mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
add streaming dit
This commit is contained in:
@@ -209,7 +209,8 @@ def get_args():
|
||||
choices=[
|
||||
"f5_tts",
|
||||
"spark_tts",
|
||||
"cosyvoice2"],
|
||||
"cosyvoice2",
|
||||
"cosyvoice2_dit"],
|
||||
help="triton model_repo module name to request",
|
||||
)
|
||||
|
||||
@@ -260,8 +261,8 @@ def get_args():
|
||||
|
||||
parser.add_argument(
|
||||
"--use-spk2info-cache",
|
||||
type=bool,
|
||||
default=False,
|
||||
type=str,
|
||||
default="False",
|
||||
help="Use spk2info cache for reference audio.",
|
||||
)
|
||||
|
||||
@@ -490,6 +491,7 @@ async def send_streaming(
|
||||
padding_duration=padding_duration,
|
||||
use_spk2info_cache=use_spk2info_cache
|
||||
)
|
||||
|
||||
request_id = str(uuid.uuid4())
|
||||
user_data = UserData()
|
||||
|
||||
@@ -670,11 +672,15 @@ async def main():
|
||||
trust_remote_code=True,
|
||||
)
|
||||
manifest_item_list = []
|
||||
tmp_audio_path="./asset_zero_shot_prompt.wav"
|
||||
tmp_audio_text="希望你以后能够做的比我还好呦。"
|
||||
for i in range(len(dataset)):
|
||||
manifest_item_list.append(
|
||||
{
|
||||
"audio_filepath": dataset[i]["prompt_audio"],
|
||||
"reference_text": dataset[i]["prompt_text"],
|
||||
# "audio_filepath": tmp_audio_path,
|
||||
# "reference_text": tmp_audio_text,
|
||||
"target_audio_path": dataset[i]["id"],
|
||||
"target_text": dataset[i]["target_text"],
|
||||
}
|
||||
@@ -686,7 +692,7 @@ async def main():
|
||||
manifest_item_list = split_data(manifest_item_list, num_tasks)
|
||||
|
||||
os.makedirs(args.log_dir, exist_ok=True)
|
||||
|
||||
args.use_spk2info_cache = args.use_spk2info_cache == "True" or args.use_spk2info_cache == "true"
|
||||
tasks = []
|
||||
start_time = time.time()
|
||||
for i in range(num_tasks):
|
||||
|
||||
@@ -227,12 +227,11 @@ class TritonPythonModel:
|
||||
|
||||
def forward_token2wav(
|
||||
self,
|
||||
index: int,
|
||||
target_speech_tokens: torch.Tensor,
|
||||
request_id: str,
|
||||
prompt_speech_tokens: torch.Tensor = None,
|
||||
prompt_speech_feat: torch.Tensor = None,
|
||||
prompt_spk_embedding: torch.Tensor = None,
|
||||
token_offset: int = None,
|
||||
reference_wav: object,
|
||||
reference_wav_len: object,
|
||||
finalize: bool = None) -> torch.Tensor:
|
||||
"""Forward pass through the vocoder component.
|
||||
|
||||
@@ -246,29 +245,16 @@ class TritonPythonModel:
|
||||
Generated waveform tensor
|
||||
"""
|
||||
target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens))
|
||||
|
||||
inputs_tensor = [target_speech_tokens_tensor]
|
||||
|
||||
if token_offset is not None:
|
||||
assert finalize is not None
|
||||
token_offset_tensor = pb_utils.Tensor("token_offset", np.array([[token_offset]], dtype=np.int32))
|
||||
finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
|
||||
inputs_tensor.append(token_offset_tensor)
|
||||
inputs_tensor.append(finalize_tensor)
|
||||
|
||||
if prompt_spk_embedding is not None:
|
||||
assert prompt_speech_feat is not None
|
||||
prompt_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_tokens", to_dlpack(prompt_speech_tokens))
|
||||
prompt_speech_feat_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_feat", to_dlpack(prompt_speech_feat))
|
||||
prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack("prompt_spk_embedding", to_dlpack(prompt_spk_embedding))
|
||||
inputs_tensor.extend([prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor])
|
||||
finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
|
||||
inputs_tensor = [target_speech_tokens_tensor, reference_wav, reference_wav_len, finalize_tensor]
|
||||
|
||||
# Create and execute inference request
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name='token2wav',
|
||||
model_name='token2wav_dit',
|
||||
requested_output_names=['waveform'],
|
||||
inputs=inputs_tensor,
|
||||
request_id=request_id,
|
||||
parameters={"priority": index+1},
|
||||
)
|
||||
|
||||
inference_response = inference_request.exec()
|
||||
@@ -346,8 +332,15 @@ class TritonPythonModel:
|
||||
|
||||
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
||||
reference_text = reference_text[0][0].decode('utf-8')
|
||||
prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
# prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
|
||||
# reference_text = self.default_spk_info["prompt_text"]
|
||||
# prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
|
||||
# prompt_speech_feat = None
|
||||
# prompt_spk_embedding = None
|
||||
|
||||
else:
|
||||
assert False, "wav is None"
|
||||
# using pre-cached reference text
|
||||
reference_text = self.default_spk_info["prompt_text"]
|
||||
prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
|
||||
@@ -391,12 +384,12 @@ class TritonPythonModel:
|
||||
break
|
||||
|
||||
if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
|
||||
this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
|
||||
this_tts_speech_token = semantic_token_ids_arr[token_offset:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
|
||||
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
|
||||
sub_tts_speech = self.forward_token2wav(
|
||||
this_tts_speech_token, request_id, prompt_speech_tokens,
|
||||
prompt_speech_feat, prompt_spk_embedding, token_offset, False
|
||||
chunk_index,
|
||||
this_tts_speech_token, request_id, wav, wav_len, False
|
||||
)
|
||||
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
@@ -429,8 +422,8 @@ class TritonPythonModel:
|
||||
else:
|
||||
time.sleep(0.02)
|
||||
|
||||
this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
sub_tts_speech = self.forward_token2wav(this_tts_speech_token, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, token_offset, True)
|
||||
this_tts_speech_token = torch.tensor(semantic_token_ids_arr[token_offset:]).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
sub_tts_speech = self.forward_token2wav(chunk_index, this_tts_speech_token, request_id, wav, wav_len, True)
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
response_sender.send(inference_response)
|
||||
@@ -439,17 +432,7 @@ class TritonPythonModel:
|
||||
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
|
||||
self.logger.log_info("send tritonserver_response_complete_final to end")
|
||||
else:
|
||||
generated_ids = next(generated_ids_iter)
|
||||
generated_ids = torch.tensor(generated_ids).unsqueeze(0).to(self.device)
|
||||
if generated_ids is None or len(generated_ids) == 0:
|
||||
raise pb_utils.TritonModelException("Generated IDs is None or empty")
|
||||
|
||||
audio = self.forward_token2wav(generated_ids, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding)
|
||||
|
||||
# Prepare response
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
responses.append(inference_response)
|
||||
raise NotImplementedError("Decoupled mode is not supported")
|
||||
|
||||
if not self.decoupled:
|
||||
return responses
|
||||
|
||||
438
runtime/triton_trtllm/model_repo/cosyvoice2_dit/3/model.py
Normal file
438
runtime/triton_trtllm/model_repo/cosyvoice2_dit/3/model.py
Normal file
@@ -0,0 +1,438 @@
|
||||
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
from typing import Dict, List, Tuple, Optional, Union
|
||||
import asyncio
|
||||
import httpx
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.dlpack import from_dlpack, to_dlpack
|
||||
import triton_python_backend_utils as pb_utils
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
import torchaudio
|
||||
|
||||
|
||||
from matcha.utils.audio import mel_spectrogram
|
||||
|
||||
ORIGINAL_VOCAB_SIZE = 151663
|
||||
torch.set_num_threads(1)
|
||||
|
||||
|
||||
def parse_speech_token_string(response_text: str) -> List[int]:
|
||||
"""
|
||||
Parses a string of speech tokens (e.g., "<|s_123|><|s_456|>") into a list of integer IDs.
