mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
mark stateless token2wav
This commit is contained in:
@@ -43,6 +43,7 @@ import torchaudio
|
||||
|
||||
|
||||
from matcha.utils.audio import mel_spectrogram
|
||||
from datetime import datetime
|
||||
|
||||
ORIGINAL_VOCAB_SIZE = 151663
|
||||
torch.set_num_threads(1)
|
||||
@@ -86,6 +87,7 @@ class TritonPythonModel:
|
||||
model_params = {k: v["string_value"] for k, v in parameters.items()}
|
||||
self.logger.log_info(f"model_params:{model_params}")
|
||||
self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based"
|
||||
# self.dynamic_chunk_strategy = "equal"
|
||||
self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}")
|
||||
|
||||
# Initialize tokenizer
|
||||
@@ -105,7 +107,9 @@ class TritonPythonModel:
|
||||
if not os.path.exists(spk_info_path):
|
||||
raise ValueError(f"spk2info.pt not found in {model_params['model_dir']}")
|
||||
spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
|
||||
# self.default_spk_info = spk_info["001"]
|
||||
self.default_spk_info = spk_info["001"]
|
||||
self.http_client = httpx.AsyncClient()
|
||||
self.runtime_cache = {}
|
||||
|
||||
def _convert_speech_tokens_to_str(self, speech_tokens: Union[torch.Tensor, List]) -> str:
|
||||
"""Converts a tensor or list of speech token IDs to a string representation."""
|
||||
@@ -131,7 +135,6 @@ class TritonPythonModel:
|
||||
{"role": "user", "content": full_text},
|
||||
{"role": "assistant", "content": prompt_speech_tokens_str}
|
||||
]
|
||||
print(chat)
|
||||
|
||||
payload = {
|
||||
"model": "trt_engines_bfloat16",
|
||||
@@ -148,31 +151,33 @@ class TritonPythonModel:
|
||||
api_base = "http://localhost:8000/v1/chat/completions"
|
||||
|
||||
buffer = ""
|
||||
async with httpx.AsyncClient() as client:
|
||||
async with client.stream("POST", api_base, json=payload, timeout=None) as response:
|
||||
response.raise_for_status()
|
||||
async for line in response.aiter_lines():
|
||||
if line.startswith("data: "):
|
||||
line_data = line[len("data: "):].strip()
|
||||
if line_data == "[DONE]":
|
||||
break
|
||||
try:
|
||||
json_data = json.loads(line_data)
|
||||
content = json_data.get("choices", [{}])[0].get("delta", {}).get("content")
|
||||
if content:
|
||||
buffer += content
|
||||
while True:
|
||||
match = re.search(r"<\|s_(\d+)\|>", buffer)
|
||||
if not match:
|
||||
break
|
||||
async with self.http_client.stream("POST", api_base, json=payload, timeout=None) as response:
|
||||
print(f"start httpx.AsyncClient, target_text: {target_text[:5]}, time: {datetime.now()}")
|
||||
print(f"start response.aiter_lines, target_text: {target_text[:5]}, time: {datetime.now()}")
|
||||
response.raise_for_status()
|
||||
async for line in response.aiter_lines():
|
||||
if line.startswith("data: "):
|
||||
line_data = line[len("data: "):].strip()
|
||||
if line_data == "[DONE]":
|
||||
break
|
||||
try:
|
||||
json_data = json.loads(line_data)
|
||||
content = json_data.get("choices", [{}])[0].get("delta", {}).get("content")
|
||||
if content:
|
||||
buffer += content
|
||||
print(f"buffer: {buffer}, target_text: {target_text[:5]}, time: {datetime.now()}")
|
||||
while True:
|
||||
match = re.search(r"<\|s_(\d+)\|>", buffer)
|
||||
if not match:
|
||||
break
|
||||
|
||||
token_num = int(match.group(1))
|
||||
final_id = token_num + ORIGINAL_VOCAB_SIZE
|
||||
yield final_id
|
||||
buffer = buffer[match.end():]
|
||||
except json.JSONDecodeError:
|
||||
self.logger.log_info(f"Skipping non-JSON line: {line_data}")
|
||||
continue
|
||||
token_num = int(match.group(1))
