge: + +# After the Triton service is running, start the FastAPI bridge: python3 tts_server.py --url http://localhost:8000 --ref_audios_dir ./ref_audios/ --port 10086 --default_sample_rate 24000 -# Test with curl + +# Test the service with curl: bash test/test_cosyvoice.sh ``` +> [!NOTE] +> Currently, only the offline TTS mode is compatible with the OpenAI-compatible server. ### Acknowledgements -This section originates from the NVIDIA CISI project. We also provide other multimodal resources—see [mair-hub](https://github.com/nvidia-china-sae/mair-hub) for details. + +This work originates from the NVIDIA CISI project. For more multimodal resources, please see [mair-hub](https://github.com/nvidia-china-sae/mair-hub). diff --git a/runtime/triton_trtllm/model_repo/audio_tokenizer/1/model.py b/runtime/triton_trtllm/model_repo/audio_tokenizer/1/model.py index 47383e2..339cb0e 100644 --- a/runtime/triton_trtllm/model_repo/audio_tokenizer/1/model.py +++ b/runtime/triton_trtllm/model_repo/audio_tokenizer/1/model.py @@ -32,7 +32,7 @@ import triton_python_backend_utils as pb_utils import os import numpy as np import s3tokenizer - +torch.set_num_threads(1) ORIGINAL_VOCAB_SIZE = 151663 diff --git a/runtime/triton_trtllm/model_repo/cosyvoice2/1/model.py b/runtime/triton_trtllm/model_repo/cosyvoice2/1/model.py index 8a677e9..3575c45 100644 --- a/runtime/triton_trtllm/model_repo/cosyvoice2/1/model.py +++ b/runtime/triton_trtllm/model_repo/cosyvoice2/1/model.py @@ -28,6 +28,8 @@ import json import math import os import re +import threading +import time from typing import Dict, List, Tuple, Optional, Union import numpy as np @@ -42,6 +44,7 @@ import torchaudio from matcha.utils.audio import mel_spectrogram +torch.set_num_threads(1) class TritonPythonModel: """Triton Python model for Spark TTS. @@ -62,6 +65,8 @@ class TritonPythonModel: parameters = self.model_config['parameters'] model_params = {k: v["string_value"] for k, v in parameters.items()} self.logger.log_info(f"model_params:{model_params}") + self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based" + self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}") # Initialize tokenizer llm_tokenizer_dir = model_params["llm_tokenizer_dir"] @@ -72,6 +77,10 @@ class TritonPythonModel: self.device = torch.device("cuda") self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config) + self.token_frame_rate = 25 + self.flow_pre_lookahead_len = 3 + self.token_hop_len = 15 + def forward_llm(self, input_ids): """ Prepares the response from the language model based on the provided @@ -99,7 +108,7 @@ class TritonPythonModel: """ # convert input_ids to numpy, with shape [1, sequence_length] input_ids = input_ids.cpu().numpy() - max_tokens = 1024 + max_tokens = 750 input_dict = { "request_output_len": np.array([[max_tokens]], dtype=np.int32), "end_id": np.array([[self.eos_token_id]], dtype=np.int32), @@ -109,6 +118,7 @@ class TritonPythonModel: "runtime_top_k": np.array([[50]], dtype=np.int32), "temperature": np.array([[0.8]], dtype=np.float32), "repetition_penalty": np.array([[1.1]], dtype=np.float32), + "random_seed": np.array([[42]], dtype=np.uint64), "input_ids": input_ids, "input_lengths": np.array([[input_ids.shape[1]]], dtype=np.int32), } @@ -139,7 +149,6 @@ class TritonPythonModel: # Get actual output IDs up to the sequence length actual_output_ids = output_ids[0][0][:seq_lens[0][0]] - print(f"actual_output_ids: {actual_output_ids}") yield actual_output_ids else: @@ -290,6 +299,15 @@ class TritonPythonModel: speech_feat = speech_feat.unsqueeze(dim=0) return speech_feat + + def _llm_gen_thread(self, generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag): + for generated_ids in generated_ids_iter: + generated_ids = generated_ids.tolist() + if len(generated_ids) == 0: + break + semantic_token_ids_arr.extend(generated_ids) + llm_is_done_flag[0] = True + def execute(self, requests): """Execute inference on the batched requests. @@ -322,9 +340,7 @@ class TritonPythonModel: flow_prompt_speech_token_len = prompt_speech_tokens.shape[-1] - token_hop_len = 25 - flow_pre_lookahead_len = 3 - + reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy() reference_text = reference_text[0][0].decode('utf-8') @@ -340,47 +356,75 @@ class TritonPythonModel: # Generate semantic tokens with LLM generated_ids_iter = self.forward_llm(input_ids) - prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor) - print(f"here2") + if self.decoupled: response_sender = request.get_response_sender() + semantic_token_ids_arr = [] + llm_is_done_flag = [False] + llm_thread = threading.Thread( + target=self._llm_gen_thread, + args=(generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag) + ) - semantic_token_ids_arr, token_offset = [], 0 - for generated_ids in generated_ids_iter: + llm_thread.start() - generated_ids = generated_ids.tolist() - print(f"generated_id: {generated_ids}") - semantic_token_ids_arr.extend(generated_ids) + token_offset, chunk_index = 0, 0 + start_time = time.time() + this_token_hop_len = self.token_hop_len - prompt_token_pad = int(np.ceil(flow_prompt_speech_token_len / token_hop_len) * token_hop_len - flow_prompt_speech_token_len) - this_token_hop_len = token_hop_len + prompt_token_pad if token_offset == 0 else token_hop_len - print(f"this_token_hop_len: {this_token_hop_len}") - if len(semantic_token_ids_arr) - token_offset >= this_token_hop_len + flow_pre_lookahead_len: - this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + flow_pre_lookahead_len] - print(f"this_tts_speech_token: {this_tts_speech_token}") + while True: + pending_num = len(semantic_token_ids_arr) - token_offset + + if llm_is_done_flag[0]: + break + + if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len: + this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + self.flow_pre_lookahead_len] this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device) - print(f"here3") - + sub_tts_speech = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, this_tts_speech_token, request_id, token_offset, False) - print(f"here4") - # Prepare response to send + audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech)) inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor]) response_sender.send(inference_response) - self.logger.log_info(f"[{request_id}]") token_offset += this_token_hop_len - print(f"here") + self.logger.log_info(f"chunk_index: {chunk_index}, current_token_hop_len: {this_token_hop_len}") + + if self.dynamic_chunk_strategy == "exponential": + this_token_hop_len = self.token_frame_rate * (2 ** chunk_index) + elif self.dynamic_chunk_strategy == "time_based": + # see https://github.com/qi-hua/async_cosyvoice/blob/main/model.py#L306 + cost_time = time.time() - start_time + duration = token_offset / self.token_frame_rate + if chunk_index > 0 and cost_time > 0: + avg_chunk_processing_time = cost_time / (chunk_index + 1) + if avg_chunk_processing_time > 0: + multiples = (duration - cost_time) / avg_chunk_processing_time + self.logger.log_info(f"multiples: {multiples}") + next_pending_num = len(semantic_token_ids_arr) - token_offset + if multiples > 4: + this_token_hop_len = (next_pending_num // self.token_hop_len + 1) * self.token_hop_len + elif multiples > 2: + this_token_hop_len = (next_pending_num // self.token_hop_len) * self.token_hop_len + else: + this_token_hop_len = self.token_hop_len + this_token_hop_len = max(self.token_hop_len, this_token_hop_len) + + chunk_index += 1 + else: + time.sleep(0.02) this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device) sub_tts_speech = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, this_tts_speech_token, request_id, token_offset, True) audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech)) inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor]) response_sender.send(inference_response) - + + llm_thread.join() response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL) self.logger.log_info("send tritonserver_response_complete_final to end") else: diff --git a/runtime/triton_trtllm/model_repo/token2wav/1/model.py b/runtime/triton_trtllm/model_repo/token2wav/1/model.py index 00dc258..8f0ca66 100644 --- a/runtime/triton_trtllm/model_repo/token2wav/1/model.py +++ b/runtime/triton_trtllm/model_repo/token2wav/1/model.py @@ -47,11 +47,11 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(level logger = logging.getLogger(__name__) ORIGINAL_VOCAB_SIZE = 151663 - +torch.set_num_threads(1) class CosyVoice2: - def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1): + def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1, device='cuda'): self.model_dir = model_dir self.fp16 = fp16 @@ -61,7 +61,7 @@ class CosyVoice2: raise ValueError('{} not found!'