|
||||
"""
|
||||
speech_tokens = response_text.strip().split('><')
|
||||
if len(speech_tokens) > 1:
|
||||
# Add back the missing '<' and '>' for proper parsing
|
||||
speech_tokens = ['<' + t if not t.startswith('<') else t for t in speech_tokens]
|
||||
speech_tokens = [t + '>' if not t.endswith('>') else t for t in speech_tokens]
|
||||
|
||||
speech_ids = []
|
||||
for token_str in speech_tokens:
|
||||
match = re.match(r'<\|s_(\d+)\|>', token_str)
|
||||
if match:
|
||||
speech_ids.append(int(match.group(1)))
|
||||
return speech_ids
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Triton Python model for Spark TTS.
|
||||
|
||||
This model orchestrates the end-to-end TTS pipeline by coordinating
|
||||
between audio tokenizer, LLM, and vocoder components.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""Initialize the model.
|
||||
|
||||
Args:
|
||||
args: Dictionary containing model configuration
|
||||
"""
|
||||
self.logger = pb_utils.Logger
|
||||
# Parse model parameters
|
||||
self.model_config = json.loads(args['model_config'])
|
||||
parameters = self.model_config['parameters']
|
||||
model_params = {k: v["string_value"] for k, v in parameters.items()}
|
||||
self.logger.log_info(f"model_params:{model_params}")
|
||||
self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based"
|
||||
self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}")
|
||||
|
||||
# Initialize tokenizer
|
||||
llm_tokenizer_dir = model_params["llm_tokenizer_dir"]
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(llm_tokenizer_dir)
|
||||
self.prompt_template = "<|sos|>{input_text}<|task_id|>"
|
||||
self.eos_token_id = self.tokenizer.convert_tokens_to_ids("<|eos1|>")
|
||||
|
||||
self.device = torch.device("cuda")
|
||||
self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config)
|
||||
|
||||
self.token_frame_rate = 25
|
||||
self.flow_pre_lookahead_len = 3
|
||||
self.token_hop_len = 15
|
||||
|
||||
spk_info_path = os.path.join(model_params["model_dir"], "spk2info.pt")
|
||||
if not os.path.exists(spk_info_path):
|
||||
raise ValueError(f"spk2info.pt not found in {model_params['model_dir']}")
|
||||
spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
|
||||
# self.default_spk_info = spk_info["001"]
|
||||
|
||||
def _convert_speech_tokens_to_str(self, speech_tokens: Union[torch.Tensor, List]) -> str:
|
||||
"""Converts a tensor or list of speech token IDs to a string representation."""
|
||||
if isinstance(speech_tokens, torch.Tensor):
|
||||
# Ensure tensor is on CPU and flattened
|
||||
speech_tokens = speech_tokens.cpu().numpy().flatten().tolist()
|
||||
|
||||
speech_id_str = ""
|
||||
for token_id in speech_tokens:
|
||||
# Convert token ID back to the speech number N
|
||||
token_num = token_id - ORIGINAL_VOCAB_SIZE
|
||||
speech_id_str += f"<|s_{token_num}|>"
|
||||
return speech_id_str
|
||||
|
||||
async def forward_llm_async(self, target_text: str, reference_text: str, prompt_speech_tokens: Union[torch.Tensor, List]):
|
||||
"""
|
||||
Asynchronously sends a request to the TRTLLM-serve endpoint and processes the streaming response.
|
||||
"""
|
||||
full_text = f"{reference_text}{target_text}"
|
||||
prompt_speech_tokens_str = self._convert_speech_tokens_to_str(prompt_speech_tokens)
|
||||
|
||||
chat = [
|
||||
{"role": "user", "content": full_text},
|
||||
{"role": "assistant", "content": prompt_speech_tokens_str}
|
||||
]
|
||||
print(chat)
|
||||
|
||||
payload = {
|
||||
"model": "trt_engines_bfloat16",
|
||||
"messages": chat,
|
||||
"max_tokens": 750,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.95,
|
||||
"top_k": 50,
|
||||
"repetition_penalty": 1.1,
|
||||
"stop": ["<|eos1|>", "<|eos|>"],
|
||||
"stream": True,
|
||||
}
|
||||
|
||||
api_base = "http://localhost:8000/v1/chat/completions"
|
||||
|
||||
buffer = ""
|
||||
async with httpx.AsyncClient() as client:
|
||||
async with client.stream("POST", api_base, json=payload, timeout=None) as response:
|
||||
response.raise_for_status()
|
||||
async for line in response.aiter_lines():
|
||||
if line.startswith("data: "):
|
||||
line_data = line[len("data: "):].strip()
|
||||
if line_data == "[DONE]":
|
||||
break
|
||||
try:
|
||||
json_data = json.loads(line_data)
|
||||
content = json_data.get("choices", [{}])[0].get("delta", {}).get("content")
|
||||
if content:
|
||||
buffer += content
|
||||
while True:
|
||||
match = re.search(r"<\|s_(\d+)\|>", buffer)
|
||||
if not match:
|
||||
break
|
||||
|
||||
token_num = int(match.group(1))
|
||||
final_id = token_num + ORIGINAL_VOCAB_SIZE
|
||||
yield final_id
|
||||
buffer = buffer[match.end():]
|
||||
except json.JSONDecodeError:
|
||||
self.logger.log_info(f"Skipping non-JSON line: {line_data}")
|
||||
continue
|
||||
|
||||
# Process any remaining complete tokens in the buffer after the stream ends
|
||||
while True:
|
||||
match = re.search(r"<\|s_(\d+)\|>", buffer)
|
||||
if not match:
|
||||
break
|
||||
token_num = int(match.group(1))
|
||||
final_id = token_num + ORIGINAL_VOCAB_SIZE
|
||||
yield final_id
|
||||
buffer = buffer[match.end():]
|
||||
|
||||
|
||||
def forward_audio_tokenizer(self, wav, wav_len):
|
||||
"""Forward pass through the audio tokenizer component.
|
||||
|
||||
Args:
|
||||
wav: Input waveform tensor
|
||||
wav_len: Waveform length tensor
|
||||
|
||||
Returns:
|
||||
Tuple of global and semantic tokens
|
||||
"""
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name='audio_tokenizer',
|
||||
requested_output_names=['prompt_speech_tokens'],
|
||||
inputs=[wav, wav_len]
|
||||
)
|
||||
|
||||
inference_response = inference_request.exec()
|
||||
if inference_response.has_error():
|
||||
raise pb_utils.TritonModelException(inference_response.error().message())
|
||||
|
||||
# Extract and convert output tensors
|
||||
prompt_speech_tokens = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_speech_tokens')
|
||||
prompt_speech_tokens = torch.utils.dlpack.from_dlpack(prompt_speech_tokens.to_dlpack()).cpu()
|
||||
|
||||
return prompt_speech_tokens
|
||||
|
||||
def forward_speaker_embedding(self, wav):
|
||||
"""Forward pass through the speaker embedding component.
|
||||
|
||||
Args:
|
||||
wav: Input waveform tensor
|
||||
|
||||
Returns:
|
||||
Prompt speaker embedding tensor
|
||||
"""
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name='speaker_embedding',
|
||||
requested_output_names=['prompt_spk_embedding'],
|
||||
inputs=[pb_utils.Tensor.from_dlpack("reference_wav", to_dlpack(wav))]
|
||||
)
|
||||
|
||||
inference_response = inference_request.exec()
|
||||
if inference_response.has_error():
|
||||
raise pb_utils.TritonModelException(inference_response.error().message())
|
||||
|
||||
# Extract and convert output tensors
|
||||
prompt_spk_embedding = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_spk_embedding')
|
||||
prompt_spk_embedding = torch.utils.dlpack.from_dlpack(prompt_spk_embedding.to_dlpack())
|
||||
|
||||
return prompt_spk_embedding
|
||||
|
||||
def forward_token2wav(
|
||||
self,
|
||||
index: int,
|
||||
target_speech_tokens: torch.Tensor,
|
||||
request_id: str,
|
||||
reference_wav: object,
|
||||
reference_wav_len: object,
|
||||
finalize: bool = None) -> torch.Tensor:
|
||||
"""Forward pass through the vocoder component.