|
||||
final_id = token_num + ORIGINAL_VOCAB_SIZE
|
||||
yield final_id
|
||||
buffer = buffer[match.end():]
|
||||
except json.JSONDecodeError:
|
||||
self.logger.log_info(f"Skipping non-JSON line: {line_data}")
|
||||
continue
|
||||
|
||||
# Process any remaining complete tokens in the buffer after the stream ends
|
||||
while True:
|
||||
@@ -236,7 +241,7 @@ class TritonPythonModel:
|
||||
|
||||
return prompt_spk_embedding
|
||||
|
||||
def forward_token2wav(
|
||||
async def forward_token2wav(
|
||||
self,
|
||||
index: int,
|
||||
target_speech_tokens: torch.Tensor,
|
||||
@@ -258,20 +263,57 @@ class TritonPythonModel:
|
||||
target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens))
|
||||
finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
|
||||
inputs_tensor = [target_speech_tokens_tensor, reference_wav, reference_wav_len, finalize_tensor]
|
||||
|
||||
|
||||
# optional cache inputs
|
||||
if self.runtime_cache[request_id]["conformer_cnn_cache"] is not None:
|
||||
# inputs_tensor.extend([
|
||||
# pb_utils.Tensor("conformer_cnn_cache", self.runtime_cache[request_id]["conformer_cnn_cache"].as_numpy()),
|
||||
# pb_utils.Tensor("conformer_att_cache", self.runtime_cache[request_id]["conformer_att_cache"].as_numpy()),
|
||||
# pb_utils.Tensor("estimator_cnn_cache", self.runtime_cache[request_id]["estimator_cnn_cache"].as_numpy()),
|
||||
# pb_utils.Tensor("estimator_att_cache", self.runtime_cache[request_id]["estimator_att_cache"].as_numpy()),
|
||||
# pb_utils.Tensor("mel", self.runtime_cache[request_id]["mel"].as_numpy()),
|
||||
# pb_utils.Tensor("source", self.runtime_cache[request_id]["source"].as_numpy()),
|
||||
# pb_utils.Tensor("speech", self.runtime_cache[request_id]["speech"].as_numpy()),
|
||||
# ])
|
||||
inputs_tensor.extend([
|
||||
self.runtime_cache[request_id]["conformer_cnn_cache"],
|
||||
self.runtime_cache[request_id]["conformer_att_cache"],
|
||||
self.runtime_cache[request_id]["estimator_cnn_cache"],
|
||||
self.runtime_cache[request_id]["estimator_att_cache"],
|
||||
self.runtime_cache[request_id]["mel"],
|
||||
self.runtime_cache[request_id]["source"],
|
||||
self.runtime_cache[request_id]["speech"],
|
||||
])
|
||||
# Create and execute inference request
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name='token2wav_dit',
|
||||
requested_output_names=['waveform'],
|
||||
requested_output_names=[
|
||||
"waveform",
|
||||
"conformer_cnn_cache",
|
||||
"conformer_att_cache",
|
||||
"estimator_cnn_cache",
|
||||
"estimator_att_cache",
|
||||
"mel",
|
||||
"source",
|
||||
"speech",
|
||||
],
|
||||
inputs=inputs_tensor,
|
||||
request_id=request_id,
|
||||
parameters={"priority": index+1},
|
||||
)
|
||||
|
||||
inference_response = inference_request.exec()
|
||||
inference_response = await inference_request.async_exec()
|
||||
if inference_response.has_error():
|
||||
raise pb_utils.TritonModelException(inference_response.error().message())
|
||||
|
||||
self.runtime_cache[request_id]["conformer_cnn_cache"] = pb_utils.get_output_tensor_by_name(inference_response, "conformer_cnn_cache")
|
||||
self.runtime_cache[request_id]["conformer_att_cache"] = pb_utils.get_output_tensor_by_name(inference_response, "conformer_att_cache")
|
||||
self.runtime_cache[request_id]["estimator_cnn_cache"] = pb_utils.get_output_tensor_by_name(inference_response, "estimator_cnn_cache")
|
||||
self.runtime_cache[request_id]["estimator_att_cache"] = pb_utils.get_output_tensor_by_name(inference_response, "estimator_att_cache")
|
||||
