add online trt export

This commit is contained in:
lyuxiang.lx
2025-01-10 13:55:05 +08:00
parent 426c4001ca
commit 1cfc5dd077
13 changed files with 100 additions and 167 deletions

View File

@@ -1,5 +1,5 @@
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
# 2024 Alibaba Inc (authors: Xiang Lyu)
# 2024 Alibaba Inc (authors: Xiang Lyu, Zetao Hu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -14,6 +14,7 @@
# limitations under the License.
import json
import tensorrt as trt
import torchaudio
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
@@ -45,3 +46,44 @@ def load_wav(wav, target_sr):
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
return speech
def convert_onnx_to_trt(trt_model, onnx_model, fp16):
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
input_names = ["x", "mask", "mu", "t", "spks", "cond"]
logging.info("Converting onnx to trt...")
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
logger = trt.Logger(trt.Logger.INFO)
builder = trt.Builder(logger)
network = builder.create_network(network_flags)
parser = trt.OnnxParser(network, logger)
config = builder.create_builder_config()
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB
if fp16:
config.set_flag(trt.BuilderFlag.FP16)
profile = builder.create_optimization_profile()
# load onnx model
with open(onnx_model, "rb") as f:
if not parser.parse(f.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
raise ValueError('failed to parse {}'.format(onnx_model))
# set input shapes
for i in range(len(input_names)):
profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i])
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
# set input and output data type
for i in range(network.num_inputs):
input_tensor = network.get_input(i)
input_tensor.dtype = tensor_dtype
for i in range(network.num_outputs):
output_tensor = network.get_output(i)
output_tensor.dtype = tensor_dtype
config.add_optimization_profile(profile)
engine_bytes = builder.build_serialized_network(network, config)
# save trt engine
with open(trt_model, "wb") as f:
f.write(engine_bytes)