|
||||
|
||||
Args:
|
||||
prompt_speech_tokens: Prompt speech tokens tensor
|
||||
prompt_speech_feat: Prompt speech feat tensor
|
||||
prompt_spk_embedding: Prompt spk embedding tensor
|
||||
target_speech_tokens: Target speech tokens tensor
|
||||
|
||||
Returns:
|
||||
Generated waveform tensor
|
||||
"""
|
||||
target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens))
|
||||
finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
|
||||
inputs_tensor = [target_speech_tokens_tensor, reference_wav, reference_wav_len, finalize_tensor]
|
||||
|
||||
# Create and execute inference request
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name='token2wav_dit',
|
||||
requested_output_names=['waveform'],
|
||||
inputs=inputs_tensor,
|
||||
request_id=request_id,
|
||||
parameters={"priority": index+1},
|
||||
)
|
||||
|
||||
inference_response = inference_request.exec()
|
||||
if inference_response.has_error():
|
||||
raise pb_utils.TritonModelException(inference_response.error().message())
|
||||
|
||||
# Extract and convert output waveform
|
||||
waveform = pb_utils.get_output_tensor_by_name(inference_response, 'waveform')
|
||||
waveform = torch.utils.dlpack.from_dlpack(waveform.to_dlpack()).cpu()
|
||||
|
||||
return waveform
|
||||
|
||||
def _extract_speech_feat(self, speech):
|
||||
speech_feat = mel_spectrogram(
|
||||
speech,
|
||||
n_fft=1920,
|
||||
num_mels=80,
|
||||
sampling_rate=24000,
|
||||
hop_size=480,
|
||||
win_size=1920,
|
||||
fmin=0,
|
||||
fmax=8000).squeeze(
|
||||
dim=0).transpose(
|
||||
0,
|
||||
1).to(
|
||||
self.device)
|
||||
speech_feat = speech_feat.unsqueeze(dim=0)
|
||||
return speech_feat
|
||||
|
||||
async def _process_request(self, request):
|
||||
request_id = request.request_id()
|
||||
# Extract input tensors
|
||||
wav = pb_utils.get_input_tensor_by_name(request, "reference_wav")
|
||||
|
||||
# Process reference audio through audio tokenizer
|
||||
if wav is not None:
|
||||
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
|
||||
prompt_speech_tokens = self.forward_audio_tokenizer(wav, wav_len)
|
||||
prompt_speech_tokens = prompt_speech_tokens.unsqueeze(0)
|
||||
|
||||
wav_tensor = wav.as_numpy()
|
||||
wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
|
||||
speech_feat = self._extract_speech_feat(prompt_speech_resample)
|
||||
token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
|
||||
prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
|
||||
prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
|
||||
|
||||
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
||||
reference_text = reference_text[0][0].decode('utf-8')
|
||||
# prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
|
||||
# reference_text = self.default_spk_info["prompt_text"]
|
||||
# prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
|
||||
# prompt_speech_feat = None
|
||||
# prompt_spk_embedding = None
|
||||
|
||||
else:
|
||||
# using pre-cached reference text
|
||||
assert False, "using pre-cached reference text is not supported"
|
||||
reference_text = self.default_spk_info["prompt_text"]
|
||||
prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
|
||||
prompt_speech_feat = None
|
||||
prompt_spk_embedding = None
|
||||
|
||||
target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
|
||||
target_text = target_text[0][0].decode('utf-8')
|
||||
|
||||
if self.decoupled:
|
||||
response_sender = request.get_response_sender()
|
||||
|
||||
semantic_token_ids_arr = []
|
||||
token_offset, chunk_index = 0, 0
|
||||
start_time = time.time()
|
||||
this_token_hop_len = self.token_hop_len
|
||||
|
||||
async for generated_ids in self.forward_llm_async(
|
||||
target_text=target_text,
|
||||
reference_text=reference_text,
|
||||
prompt_speech_tokens=prompt_speech_tokens,
|
||||
):
|
||||
if not generated_ids:
|
||||
break
|
||||
semantic_token_ids_arr.append(generated_ids)
|
||||
|
||||
while True:
|
||||
pending_num = len(semantic_token_ids_arr) - token_offset
|
||||
if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
|
||||
this_tts_speech_token = semantic_token_ids_arr[token_offset:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
|
||||
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
|
||||
sub_tts_speech = self.forward_token2wav(
|
||||
chunk_index,
|
||||
this_tts_speech_token, request_id, wav, wav_len, False
|
||||
)
|
||||
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
response_sender.send(inference_response)
|
||||
|
||||
token_offset += this_token_hop_len
|
||||
self.logger.log_info(f"chunk_index: {chunk_index}, current_token_hop_len: {this_token_hop_len}")
|
||||
|
||||
if self.dynamic_chunk_strategy == "exponential":
|
||||
this_token_hop_len = self.token_frame_rate * (2 ** chunk_index)
|
||||
elif self.dynamic_chunk_strategy == "time_based":
|
||||
# see https://github.com/qi-hua/async_cosyvoice/blob/main/model.py#L306
|
||||
cost_time = time.time() - start_time
|
||||
duration = token_offset / self.token_frame_rate
|
||||
if chunk_index > 0 and cost_time > 0:
|
||||
avg_chunk_processing_time = cost_time / (chunk_index + 1)
|
||||
if avg_chunk_processing_time > 0:
|
||||
multiples = (duration - cost_time) / avg_chunk_processing_time
|
||||
self.logger.log_info(f"multiples: {multiples}")
|
||||
next_pending_num = len(semantic_token_ids_arr) - token_offset
|
||||
if multiples > 4:
|
||||
this_token_hop_len = (next_pending_num // self.token_hop_len + 1) * self.token_hop_len
|
||||
elif multiples > 2:
|
||||
this_token_hop_len = (next_pending_num // self.token_hop_len) * self.token_hop_len
|
||||
else:
|
||||
this_token_hop_len = self.token_hop_len
|
||||
this_token_hop_len = max(self.token_hop_len, this_token_hop_len)
|
||||
chunk_index += 1
|
||||
else:
|
||||
break
|
||||
|
||||
this_tts_speech_token = torch.tensor(semantic_token_ids_arr[token_offset:]).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
sub_tts_speech = self.forward_token2wav(chunk_index, this_tts_speech_token, request_id, wav, wav_len, True)
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
response_sender.send(inference_response)
|
||||
|
||||
## debug
|
||||
## save semantic_token_ids_arr and reference_text, target_text to a single json file
|
||||
# save into a torch .pt
|
||||
# for i, item in enumerate(semantic_token_ids_arr):
|
||||
# semantic_token_ids_arr[i] = item - ORIGINAL_VOCAB_SIZE
|
||||
# import json
|
||||
# data = {
|
||||
# "semantic_token_ids_arr": semantic_token_ids_arr,
|
||||
# "reference_text": reference_text,
|
||||
# "target_text": target_text
|
||||
# }
|
||||
# with open(f"semantic_token_ids_arr_debug_{request_id}.pt", "wb") as f:
|
||||
# torch.save(data, f)
|
||||
# with open(f"semantic_token_ids_arr_debug_{request_id}.json", "w") as f:
|
||||
# json.dump(data, f)
|
||||
|
||||
# ##
|
||||
|
||||
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
|
||||
self.logger.log_info("send tritonserver_response_complete_final to end")
|
||||
else:
|
||||
raise NotImplementedError("Decoupled mode is not supported")
|
||||
|
||||
async def execute(self, requests):
|
||||
"""Execute inference on the batched requests.