self.runtime_cache[request_id]["mel"] = pb_utils.get_output_tensor_by_name(inference_response, "mel")
|
||||
self.runtime_cache[request_id]["source"] = pb_utils.get_output_tensor_by_name(inference_response, "source")
|
||||
self.runtime_cache[request_id]["speech"] = pb_utils.get_output_tensor_by_name(inference_response, "speech")
|
||||
|
||||
# Extract and convert output waveform
|
||||
waveform = pb_utils.get_output_tensor_by_name(inference_response, 'waveform')
|
||||
waveform = torch.utils.dlpack.from_dlpack(waveform.to_dlpack()).cpu()
|
||||
@@ -297,6 +339,16 @@ class TritonPythonModel:
|
||||
|
||||
async def _process_request(self, request):
|
||||
request_id = request.request_id()
|
||||
if request_id not in self.runtime_cache:
|
||||
self.runtime_cache[request_id] = {
|
||||
"conformer_cnn_cache": None,
|
||||
"conformer_att_cache": None,
|
||||
"estimator_cnn_cache": None,
|
||||
"estimator_att_cache": None,
|
||||
"mel": None,
|
||||
"source": None,
|
||||
"speech": None,
|
||||
}
|
||||
# Extract input tensors
|
||||
wav = pb_utils.get_input_tensor_by_name(request, "reference_wav")
|
||||
|
||||
@@ -308,6 +360,7 @@ class TritonPythonModel:
|
||||
|
||||
wav_tensor = wav.as_numpy()
|
||||
wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
|
||||
print(f"wav_tensor: {wav_tensor.shape}, time: {datetime.now()}")
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
|
||||
speech_feat = self._extract_speech_feat(prompt_speech_resample)
|
||||
token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
|
||||
@@ -316,7 +369,7 @@ class TritonPythonModel:
|
||||
|
||||
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
||||
reference_text = reference_text[0][0].decode('utf-8')
|
||||
# prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
|
||||
# reference_text = self.default_spk_info["prompt_text"]
|
||||
# prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
|
||||
@@ -333,6 +386,7 @@ class TritonPythonModel:
|
||||
|
||||
target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
|
||||
target_text = target_text[0][0].decode('utf-8')
|
||||
print(f"target_text: {target_text}, time: {datetime.now()}")
|
||||
|
||||
if self.decoupled:
|
||||
response_sender = request.get_response_sender()
|
||||
@@ -341,7 +395,7 @@ class TritonPythonModel:
|
||||
token_offset, chunk_index = 0, 0
|
||||
start_time = time.time()
|
||||
this_token_hop_len = self.token_hop_len
|
||||
|
||||
print(f"start forward_llm_async, target_text: {target_text[:5]}, time: {datetime.now()}")
|
||||
async for generated_ids in self.forward_llm_async(
|
||||
target_text=target_text,
|
||||
reference_text=reference_text,
|
||||
@@ -350,18 +404,18 @@ class TritonPythonModel:
|
||||
if not generated_ids:
|
||||
break
|
||||
semantic_token_ids_arr.append(generated_ids)
|
||||
|
||||
print(f"generated_ids: {generated_ids}, target_text: {target_text[:5]}, time: {datetime.now()}")
|
||||
while True:
|
||||
pending_num = len(semantic_token_ids_arr) - token_offset
|
||||
if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
|
||||
this_tts_speech_token = semantic_token_ids_arr[token_offset:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
|
||||
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
|
||||
sub_tts_speech = self.forward_token2wav(
|
||||
print(f"chunk_index: {chunk_index}, target_text: {target_text[:5]}, time: {datetime.now()}")
|
||||
sub_tts_speech = await self.forward_token2wav(
|
||||
chunk_index,
|
||||
this_tts_speech_token, request_id, wav, wav_len, False
|
||||
)
|
||||
|
||||
print(f"finish token2wav, target_text: {target_text[:5]}, time: {datetime.now()}")
