mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
update
This commit is contained in:
@@ -107,7 +107,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
# concat text and prompt_text
|
||||
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
||||
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
|
||||
mask = (~make_pad_mask(token_len)).to(embedding.dtype).unsqueeze(-1).to(embedding)
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
|
||||
@@ -32,6 +32,7 @@ class ConditionalCFM(BASECFM):
|
||||
|
||||
self.estimator_context = None
|
||||
self.estimator_engine = None
|
||||
self.is_saved = None
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
||||
@@ -123,6 +124,41 @@ class ConditionalCFM(BASECFM):
|
||||
self.estimator_context.execute_async_v3(stream_handle=handle)
|
||||
return ret
|
||||
else:
|
||||
|
||||
if self.is_saved == None:
|
||||
self.is_saved = True
|
||||
output = self.estimator.forward(x, mask, mu, t, spks, cond)
|
||||
torch.save(x, "x.pt")
|
||||
torch.save(mask, "mask.pt")
|
||||
torch.save(mu, "mu.pt")
|
||||
torch.save(t, "t.pt")
|
||||
torch.save(spks, "spks.pt")
|
||||
torch.save(cond, "cond.pt")
|
||||
torch.save(output, "output.pt")
|
||||
dummy_input = (x, mask, mu, t, spks, cond)
|
||||
torch.onnx.export(
|
||||
self.estimator,
|
||||
dummy_input,
|
||||
"estimator_fp32.onnx",
|
||||
export_params=True,
|
||||
opset_version=17,
|
||||
do_constant_folding=True,
|
||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||
output_names=['output'],
|
||||
dynamic_axes={
|
||||
'x': {2: 'seq_len'},
|
||||
'mask': {2: 'seq_len'},
|
||||
'mu': {2: 'seq_len'},
|
||||
'cond': {2: 'seq_len'},
|
||||
'output': {2: 'seq_len'},
|
||||
}
|
||||
)
|
||||
# print("x, x.shape", x, x.shape)
|
||||
# print("mask, mask.shape", mask, mask.shape)
|
||||
# print("mu, mu.shape", mu, mu.shape)
|
||||
# print("t, t.shape", t, t.shape)
|
||||
# print("spks, spks.shape", spks, spks.shape)
|
||||
# print("cond, cond.shape", cond, cond.shape)
|
||||
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
||||
|
||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
||||
|
||||
Reference in New Issue
Block a user