|
||||
|
||||
Args:
|
||||
requests: List of inference requests
|
||||
|
||||
Returns:
|
||||
List of inference responses containing generated audio
|
||||
"""
|
||||
tasks = [
|
||||
asyncio.create_task(self._process_request(request))
|
||||
for request in requests
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
return None
|
||||
@@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: "cosyvoice2"
|
||||
name: "cosyvoice2_dit"
|
||||
backend: "python"
|
||||
max_batch_size: ${triton_max_batch_size}
|
||||
dynamic_batching {
|
||||
|
||||
@@ -42,6 +42,8 @@ from cosyvoice.utils.file_utils import convert_onnx_to_trt, export_cosyvoice2_vl
|
||||
from cosyvoice.utils.common import TrtContextWrapper
|
||||
from collections import defaultdict
|
||||
import numpy as np
|
||||
from .token2wav_dit import CosyVoice2_Token2Wav
|
||||
import hashlib
|
||||
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -49,117 +51,19 @@ logger = logging.getLogger(__name__)
|
||||
ORIGINAL_VOCAB_SIZE = 151663
|
||||
torch.set_num_threads(1)
|
||||
|
||||
def get_spk_id_from_prompt_audio(tensor: torch.Tensor) -> str:
|
||||
"""
|
||||
Generates a unique ID for a torch.Tensor.
|
||||
Tensors with the same elements and properties will have the same ID.
|
||||
"""
|
||||
# Convert tensor to a byte string
|
||||
tensor_bytes = tensor.numpy().tobytes()
|
||||
|
||||
class CosyVoice2:
|
||||
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1, device='cuda'):
|
||||
|
||||
self.model_dir = model_dir
|
||||
self.fp16 = fp16
|
||||
|
||||
hyper_yaml_path = '{}/cosyvoice2.yaml'.format(model_dir)
|
||||
if not os.path.exists(hyper_yaml_path):
|
||||
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
||||
with open(hyper_yaml_path, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
||||
self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16, device)
|
||||
self.model.load('{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir))
|
||||
if load_jit:
|
||||
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||
if load_trt:
|
||||
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
||||
trt_concurrent,
|
||||
self.fp16)
|
||||
|
||||
|
||||
class CosyVoice2Model:
|
||||
|
||||
def __init__(self,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module,
|
||||
fp16: bool = False,
|
||||
device: str = 'cuda'):
|
||||
self.device = device
|
||||
self.flow = flow
|
||||
self.hift = hift
|
||||
self.fp16 = fp16
|
||||
if self.fp16 is True:
|
||||
self.flow.half()
|
||||
|
||||
# streaming tts config
|
||||
self.token_hop_len = 25
|
||||
self.mel_cache_len = 8
|
||||
self.source_cache_len = int(self.mel_cache_len * 480)
|
||||
self.speech_window = np.hamming(2 * self.source_cache_len)
|
||||
self.hift_cache_dict = defaultdict(lambda: None)
|
||||
|
||||
def load_jit(self, flow_encoder_model):
|
||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||
self.flow.encoder = flow_encoder
|
||||
|
||||
def load(self, flow_model, hift_model):
|
||||
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
|
||||
self.flow.to(self.device).eval()
|
||||
# in case hift_model is a hifigan model
|
||||
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
||||
self.hift.load_state_dict(hift_state_dict, strict=True)
|
||||
self.hift.to(self.device).eval()
|
||||
|
||||
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent, fp16):
|
||||
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
||||
if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
|
||||
convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
|
||||
del self.flow.decoder.estimator
|
||||
import tensorrt as trt
|
||||
with open(flow_decoder_estimator_model, 'rb') as f:
|
||||
estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||
assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
|
||||
self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
|
||||
|
||||
def get_trt_kwargs(self):
|
||||
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
|
||||
opt_shape = [(2, 80, 500), (2, 1, 500), (2, 80, 500), (2, 80, 500)]
|
||||
max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
|
||||
input_names = ["x", "mask", "mu", "cond"]
|
||||
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
||||
|
||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
|
||||
with torch.cuda.amp.autocast(self.fp16):
|
||||
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
streaming=stream,
|
||||
finalize=finalize)
|
||||
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
||||
# append hift cache
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
||||
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
||||
else:
|
||||
hift_cache_source = torch.zeros(1, 1, 0)
|
||||
# keep overlap mel and hift cache
|
||||
if finalize is False:
|
||||
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
||||
'source': tts_source[:, :, -self.source_cache_len:],
|
||||
'speech': tts_speech[:, -self.source_cache_len:]}
|
||||
tts_speech = tts_speech[:, :-self.source_cache_len]
|
||||
else:
|
||||
if speed != 1.0:
|
||||
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
||||
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
||||
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||
return tts_speech
|
||||
|
||||
# Create a SHA-256 hash of the byte string
|
||||
hasher = hashlib.sha256()
|
||||
hasher.update(tensor_bytes)
|
||||
|
||||
return hasher.hexdigest()
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Triton Python model for vocoder.
|
||||
@@ -183,16 +87,10 @@ class TritonPythonModel:
|
||||
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
logger.info(f"Initializing vocoder from {model_dir} on {self.device}")
|
||||
|
||||
self.token2wav_model = CosyVoice2(
|
||||
model_dir, load_jit=False, load_trt=True, fp16=True, device=self.device
|
||||
# FIXME: device id settings
|
||||
self.token2wav_model = CosyVoice2_Token2Wav(
|
||||
model_dir, enable_trt=True, streaming=True
|
||||
)
|
||||
|
||||
spk_info_path = os.path.join(model_dir, "spk2info.pt")
|
||||
if not os.path.exists(spk_info_path):
|
||||
raise ValueError(f"spk2info.pt not found in {model_dir}")
|
||||
spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
|
||||
self.default_spk_info = spk_info["001"]
|
||||
|
||||
logger.info("Token2Wav initialized successfully")
|
||||
|
||||
def execute(self, requests):
|
||||
@@ -208,66 +106,31 @@ class TritonPythonModel:
|
||||
# Process each request in batch
|
||||
for request in requests:
|
||||
target_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "target_speech_tokens").as_numpy()
|
||||
target_speech_tokens = torch.from_numpy(target_speech_tokens_tensor).to(self.device)
|
||||
|
||||
prompt_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_speech_tokens")
|
||||
if prompt_speech_tokens_tensor is not None:
|
||||
prompt_speech_tokens_tensor = prompt_speech_tokens_tensor.as_numpy()
|
||||
prompt_speech_feat_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_speech_feat").as_numpy()
|
||||
prompt_spk_embedding_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_spk_embedding").as_numpy()
|
||||
prompt_speech_tokens = torch.from_numpy(prompt_speech_tokens_tensor).to(self.device)
|
||||
prompt_speech_feat = torch.from_numpy(prompt_speech_feat_tensor).to(self.device)
|
||||
prompt_spk_embedding = torch.from_numpy(prompt_spk_embedding_tensor).to(self.device)
|
||||
prompt_speech_tokens = prompt_speech_tokens - ORIGINAL_VOCAB_SIZE
|
||||
else:
|
||||
prompt_speech_tokens = self.default_spk_info["speech_token"].to(self.device)
|
||||
prompt_speech_feat = self.default_spk_info["speech_feat"].to(torch.float16).to(self.device)
|
||||
prompt_spk_embedding = self.default_spk_info["embedding"].to(torch.float16).to(self.device)
|
||||
|
||||
target_speech_tokens = torch.from_numpy(target_speech_tokens_tensor)#.to(self.device)
|
||||
# shift the speech tokens according to the original vocab size
|
||||
target_speech_tokens = target_speech_tokens - ORIGINAL_VOCAB_SIZE
|
||||
target_speech_tokens = target_speech_tokens.squeeze().tolist()