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
response_sender.send(inference_response)
|
||||
@@ -371,6 +425,8 @@ class TritonPythonModel:
|
||||
|
||||
if self.dynamic_chunk_strategy == "exponential":
|
||||
this_token_hop_len = self.token_frame_rate * (2 ** chunk_index)
|
||||
elif self.dynamic_chunk_strategy == "equal":
|
||||
this_token_hop_len = self.token_hop_len
|
||||
elif self.dynamic_chunk_strategy == "time_based":
|
||||
# see https://github.com/qi-hua/async_cosyvoice/blob/main/model.py#L306
|
||||
cost_time = time.time() - start_time
|
||||
@@ -393,29 +449,13 @@ class TritonPythonModel:
|
||||
break
|
||||
|
||||
this_tts_speech_token = torch.tensor(semantic_token_ids_arr[token_offset:]).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
sub_tts_speech = self.forward_token2wav(chunk_index, this_tts_speech_token, request_id, wav, wav_len, True)
|
||||
sub_tts_speech = await self.forward_token2wav(chunk_index, this_tts_speech_token, request_id, wav, wav_len, True)
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
response_sender.send(inference_response)
|
||||
|
||||
## debug
|
||||
## save semantic_token_ids_arr and reference_text, target_text to a single json file
|
||||
# save into a torch .pt
|
||||
# for i, item in enumerate(semantic_token_ids_arr):
|
||||
# semantic_token_ids_arr[i] = item - ORIGINAL_VOCAB_SIZE
|
||||
# import json
|
||||
# data = {
|
||||
# "semantic_token_ids_arr": semantic_token_ids_arr,
|
||||
# "reference_text": reference_text,
|
||||
# "target_text": target_text
|
||||
# }
|
||||
# with open(f"semantic_token_ids_arr_debug_{request_id}.pt", "wb") as f:
|
||||
# torch.save(data, f)
|
||||
# with open(f"semantic_token_ids_arr_debug_{request_id}.json", "w") as f:
|
||||
# json.dump(data, f)
|
||||
|
||||
# ##
|
||||
|
||||
if request_id in self.runtime_cache:
|
||||
del self.runtime_cache[request_id]
|
||||
self.logger.log_info(f"Deleted cache for request_id: {request_id}")
|
||||
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
|
||||
self.logger.log_info("send tritonserver_response_complete_final to end")
|
||||
else:
|
||||
@@ -436,3 +476,8 @@ class TritonPythonModel:
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
return None
|
||||
|
||||
def finalize(self):
|
||||
self.logger.log_info("Finalizing CosyVoice DIT model")
|
||||
if hasattr(self, "http_client"):
|
||||
asyncio.run(self.http_client.aclose())
|
||||
|
||||
@@ -31,7 +31,7 @@ parameters [
|
||||
value: {string_value:"${model_dir}"}
|
||||
}
|
||||
]
|
||||
|
||||
parameters: { key: "FORCE_CPU_ONLY_INPUT_TENSORS" value: {string_value:"no"}}
|
||||
input [
|
||||
{
|
||||
name: "reference_wav"
|
||||
|
||||
@@ -103,39 +103,91 @@ class TritonPythonModel:
|
||||
List of inference responses containing generated waveforms
|
||||
"""
|
||||
responses = []
|
||||
# Process each request in batch
|
||||
for request in requests:
|
||||
target_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "target_speech_tokens").as_numpy()
|
||||
target_speech_tokens = torch.from_numpy(target_speech_tokens_tensor)#.to(self.device)
|
||||
# shift the speech tokens according to the original vocab size
|
||||
target_speech_tokens = target_speech_tokens - ORIGINAL_VOCAB_SIZE
|
||||
request_id = request.request_id()
|
||||
|
||||
# Get inputs
|
||||
target_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "target_speech_tokens")
|
||||
target_speech_tokens = torch.utils.dlpack.from_dlpack(target_speech_tokens_tensor.to_dlpack())
|
||||
target_speech_tokens = target_speech_tokens.squeeze().tolist()