.format(hyper_yaml_path)) with open(hyper_yaml_path, 'r') as f: configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')}) - self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16) + self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16, device) self.model.load('{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir)) if load_jit: self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32')) @@ -77,8 +77,9 @@ class CosyVoice2Model: def __init__(self, flow: torch.nn.Module, hift: torch.nn.Module, - fp16: bool = False): - self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + fp16: bool = False, + device: str = 'cuda'): + self.device = device self.flow = flow self.hift = hift self.fp16 = fp16 @@ -179,11 +180,11 @@ class TritonPythonModel: model_dir = model_params["model_dir"] # Initialize device and vocoder - self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") logger.info(f"Initializing vocoder from {model_dir} on {self.device}") self.token2wav_model = CosyVoice2( - model_dir, load_jit=True, load_trt=True, fp16=True + model_dir, load_jit=False, load_trt=True, fp16=True, device=self.device ) logger.info("Token2Wav initialized successfully") @@ -224,7 +225,6 @@ class TritonPythonModel: else: stream = False request_id = request.request_id() - print(f"token_offset: {token_offset}, finalize: {finalize}, request_id: {request_id}") audio_hat = self.token2wav_model.model.token2wav(token=target_speech_tokens, prompt_token=prompt_speech_tokens, prompt_feat=prompt_speech_feat, @@ -234,7 +234,6 @@ class TritonPythonModel: stream=stream, finalize=finalize) if finalize: - print(f"dict keys: {self.token2wav_model.model.hift_cache_dict.keys()}") self.token2wav_model.model.hift_cache_dict.pop(request_id) else: diff --git a/runtime/triton_trtllm/run.sh b/runtime/triton_trtllm/run.sh index 2e81896..c2c275c 100644 --- a/runtime/triton_trtllm/run.sh +++ b/runtime/triton_trtllm/run.sh @@ -60,6 +60,7 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then cp -r ./model_repo/audio_tokenizer $model_repo cp -r ./model_repo/tensorrt_llm $model_repo cp -r ./model_repo/token2wav $model_repo + cp -r ./model_repo/speaker_embedding $model_repo ENGINE_PATH=$trt_engines_dir MAX_QUEUE_DELAY_MICROSECONDS=0 @@ -67,11 +68,12 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then LLM_TOKENIZER_DIR=$huggingface_model_local_dir BLS_INSTANCE_NUM=4 TRITON_MAX_BATCH_SIZE=16 - DECOUPLED_MODE=False + DECOUPLED_MODE=True # True for streaming, False for offline python3 scripts/fill_template.py -i ${model_repo}/token2wav/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} + python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_beam_width:1,engine_dir:${ENGINE_PATH},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:inflight_fused_batching,max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS},encoder_input_features_data_type:TYPE_FP16,logits_datatype:TYPE_FP32 fi @@ -82,7 +84,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then - echo "Single request test http" + echo "Single request test http, only work for offline TTS mode" python3 client_http.py \ --reference-audio ./assets/prompt_audio.wav \ --reference-text "吃燕窝就选燕之屋,本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝,营养更均衡,本节目由豆本豆豆奶特约播出。" \ @@ -92,15 +94,16 @@ fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then echo "Running benchmark client grpc" - num_task=4 - # set mode=streaming, when decoupled=True - # set mode=offline, when decoupled=False - mode=offline + num_task=1 + + mode=streaming + BLS_INSTANCE_NUM=4 + python3 client_grpc.py \ --server-addr localhost \ --model-name cosyvoice2 \ --num-tasks $num_task \ --mode $mode \ --huggingface-dataset yuekai/seed_tts_cosy2 \ - --log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_4_${trt_dtype} -fi \ No newline at end of file + --log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM} +fi