|
||||
|
||||
# We set token_offset as an optional input to support streaming/offline tts. It has to be None when offline tts.
|
||||
token_offset = pb_utils.get_input_tensor_by_name(request, "token_offset")
|
||||
if token_offset is not None:
|
||||
token_offset = token_offset.as_numpy().item()
|
||||
finalize = pb_utils.get_input_tensor_by_name(request, "finalize").as_numpy().item()
|
||||
if not finalize:
|
||||
stream = True
|
||||
else:
|
||||
stream = False
|
||||
request_id = request.request_id()
|
||||
audio_hat = self.token2wav_model.model.token2wav(token=target_speech_tokens,
|
||||
prompt_token=prompt_speech_tokens,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=prompt_spk_embedding,
|
||||
token_offset=token_offset,
|
||||
uuid=request_id,
|
||||
stream=stream,
|
||||
finalize=finalize)
|
||||
if finalize:
|
||||
self.token2wav_model.model.hift_cache_dict.pop(request_id)
|
||||
|
||||
finalize = pb_utils.get_input_tensor_by_name(request, "finalize").as_numpy().item()
|
||||
|
||||
request_id = request.request_id()
|
||||
|
||||
|
||||
else:
|
||||
tts_mel, _ = self.token2wav_model.model.flow.inference(
|
||||
token=target_speech_tokens,
|
||||
token_len=torch.tensor([target_speech_tokens.shape[1]], dtype=torch.int32).to(
|
||||
self.device
|
||||
),
|
||||
prompt_token=prompt_speech_tokens,
|
||||
prompt_token_len=torch.tensor(
|
||||
[prompt_speech_tokens.shape[1]], dtype=torch.int32
|
||||
).to(self.device),
|
||||
prompt_feat=prompt_speech_feat,
|
||||
prompt_feat_len=torch.tensor([prompt_speech_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=prompt_spk_embedding,
|
||||
streaming=False,
|
||||
finalize=True,
|
||||
)
|
||||
wav_array = pb_utils.get_input_tensor_by_name(
|
||||
request, "reference_wav").as_numpy()
|
||||
wav_len = pb_utils.get_input_tensor_by_name(
|
||||
request, "reference_wav_len").as_numpy().item()
|
||||
|
||||
audio_hat, _ = self.token2wav_model.model.hift.inference(
|
||||
speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0)
|
||||
)
|
||||
wav_array = torch.from_numpy(wav_array)
|
||||
# Prepare inputs
|
||||
wav = wav_array[:, :wav_len].squeeze(0)
|
||||
|
||||
spk_id = get_spk_id_from_prompt_audio(wav)
|
||||
# wav = wav.to(self.device)
|
||||
|
||||
audio_hat = self.token2wav_model.forward_streaming(target_speech_tokens, finalize, request_id=request_id, speaker_id=f"{spk_id}", prompt_audio=wav, prompt_audio_sample_rate=16000)
|
||||
|
||||
generated_wave = audio_hat.squeeze(0).cpu().numpy()
|
||||
|
||||
|
||||
@@ -362,17 +362,17 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
|
||||
spk_emb_for_flow.to(self.device),
|
||||
n_timesteps=10
|
||||
)
|
||||
new_cache = {k: v.clone() for k, v in cache.items()}
|
||||
# Hack: this is a hack to avoid in-place changes to the cache['estimator_att_cache'] and cache['estimator_cnn_cache']
|
||||
cache['estimator_att_cache'] = cache['estimator_att_cache'].clone()
|
||||
cache['estimator_cnn_cache'] = cache['estimator_cnn_cache'].clone()
|
||||
return cache
|
||||
return new_cache
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward_streaming(
|
||||
self, generated_speech_tokens: list[int], last_chunk: bool, request_id: str, speaker_id: str, prompt_audio: torch.Tensor = None, prompt_audio_sample_rate: int = 16000
|
||||
):
|
||||
):
|
||||
if speaker_id not in self.speaker_cache:
|
||||
# if 1:
|
||||
assert prompt_audio is not None, "prompt_audio is required for new speaker"
|
||||
assert prompt_audio_sample_rate == 16000
|
||||
|
||||
@@ -382,10 +382,21 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
|
||||
prompt_mels_for_flow = prompt_mels_for_flow[:, :2 * token_len].contiguous()
|
||||
prompt_speech_tokens_list[0] = prompt_speech_tokens_list[0][:token_len]
|
||||
|
||||
cache_dict = self.get_prompt_audio_cache_for_streaming_tts(prompt_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
|
||||
prompt_audio_dict = {'spk_emb_for_flow': spk_emb_for_flow, 'prompt_mels_for_flow': prompt_mels_for_flow}
|
||||
|
||||
# if speaker_id not in self.speaker_cache:
|
||||
# if 1:
|
||||
|
||||
cache_dict = self.get_prompt_audio_cache_for_streaming_tts(prompt_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
|
||||
self.speaker_cache[speaker_id] = {'prompt_audio_dict': prompt_audio_dict, 'cache_dict': cache_dict}
|
||||
print(f"speaker_id {speaker_id} added to cache")
|
||||
|
||||
# get a clone of cache dict ['estimator_att_cache'] and later check if it would be change
|
||||
att_cache_clone = self.speaker_cache[speaker_id]['cache_dict']['estimator_att_cache'].clone()
|
||||
cnn_cache_clone = self.speaker_cache[speaker_id]['cache_dict']['estimator_cnn_cache'].clone()
|
||||
conformer_cnn_cache_clone = self.speaker_cache[speaker_id]['cache_dict']['conformer_cnn_cache'].clone()
|
||||
conformer_att_cache_clone = self.speaker_cache[speaker_id]['cache_dict']['conformer_att_cache'].clone()
|
||||
|
||||
|
||||
if request_id not in self.streaming_flow_cache:
|
||||
self.streaming_flow_cache[request_id] = {k: v.clone() for k, v in self.speaker_cache[speaker_id]['cache_dict'].items()}
|
||||
@@ -409,6 +420,33 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
|
||||
n_timesteps=10,
|
||||
)
|
||||
|
||||
# get the original att_cache
|
||||
original_att_cache = self.speaker_cache[speaker_id]['cache_dict']['estimator_att_cache']
|
||||
original_cnn_cache = self.speaker_cache[speaker_id]['cache_dict']['estimator_cnn_cache']
|
||||
original_conformer_cnn_cache = self.speaker_cache[speaker_id]['cache_dict']['conformer_cnn_cache']
|
||||
original_conformer_att_cache = self.speaker_cache[speaker_id]['cache_dict']['conformer_att_cache']
|
||||
if not torch.allclose(original_att_cache, att_cache_clone):
|
||||
print("att_cache changed")
|
||||
# print the last 10 elements of original_att_cache and att_cache_clone
|
||||
print(original_att_cache[:, :, :, -10:])
|
||||
print(att_cache_clone[:, :, :, -10:])
|
||||
breakpoint()
|
||||
if not torch.allclose(original_cnn_cache, cnn_cache_clone):
|
||||
print("cnn_cache changed")
|
||||
print(original_cnn_cache[..., -10:])
|
||||
print(cnn_cache_clone[..., -10:])
|
||||
breakpoint()
|
||||
if not torch.allclose(original_conformer_cnn_cache, conformer_cnn_cache_clone):
|
||||
print("conformer_cnn_cache changed")
|
||||
print(original_conformer_cnn_cache[..., -10:])
|
||||
print(conformer_cnn_cache_clone[..., -10:])
|
||||
breakpoint()
|
||||
if not torch.allclose(original_conformer_att_cache, conformer_att_cache_clone):
|
||||
print("conformer_att_cache changed")
|
||||
print(original_conformer_att_cache[..., -10:])
|
||||
print(conformer_att_cache_clone[..., -10:])
|
||||
breakpoint()
|
||||
|
||||
self.streaming_flow_cache[request_id] = new_streaming_flow_cache
|
||||
|
||||
|
||||
@@ -420,10 +458,10 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
|
||||
|
||||
|
||||
|
||||