|
||||
|
||||
# We set token_offset as an optional input to support streaming/offline tts. It has to be None when offline tts.
|
||||
|
||||
finalize = pb_utils.get_input_tensor_by_name(request, "finalize").as_numpy().item()
|
||||
|
||||
request_id = request.request_id()
|
||||
|
||||
|
||||
wav_array = pb_utils.get_input_tensor_by_name(
|
||||
request, "reference_wav").as_numpy()
|
||||
wav_len = pb_utils.get_input_tensor_by_name(
|
||||
request, "reference_wav_len").as_numpy().item()
|
||||
|
||||
wav_array = torch.from_numpy(wav_array)
|
||||
# Prepare inputs
|
||||
wav = wav_array[:, :wav_len].squeeze(0)
|
||||
|
||||
wav_array = pb_utils.get_input_tensor_by_name(request, "reference_wav").as_numpy()
|
||||
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len").as_numpy().item()
|
||||
wav = torch.from_numpy(wav_array)[:, :wav_len].squeeze(0)
|
||||
spk_id = get_spk_id_from_prompt_audio(wav)
|
||||
# wav = wav.to(self.device)
|
||||
|
||||
audio_hat = self.token2wav_model.forward_streaming(target_speech_tokens, finalize, request_id=request_id, speaker_id=f"{spk_id}", prompt_audio=wav, prompt_audio_sample_rate=16000)
|
||||
# Handle cache
|
||||
conformer_cnn_cache = pb_utils.get_input_tensor_by_name(request, "conformer_cnn_cache")
|
||||
if conformer_cnn_cache is not None:
|
||||
self.token2wav_model.streaming_flow_cache[request_id]['conformer_cnn_cache'] = torch.utils.dlpack.from_dlpack(conformer_cnn_cache.to_dlpack())
|
||||
|
||||
conformer_att_cache_np = pb_utils.get_input_tensor_by_name(request, "conformer_att_cache")
|
||||
self.token2wav_model.streaming_flow_cache[request_id]['conformer_att_cache'] = torch.utils.dlpack.from_dlpack(conformer_att_cache_np.to_dlpack()).transpose(0,1)
|
||||
|
||||
estimator_cnn_cache_np = pb_utils.get_input_tensor_by_name(request, "estimator_cnn_cache")
|
||||
self.token2wav_model.streaming_flow_cache[request_id]['estimator_cnn_cache'] = torch.utils.dlpack.from_dlpack(estimator_cnn_cache_np.to_dlpack()).squeeze(0)
|
||||
|
||||
generated_wave = audio_hat.squeeze(0).cpu().numpy()
|
||||
estimator_att_cache_np = pb_utils.get_input_tensor_by_name(request, "estimator_att_cache")
|
||||
self.token2wav_model.streaming_flow_cache[request_id]['estimator_att_cache'] = torch.utils.dlpack.from_dlpack(estimator_att_cache_np.to_dlpack()).squeeze(0)
|
||||
|
||||
mel_np = pb_utils.get_input_tensor_by_name(request, "mel")
|
||||
self.token2wav_model.streaming_flow_cache[request_id]['mel'] = torch.utils.dlpack.from_dlpack(mel_np.to_dlpack())
|
||||
|
||||
source_np = pb_utils.get_input_tensor_by_name(request, "source")
|
||||
self.token2wav_model.hift_cache_dict[request_id]['source'] = torch.utils.dlpack.from_dlpack(source_np.to_dlpack())
|
||||
|
||||
speech_np = pb_utils.get_input_tensor_by_name(request, "speech")
|
||||
self.token2wav_model.hift_cache_dict[request_id]['speech'] = torch.utils.dlpack.from_dlpack(speech_np.to_dlpack())
|
||||
|
||||
# Forward pass
|
||||
audio_hat = self.token2wav_model.forward_streaming(
|
||||
target_speech_tokens,
|
||||
finalize,
|
||||
request_id=request_id,
|
||||
speaker_id=f"{spk_id}",
|
||||
prompt_audio=wav,
|
||||
prompt_audio_sample_rate=16000
|
||||
)
|
||||
|
||||
# Prepare outputs
|
||||
outputs = []
|
||||
wav_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio_hat))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[wav_tensor])
|
||||
responses.append(inference_response)
|
||||
outputs.append(wav_tensor)
|
||||
|
||||
if request_id in self.token2wav_model.streaming_flow_cache:
|
||||
cache = self.token2wav_model.streaming_flow_cache[request_id]
|
||||
hifigan_cache = self.token2wav_model.hift_cache_dict[request_id]
|
||||
conformer_cnn_cache = cache['conformer_cnn_cache']
|
||||
conformer_att_cache = cache['conformer_att_cache'].transpose(0,1)
|
||||
estimator_cnn_cache = cache['estimator_cnn_cache'].unsqueeze(0)
|
||||
estimator_att_cache = cache['estimator_att_cache'].unsqueeze(0)
|
||||
mel = hifigan_cache['mel']
|
||||
source = hifigan_cache['source']
|
||||
speech = hifigan_cache['speech']
|
||||
|
||||
outputs.extend([
|
||||
pb_utils.Tensor.from_dlpack("conformer_cnn_cache", to_dlpack(conformer_cnn_cache)),
|
||||
pb_utils.Tensor.from_dlpack("conformer_att_cache", to_dlpack(conformer_att_cache)),
|
||||
pb_utils.Tensor.from_dlpack("estimator_cnn_cache", to_dlpack(estimator_cnn_cache)),
|
||||
pb_utils.Tensor.from_dlpack("estimator_att_cache", to_dlpack(estimator_att_cache)),
|
||||
pb_utils.Tensor.from_dlpack("mel", to_dlpack(mel)),
|
||||
pb_utils.Tensor.from_dlpack("source", to_dlpack(source)),
|
||||
pb_utils.Tensor.from_dlpack("speech", to_dlpack(speech)),
|
||||
])
|
||||
else:
|
||||
outputs.extend([pb_utils.Tensor("conformer_cnn_cache", np.array([], dtype=np.float16)),
|
||||
pb_utils.Tensor("conformer_att_cache", np.array([], dtype=np.float16)),
|
||||
pb_utils.Tensor("estimator_cnn_cache", np.array([], dtype=np.float16)),
|
||||
pb_utils.Tensor("estimator_att_cache", np.array([], dtype=np.float16)),
|
||||
pb_utils.Tensor("mel", np.array([], dtype=np.float32)),
|
||||
pb_utils.Tensor("source", np.array([], dtype=np.float32)),
|
||||
pb_utils.Tensor("speech", np.array([], dtype=np.float32)),
|
||||
])
|
||||
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=outputs)
|
||||
responses.append(inference_response)
|
||||
return responses
|
||||
|
||||
def finalize(self):
|
||||
self.logger.log_info("Finalizing Token2WavDiT model")
|
||||
|
||||
@@ -372,7 +372,6 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
|
||||
self, generated_speech_tokens: list[int], last_chunk: bool, request_id: str, speaker_id: str, prompt_audio: torch.Tensor = None, prompt_audio_sample_rate: int = 16000
|
||||
):
|
||||
if speaker_id not in self.speaker_cache:
|
||||
# if 1:
|
||||
assert prompt_audio is not None, "prompt_audio is required for new speaker"
|
||||
assert prompt_audio_sample_rate == 16000
|
||||
|
||||
@@ -384,20 +383,10 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
|
||||
|
||||
prompt_audio_dict = {'spk_emb_for_flow': spk_emb_for_flow, 'prompt_mels_for_flow': prompt_mels_for_flow}