hift_cache_mel = self.hift_cache_dict[request_id]['mel']
|
||||
hift_cache_source = self.hift_cache_dict[request_id]['source']
|
||||
hift_cache_speech = self.hift_cache_dict[request_id]['speech']
|
||||
mel = torch.concat([hift_cache_mel, chunk_mel], dim=2)
|
||||
hift_cache_mel = self.hift_cache_dict[request_id]['mel'].clone()
|
||||
hift_cache_source = self.hift_cache_dict[request_id]['source'].clone()
|
||||
hift_cache_speech = self.hift_cache_dict[request_id]['speech'].clone()
|
||||
mel = torch.concat([hift_cache_mel, chunk_mel], dim=2).clone()
|
||||
|
||||
speech, source = self.hift(mel, hift_cache_source)
|
||||
|
||||
@@ -444,7 +482,7 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
|
||||
assert request_id in self.streaming_flow_cache
|
||||
self.streaming_flow_cache.pop(request_id)
|
||||
self.hift_cache_dict.pop(request_id)
|
||||
|
||||
# breakpoint()
|
||||
return speech
|
||||
|
||||
def collate_fn(batch):
|
||||
@@ -12,11 +12,13 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: "token2wav"
|
||||
name: "token2wav_dit"
|
||||
backend: "python"
|
||||
max_batch_size: ${triton_max_batch_size}
|
||||
dynamic_batching {
|
||||
max_queue_delay_microseconds: ${max_queue_delay_microseconds}
|
||||
priority_levels: 10
|
||||
default_priority_level: 10
|
||||
}
|
||||
parameters [
|
||||
{
|
||||
@@ -32,29 +34,14 @@ input [
|
||||
dims: [-1]
|
||||
},
|
||||
{
|
||||
name: "prompt_speech_tokens"
|
||||
data_type: TYPE_INT32
|
||||
name: "reference_wav"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "prompt_speech_feat"
|
||||
data_type: TYPE_FP16
|
||||
dims: [-1, 80]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "prompt_spk_embedding"
|
||||
data_type: TYPE_FP16
|
||||
dims: [-1]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "token_offset"
|
||||
name: "reference_wav_len"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ 1 ]
|
||||
reshape: { shape: [ ] }
|
||||
optional: true
|
||||
dims: [1]
|
||||
},
|
||||
{
|
||||
name: "finalize"
|
||||
|
||||
@@ -43,6 +43,9 @@ import soundfile as sf
|
||||
import s3tokenizer
|
||||
from functools import partial
|
||||
import time
|
||||
import requests
|
||||
import asyncio
|
||||
import httpx
|
||||
|
||||
from token2wav import CosyVoice2_Token2Wav
|
||||
|
||||
@@ -53,6 +56,32 @@ except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
async def send_request_async(client, url, payload):
|
||||
response = await client.post(url, json=payload, timeout=None)
|
||||
response.raise_for_status()
|
||||
response_json = response.json()
|
||||
return response_json['choices'][0]['message']['content']
|
||||
|
||||
|
||||
async def send_batch_requests_async(api_base, model_name, chats, temperature, top_p, top_k):
|
||||
async with httpx.AsyncClient() as client:
|
||||
tasks = []
|
||||
for chat in chats:
|
||||
payload = {
|
||||
"model": model_name,
|
||||
"messages": chat,
|
||||
"max_tokens": 2048,
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
"top_k": top_k,
|
||||
"repetition_penalty": 1.1,
|
||||
"stop": ["<|eos1|>", "<|eos|>"],
|
||||
"stream": False,
|
||||
}
|
||||
tasks.append(send_request_async(client, api_base, payload))
|
||||
return await asyncio.gather(*tasks)
|
||||
|
||||
|
||||
def extract_speech_ids(speech_tokens_str):
|
||||
"""Extract speech IDs from token strings like <|s_23456|>"""
|
||||
speech_ids = []
|
||||
@@ -149,7 +178,7 @@ def get_args():
|
||||
"--backend",
|
||||
type=str,
|
||||
default="hf",
|
||||
choices=["hf", "trtllm", "vllm"],
|
||||
choices=["hf", "trtllm", "vllm", "trtllm-serve"],
|
||||
help="Backend to use for LLM inference: 'hf' for HuggingFace, 'trtllm' for TensorRT-LLM, 'vllm' for VLLM",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -164,6 +193,18 @@ def get_args():
|
||||
default=0.6,
|
||||
help="Fraction of GPU memory to free for KV cache (TensorRT-LLM only)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--openai-api-base",
|
||||
type=str,
|
||||
default="http://localhost:8000/v1/chat/completions",
|
||||
help="OpenAI API base URL (for trtllm-serve backend)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--openai-model-name",
|
||||
type=str,
|
||||
default="trt_engines_bfloat16",
|
||||
help="Model name to use with OpenAI API (for trtllm-serve backend)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
@@ -180,6 +221,7 @@ def data_collator(batch, tokenizer, s3_tokenizer):
|
||||
input_ids_list, prompt_audio_list, prompt_text_list = [], [], []
|
||||
prompt_text_after_apply_template_list = []
|
||||
mels, prompt_audio_cosy2tokens_list, full_text_list = [], [], []
|
||||
chat_list = []
|
||||
for _, item in enumerate(batch):
|
||||
audio_processing_start_time = time.time()
|
||||
prompt_text, target_text = (
|
||||
@@ -237,6 +279,7 @@ def data_collator(batch, tokenizer, s3_tokenizer):
|
||||
{"role": "user", "content": full_text_list[i]},
|
||||
{"role": "assistant", "content": prompt_audio_cosy2_id_str}
|
||||
]
|
||||
chat_list.append(chat)
|
||||
|
||||
assert 'system' not in tokenizer.chat_template, "system is not allowed in the chat template"
|
||||
|
||||
@@ -265,6 +308,7 @@ def data_collator(batch, tokenizer, s3_tokenizer):
|
||||
"audio_processing_time": total_audio_processing_time,
|
||||
"speech_tokenization_time": total_speech_tokenization_time,
|
||||
"text_tokenization_time": total_text_tokenization_time,
|
||||
"chat_list": chat_list
|
||||
}
|
||||
|
||||
|
||||
@@ -318,6 +362,9 @@ def main(args):
|
||||
elif args.backend == "vllm":
|
||||
model = LLM(model=args.llm_model_name_or_path, gpu_memory_utilization=0.4)
|
||||
runner = None
|
||||
elif args.backend == "trtllm-serve":
|
||||
model = None
|
||||
runner = None
|
||||
else:
|
||||
raise ValueError(f"Unsupported backend: {args.backend}")
|
||||
|
||||
@@ -452,6 +499,35 @@ def main(args):
|
||||
print(outputs)
|
||||
for j, output in enumerate(outputs):
|
||||
outputs[j] = input_ids_list[j] + output.outputs[0].token_ids
|
||||
elif args.backend == "trtllm-serve":
|
||||
if args.batch_size > 1:
|
||||
outputs = asyncio.run(send_batch_requests_async(
|
||||
args.openai_api_base,
|
||||
args.openai_model_name,
|
||||
batch["chat_list"],
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.top_k,
|
||||
))
|
||||
else:
|
||||
outputs = []
|
||||
for i, chat in enumerate(batch["chat_list"]):
|
||||
payload = {
|
||||
"model": args.openai_model_name,
|
||||
"messages": chat,
|
||||
"max_tokens": 2048,
|
||||
"temperature": args.temperature,
|
||||
"top_p": args.top_p,
|
||||
"top_k": args.top_k,
|
||||
"repetition_penalty": 1.1,
|
||||
"stop": ["<|eos1|>", "<|eos|>"],
|
||||
"stream": False,
|
||||
}
|
||||
response = requests.post(args.openai_api_base, json=payload)
|
||||
response.raise_for_status()
|
||||
response_json = response.json()
|
||||
generated_content = response_json['choices'][0]['message']['content']
|
||||
outputs.append(generated_content)
|
||||
|
||||
llm_end_time = time.time()
|
||||
total_llm_time += (llm_end_time - llm_start_time)
|
||||
@@ -459,10 +535,21 @@ def main(args):
|
||||
items_for_token_2wav = []
|
||||
for i in range(len(batch["ids"])):
|
||||
llm_post_processing_start_time = time.time()
|
||||
input_length = len(batch["input_ids"][i])
|
||||
generated_ids = outputs[i][input_length:]
|
||||
speech_tokens_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
speech_ids = extract_speech_ids(speech_tokens_str)
|
||||
if args.backend == "trtllm-serve":
|
||||
speech_tokens_str = outputs[i].strip().split('><')
|
||||
if len(speech_tokens_str) > 1:
|
||||
speech_tokens_str = [
|
||||
t if t.startswith('<') else '<' + t for t in speech_tokens_str
|
||||
]
|
||||
speech_tokens_str = [
|
||||
t if t.endswith('>') else t + '>' for t in speech_tokens_str
|
||||
]
|
||||
speech_ids = extract_speech_ids(speech_tokens_str)
|
||||
else:
|
||||
input_length = len(batch["input_ids"][i])
|
||||
generated_ids = outputs[i][input_length:]
|
||||
speech_tokens_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
speech_ids = extract_speech_ids(speech_tokens_str)
|
||||
print(i, speech_ids)
|
||||
if len(speech_ids) == 0:
|
||||
print(f"Warning: No speech tokens generated for sample {batch['ids'][i]}, skipping")
|
||||
@@ -558,6 +645,8 @@ if __name__ == "__main__":
|
||||
from tensorrt_llm.runtime import ModelRunnerCpp
|
||||
elif args.backend == "hf":
|
||||
from transformers import AutoModelForCausalLM
|
||||
elif args.backend == "trtllm-serve":
|
||||
pass
|
||||
else:
|
||||
raise ValueError(f"Unsupported backend: {args.backend}")
|
||||
main(args)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
#!/bin/bash
|
||||
# Copyright (c) 2025 NVIDIA (authors: Yuekai Zhang)
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
cosyvoice_path=/workspace/CosyVoice
|
||||
cosyvoice_path=/workspace_yuekai/tts/CosyVoice
|
||||
stepaudio2_path=/workspace_yuekai/tts/Step-Audio2
|
||||
@@ -16,7 +16,7 @@ trt_dtype=bfloat16
|
||||
trt_weights_dir=./trt_weights_${trt_dtype}
|
||||
trt_engines_dir=./trt_engines_${trt_dtype}
|
||||
|
||||
model_repo=./model_repo_cosyvoice2
|
||||
model_repo=./model_repo_cosyvoice2_dit
|
||||
|
||||
use_spk2info_cache=False
|
||||
|
||||
@@ -58,40 +58,78 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
--engine_dir=$trt_engines_dir || exit 1
|
||||
fi
|
||||
|
||||
|
||||
# if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
# echo "Creating model repository"
|
||||
# rm -rf $model_repo
|
||||
# mkdir -p $model_repo
|
||||
# cosyvoice2_dir="cosyvoice2_dit"
|
||||
# token2wav_dir="token2wav_dit"
|
||||
|
||||
# cp -r ./model_repo/${cosyvoice2_dir} $model_repo
|
||||
# cp -r ./model_repo/tensorrt_llm $model_repo
|
||||
# cp -r ./model_repo/${token2wav_dir} $model_repo
|
||||
# #if [ $use_spk2info_cache == "False" ]; then
|
||||
# cp -r ./model_repo/audio_tokenizer $model_repo
|
||||
# cp -r ./model_repo/speaker_embedding $model_repo
|
||||
# #fi
|
||||
|
||||
# ENGINE_PATH=$trt_engines_dir
|
||||
# MAX_QUEUE_DELAY_MICROSECONDS=0
|
||||
# MODEL_DIR=$model_scope_model_local_dir
|
||||
# LLM_TOKENIZER_DIR=$huggingface_model_local_dir
|
||||
# BLS_INSTANCE_NUM=1
|
||||
# TRITON_MAX_BATCH_SIZE=16
|
||||
# DECOUPLED_MODE=True # True for streaming, False for offline
|
||||
# STEP_AUDIO_MODEL_DIR=/workspace_yuekai/tts/CosyVoice/runtime/triton_trtllm/Step-Audio-2-mini/token2wav
|
||||
|
||||
# python3 scripts/fill_template.py -i ${model_repo}/${token2wav_dir}/config.pbtxt model_dir:${STEP_AUDIO_MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
# python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
# python3 scripts/fill_template.py -i ${model_repo}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_beam_width:1,engine_dir:${ENGINE_PATH},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:inflight_fused_batching,max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS},encoder_input_features_data_type:TYPE_FP16,logits_datatype:TYPE_FP32
|
||||
# #if [ $use_spk2info_cache == "False" ]; then
|
||||
# python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
# python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
# #fi
|
||||
# fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
echo "Creating model repository"
|
||||
echo "Creating model repository async mode"
|
||||
rm -rf $model_repo
|
||||
mkdir -p $model_repo
|
||||
cosyvoice2_dir="cosyvoice2"
|
||||
cosyvoice2_dir="cosyvoice2_dit"
|
||||
token2wav_dir="token2wav_dit"
|
||||
|
||||
cp -r ./model_repo/${cosyvoice2_dir} $model_repo
|
||||
cp -r ./model_repo/tensorrt_llm $model_repo
|
||||
cp -r ./model_repo/token2wav $model_repo
|
||||
if [ $use_spk2info_cache == "False" ]; then
|
||||
cp -r ./model_repo/${token2wav_dir} $model_repo
|
||||
#if [ $use_spk2info_cache == "False" ]; then
|
||||
cp -r ./model_repo/audio_tokenizer $model_repo
|
||||
cp -r ./model_repo/speaker_embedding $model_repo
|
||||
fi
|
||||
#fi
|
||||
|
||||
ENGINE_PATH=$trt_engines_dir
|
||||
MAX_QUEUE_DELAY_MICROSECONDS=0
|
||||
MODEL_DIR=$model_scope_model_local_dir
|
||||
LLM_TOKENIZER_DIR=$huggingface_model_local_dir
|
||||
BLS_INSTANCE_NUM=4
|
||||
TRITON_MAX_BATCH_SIZE=16
|
||||
TRITON_MAX_BATCH_SIZE=32
|
||||
DECOUPLED_MODE=True # True for streaming, False for offline
|
||||
STEP_AUDIO_MODEL_DIR=/workspace_yuekai/tts/CosyVoice/runtime/triton_trtllm/Step-Audio-2-mini/token2wav
|
||||
|
||||
python3 scripts/fill_template.py -i ${model_repo}/token2wav/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/${token2wav_dir}/config.pbtxt model_dir:${STEP_AUDIO_MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_beam_width:1,engine_dir:${ENGINE_PATH},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:inflight_fused_batching,max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS},encoder_input_features_data_type:TYPE_FP16,logits_datatype:TYPE_FP32
|
||||
if [ $use_spk2info_cache == "False" ]; then
|
||||
#if [ $use_spk2info_cache == "False" ]; then
|
||||
python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
fi
|
||||
#fi
|
||||
rm -rf $model_repo/tensorrt_llm
|
||||
# mv $model_repo/cosyvoice2_dit/1 $model_repo/cosyvoice2_dit/4
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
echo "Starting Triton server"
|
||||
tritonserver --model-repository $model_repo
|
||||
tritonserver --model-repository $model_repo --http-port 18000
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
@@ -112,26 +150,26 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
|
||||
python3 client_grpc.py \
|
||||
--server-addr localhost \
|
||||
--model-name cosyvoice2 \
|
||||
--model-name cosyvoice2_dit \
|
||||
--num-tasks $num_task \
|
||||
--mode $mode \
|
||||
--use-spk2info-cache $use_spk2info_cache \
|
||||
--huggingface-dataset yuekai/seed_tts_cosy2 \
|
||||