|
||||
|
||||
# if speaker_id not in self.speaker_cache:
|
||||
# if 1:
|
||||
|
||||
cache_dict = self.get_prompt_audio_cache_for_streaming_tts(prompt_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
|
||||
self.speaker_cache[speaker_id] = {'prompt_audio_dict': prompt_audio_dict, 'cache_dict': cache_dict}
|
||||
print(f"speaker_id {speaker_id} added to cache")
|
||||
|
||||
# get a clone of cache dict ['estimator_att_cache'] and later check if it would be change
|
||||
att_cache_clone = self.speaker_cache[speaker_id]['cache_dict']['estimator_att_cache'].clone()
|
||||
cnn_cache_clone = self.speaker_cache[speaker_id]['cache_dict']['estimator_cnn_cache'].clone()
|
||||
conformer_cnn_cache_clone = self.speaker_cache[speaker_id]['cache_dict']['conformer_cnn_cache'].clone()
|
||||
conformer_att_cache_clone = self.speaker_cache[speaker_id]['cache_dict']['conformer_att_cache'].clone()
|
||||
|
||||
|
||||
if request_id not in self.streaming_flow_cache:
|
||||
self.streaming_flow_cache[request_id] = {k: v.clone() for k, v in self.speaker_cache[speaker_id]['cache_dict'].items()}
|
||||
self.hift_cache_dict[request_id] = dict(
|
||||
@@ -405,6 +394,12 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
|
||||
source = torch.zeros(1, 1, 0, device='cuda'),
|
||||
speech = torch.zeros(1, 0, device='cuda'),
|
||||
)
|
||||
# else:
|
||||
# for k, v in self.streaming_flow_cache[request_id].items():
|
||||
# print(f"k: {k}, v: {v.shape}, dtype: {v.dtype}")
|
||||
# for k, v in self.hift_cache_dict[request_id].items():
|
||||
# print(f"k: {k}, v: {v.shape}, dtype: {v.dtype}")
|
||||
# breakpoint()
|
||||
|
||||
current_request_cache = self.streaming_flow_cache[request_id]
|
||||
|
||||
@@ -420,33 +415,6 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
|
||||
n_timesteps=10,
|
||||
)
|
||||
|
||||
# get the original att_cache
|
||||
original_att_cache = self.speaker_cache[speaker_id]['cache_dict']['estimator_att_cache']
|
||||
original_cnn_cache = self.speaker_cache[speaker_id]['cache_dict']['estimator_cnn_cache']
|
||||
original_conformer_cnn_cache = self.speaker_cache[speaker_id]['cache_dict']['conformer_cnn_cache']
|
||||
original_conformer_att_cache = self.speaker_cache[speaker_id]['cache_dict']['conformer_att_cache']
|
||||
if not torch.allclose(original_att_cache, att_cache_clone):
|
||||
print("att_cache changed")
|
||||
# print the last 10 elements of original_att_cache and att_cache_clone
|
||||
print(original_att_cache[:, :, :, -10:])
|
||||
print(att_cache_clone[:, :, :, -10:])
|
||||
breakpoint()
|
||||
if not torch.allclose(original_cnn_cache, cnn_cache_clone):
|
||||
print("cnn_cache changed")
|
||||
print(original_cnn_cache[..., -10:])
|
||||
print(cnn_cache_clone[..., -10:])
|
||||
breakpoint()
|
||||
if not torch.allclose(original_conformer_cnn_cache, conformer_cnn_cache_clone):
|
||||
print("conformer_cnn_cache changed")
|
||||
print(original_conformer_cnn_cache[..., -10:])
|
||||
print(conformer_cnn_cache_clone[..., -10:])
|
||||
breakpoint()
|
||||
if not torch.allclose(original_conformer_att_cache, conformer_att_cache_clone):
|
||||
print("conformer_att_cache changed")
|
||||
print(original_conformer_att_cache[..., -10:])
|
||||
print(conformer_att_cache_clone[..., -10:])
|
||||
breakpoint()
|
||||
|
||||
self.streaming_flow_cache[request_id] = new_streaming_flow_cache
|
||||
|
||||
|
||||
@@ -482,7 +450,7 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
|
||||
assert request_id in self.streaming_flow_cache
|
||||
self.streaming_flow_cache.pop(request_id)
|
||||
self.hift_cache_dict.pop(request_id)
|
||||
# breakpoint()
|
||||
|
||||
return speech
|
||||
|
||||
def collate_fn(batch):
|
||||
|
||||
@@ -15,11 +15,14 @@
|
||||
name: "token2wav_dit"
|
||||
backend: "python"
|
||||
max_batch_size: ${triton_max_batch_size}
|
||||
|
||||
dynamic_batching {
|
||||
max_queue_delay_microseconds: ${max_queue_delay_microseconds}
|
||||
priority_levels: 10
|
||||
default_priority_level: 10
|
||||
}
|
||||
|
||||
parameters: { key: "FORCE_CPU_ONLY_INPUT_TENSORS" value: {string_value:"no"}}
|
||||
parameters [
|
||||
{
|
||||
key: "model_dir",
|
||||
@@ -49,6 +52,48 @@ input [
|
||||
dims: [ 1 ]
|
||||
reshape: { shape: [ ] }
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "conformer_cnn_cache"
|
||||
data_type: TYPE_FP16
|
||||
dims: [ 512, -1 ]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "conformer_att_cache"
|
||||
data_type: TYPE_FP16
|
||||
dims: [ 10, 8, -1, 128 ]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "estimator_cnn_cache"
|
||||
data_type: TYPE_FP16
|
||||
dims: [ 10, 16, -1, 1024, 2 ]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "estimator_att_cache"
|
||||
data_type: TYPE_FP16
|
||||
dims: [ 10, 16, -1, 8, -1, 128 ]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "mel"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ 80, -1 ]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "source"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ 1, -1 ]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "speech"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1 ]
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
output [
|
||||
@@ -56,6 +101,41 @@ output [
|
||||
name: "waveform"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1 ]
|
||||
},
|
||||
{
|
||||
name: "conformer_cnn_cache"
|
||||
data_type: TYPE_FP16
|
||||
dims: [ 512, -1 ]
|
||||
},
|
||||
{
|
||||
name: "conformer_att_cache"
|
||||
data_type: TYPE_FP16
|
||||
dims: [ 10, 8, -1, 128 ]
|
||||
},
|
||||
{
|
||||
name: "estimator_cnn_cache"
|
||||
data_type: TYPE_FP16
|
||||
dims: [ 10, 16, -1, 1024, 2 ]
|
||||
},
|
||||
{
|
||||
name: "estimator_att_cache"
|
||||
data_type: TYPE_FP16
|
||||
dims: [ 10, 16, -1, 8, -1, 128 ]
|
||||
},
|
||||
{
|
||||
name: "mel"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ 80, -1 ]
|
||||
},
|
||||
{
|
||||
name: "source"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ 1, -1 ]
|
||||
},
|
||||
{
|
||||
name: "speech"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user