--log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM}_spk_cache_${use_spk2info_cache}
|
||||
--log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM}_no_att_cnn_cache_new
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
echo "stage 6: Offline inference benchmark"
|
||||
n_gpus=1
|
||||
datasets=(wenetspeech4tts) # wenetspeech4tts, test_zh, zero_shot_zh
|
||||
backend=trtllm # hf, trtllm, vllm
|
||||
backend=trtllm-serve # hf, trtllm, vllm
|
||||
|
||||
batch_sizes=(16 8 4 2 1)
|
||||
batch_sizes=(16 8 4 2)
|
||||
token2wav_batch_size=1
|
||||
for batch_size in ${batch_sizes[@]}; do
|
||||
for dataset in ${datasets[@]}; do
|
||||
output_dir=./${dataset}_${backend}_llm_batch_size_${batch_size}_token2wav_batch_size_${token2wav_batch_size}
|
||||
CUDA_VISIBLE_DEVICES=0 \
|
||||
CUDA_VISIBLE_DEVICES=1 \
|
||||
python3 offline_inference.py \
|
||||
--output-dir $output_dir \
|
||||
--llm-model-name-or-path $huggingface_model_local_dir \
|
||||
@@ -147,7 +185,31 @@ fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
|
||||
python3 benchmark_streaming_token2wav.py --enable-trt
|
||||
python3 streaming_inference.py
|
||||
|
||||
|
||||
fi
|
||||
|
||||
|
||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
mpirun -np 1 --allow-run-as-root --oversubscribe trtllm-serve serve --tokenizer $huggingface_model_local_dir $trt_engines_dir --max_batch_size 16
|
||||
|
||||
fi
|
||||
|
||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||
#! /usr/bin/env bash
|
||||
curl http://localhost:8000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "trt_engines_bfloat16",
|
||||
"messages":[{"role": "user", "content": "Where is New York?"},
|
||||
{"role": "assistant", "content": "<|s_1708|><|s_2050|><|s_2159|>"}],
|
||||
"max_tokens": 512,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.95,
|
||||
"top_k": 50,
|
||||
"stop": ["<|eos1|>"],
|
||||
"repetition_penalty": 1.2,
|
||||
"stream": false
|
||||
}'
|
||||
fi
|
||||
115
runtime/triton_trtllm/streaming_inference.py
Normal file
115
runtime/triton_trtllm/streaming_inference.py
Normal file
@@ -0,0 +1,115 @@
|
||||
import torch
|
||||
import os
|
||||
import argparse
|
||||
from datasets import load_dataset
|
||||
from torch.utils.data import DataLoader
|
||||
import numpy as np
|
||||
import torchaudio
|
||||
import time
|
||||
from token2wav_dit import CosyVoice2_Token2Wav
|
||||
import soundfile as sf
|
||||
|
||||
def collate_fn(batch):
|
||||
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = [], [], [], []
|
||||
prompt_speech_tokens_list, prompt_text_list = [], []
|
||||
for i, item in enumerate(batch):
|
||||
generated_speech_tokens_list.append(item['target_audio_cosy2_tokens'])
|
||||
audio = torch.from_numpy(item['prompt_audio']['array']).float()
|
||||
prompt_audios_list.append(audio)
|
||||
prompt_audios_sample_rate.append(item['prompt_audio']['sampling_rate'])
|
||||
ids.append(item['id'])
|
||||
prompt_speech_tokens_list.append(item['prompt_audio_cosy2_tokens'])
|
||||
prompt_text_list.append(item['prompt_text'])
|
||||
|
||||
return ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate, prompt_speech_tokens_list, prompt_text_list
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--enable-trt", action="store_true")
|
||||
parser.add_argument("--model-dir", type=str, default="./Step-Audio-2-mini/token2wav")
|
||||
parser.add_argument("--batch-size", type=int, default=1)
|
||||
parser.add_argument("--output-dir", type=str, default="generated_wavs")
|
||||
parser.add_argument("--huggingface-dataset-split", type=str, default="wenetspeech4tts")
|
||||
parser.add_argument("--dataset-name", type=str, default="yuekai/seed_tts_cosy2")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def fake_generated_id_iter(generated_speech_tokens_list):
|
||||
for i in range(len(generated_speech_tokens_list)):
|
||||
yield generated_speech_tokens_list[i]
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
if not os.path.exists(args.output_dir):
|
||||
os.makedirs(args.output_dir)
|
||||
|
||||
dataset_name = args.dataset_name
|
||||
dataset = load_dataset(dataset_name, split=args.huggingface_dataset_split, trust_remote_code=True)
|
||||
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=0)
|
||||
|
||||
token2wav_model = CosyVoice2_Token2Wav(model_dir=args.model_dir, enable_trt=args.enable_trt, streaming=True)
|
||||
|
||||
flow_pre_lookahead_len = 3
|
||||
CHUNK_SIZE = 25
|
||||
OVERLAP_SIZE = 0
|
||||
|
||||
warmup_times = 3
|
||||
for _ in range(warmup_times):
|
||||
start_time = time.time()
|
||||
for batch in data_loader:
|
||||
tts_speech_list = []
|
||||
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate, prompt_speech_tokens_list, prompt_text_list = batch
|
||||
|
||||
id, generated_speech_tokens, prompt_audio, prompt_audio_sample_rate = ids[0], generated_speech_tokens_list[0], prompt_audios_list[0], prompt_audios_sample_rate[0]
|
||||
# if id != "unseen3_text5":
|
||||
# continue
|
||||
# else:
|
||||
# a = torch.load("semantic_token_ids_arr_debug_871e2b90-42a7-4829-957c-b45e6a96fdb2.pt")
|
||||
# generated_speech_tokens = a["semantic_token_ids_arr"]
|
||||
# print(generated_speech_tokens)
|
||||
assert prompt_audio_sample_rate == 16000
|
||||
|
||||
prompt_text = prompt_text_list[0]
|
||||
prompt_speech_tokens = prompt_speech_tokens_list[0]
|
||||
|
||||
|
||||
# generated_ids_iter = fake_generated_id_iter(generated_speech_tokens)
|
||||
|
||||
semantic_token_ids_arr, token_offset = [], 0
|
||||
flow_prompt_speech_token_len = len(prompt_speech_tokens)
|
||||
|
||||
buffer = generated_speech_tokens
|
||||
output_wavs = []
|
||||
while True:
|
||||
|
||||
if len(buffer) >= CHUNK_SIZE + token2wav_model.flow.pre_lookahead_len:
|
||||
wavs = token2wav_model.forward_streaming(buffer[:CHUNK_SIZE + token2wav_model.flow.pre_lookahead_len], False, request_id=id, speaker_id=f"{id}", prompt_audio=prompt_audio, prompt_audio_sample_rate=prompt_audio_sample_rate)
|
||||
buffer = buffer[CHUNK_SIZE - OVERLAP_SIZE:]
|
||||
|
||||
output_wavs.append(wavs)
|
||||
|
||||
else:
|
||||
wavs = token2wav_model.forward_streaming(buffer, True, request_id=id, speaker_id=f"{id}", prompt_audio=prompt_audio, prompt_audio_sample_rate=prompt_audio_sample_rate)
|
||||
output_wavs.append(wavs)
|
||||
break
|
||||
|
||||
for i, wav in enumerate(output_wavs):
|
||||
output_wavs[i] = wav.cpu().numpy().squeeze()
|
||||
|
||||
|
||||
audios = output_wavs
|
||||
reconstructed_audio = np.concatenate(audios)
|
||||
# Save reconstructed audio
|
||||
sf.write(os.path.join(args.output_dir, f"{id}.wav"), reconstructed_audio, 24000, "PCM_16")
|
||||
|
||||
|
||||
print(f"Saved {id}")
|
||||
end_time = time.time()
|
||||
|
||||
if _ == 0:
|
||||
token2wav_model.speaker_cache = {}
|
||||
print(f"Warmup time: {end_time - start_time} seconds")
|
||||
|
||||
Reference in New Issue
Block a user