26 Commits

Author SHA1 Message Date
Dimitrii Voronin
64b863d2ff Update README.md 2024-09-24 14:48:35 +03:00
Dimitrii Voronin
8a3600665b Merge pull request #540 from snakers4/adamnsandle-patch-2
Update README.md
2024-09-24 13:45:31 +03:00
Dimitrii Voronin
9c2c90aa1c Update README.md 2024-09-24 13:45:16 +03:00
Dimitrii Voronin
1d48167271 Merge pull request #539 from gengyuchao/update/python_pyaudio_example
Fixed the pyaudio example can not run issue.
2024-09-11 12:27:15 +03:00
GengYuchao
d0139d94d9 Fixed the pyaudio example can not run issue.
Update the related packages.
2024-09-11 00:45:49 +08:00
Dimitrii Voronin
46f94b7d60 Merge pull request #529 from snakers4/adamnsandle
Adamnsandle
2024-08-22 17:31:42 +03:00
adamnsandle
3de3ee3abe Merge branch 'master' of github.com:snakers4/silero-vad into adamnsandle 2024-08-22 14:30:27 +00:00
adamnsandle
e680ea6633 add half onnx model 2024-08-22 14:30:13 +00:00
Dimitrii Voronin
199de226e5 Merge pull request #528 from snakers4/adamnsandle
add neg_threshold parameter explicitly
2024-08-22 16:39:33 +03:00
adamnsandle
4109b107c1 add neg_threshold parameter explicitly 2024-08-20 08:53:15 +00:00
Alexander Veysov
36854a90db Merge pull request #526 from snakers4/adamnsandle
код для тюнинга
2024-08-19 20:01:21 +03:00
adamnsandle
827e86e685 добавлен поиск порогов 2024-08-19 16:53:28 +00:00
Dimitrii Voronin
e706ec6fee Update README.md 2024-08-19 18:31:11 +03:00
adamnsandle
88df0ce1dd код для тюнинга 2024-08-19 14:36:45 +00:00
Dimitrii Voronin
d18b91e037 Merge pull request #521 from snakers4/adamnsandle
downgrade onnxruntime dependency
2024-08-09 14:23:16 +03:00
adamnsandle
1e3f343767 downgrade onnxruntime dependency 2024-08-09 11:15:22 +00:00
Alexander Veysov
6a8ee81ee0 Merge pull request #507 from nganju98/master
add csharp example
2024-07-21 09:03:38 +03:00
nick.ganju
cb25c0c047 add csharp example 2024-07-20 22:59:18 -04:00
Alexander Veysov
7af8628a27 Merge pull request #506 from yuguanqin/master
Add java example for wav file & support V5 model
2024-07-18 07:34:40 +03:00
yuguanqin
3682cb189c java example for whole wav file & compatible with V5 model 2024-07-18 10:34:02 +08:00
Dimitrii Voronin
57c0b51f9b Merge pull request #505 from snakers4/adamnsandle
VadIterator first chunk bag fx
2024-07-15 13:42:36 +03:00
adamnsandle
dd0b143803 VadIterator first chunk bag fx 2024-07-15 10:37:46 +00:00
Alexander Veysov
181cdf92b6 Merge pull request #497 from rumbleFTW/fix/rust-example-v5
fix: rust example for v5 checkpoint
2024-07-11 17:48:58 +03:00
rumbleFTW
a7bd2dd38f fix: rust example 2024-07-11 20:06:54 +05:30
Alexander Veysov
df7de797a5 Merge pull request #496 from streamer45/update-golang-example
Fix Golang example
2024-07-10 21:31:15 +03:00
streamer45
87ed11b508 Fix Golang example 2024-07-10 20:26:41 +02:00
27 changed files with 1735 additions and 43 deletions

View File

@@ -29,13 +29,34 @@ https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-
<h2 align="center">Fast start</h2>
<br/>
<details>
<summary>Dependencies</summary>
System requirements to run python examples:
- `python 3.8+`
- 1G+ RAM
- not too outdated cpu
Dependencies:
- `torch>=1.12.0`
- `torchaudio>=0.12.0` (for I/O functionalities only)
- `onnxruntime>=1.16.1` (for ONNX model usage)
Silero VAD uses torchaudio library for audio file I/O functionalities, which are torchaudio.info, torchaudio.load, and torchaudio.save, so a proper audio backend is required:
- Option №1 - [**FFmpeg**](https://www.ffmpeg.org/) backend. `conda install -c conda-forge 'ffmpeg<7'`
- Option №2 - [**sox_io**](https://pypi.org/project/sox/) backend. `apt-get install sox`, TorchAudio is tested on libsox 14.4.2.
- Option №3 - [**soundfile**](https://pypi.org/project/soundfile/) backend. `pip install soundfile`
</details>
**Using pip**:
`pip install silero-vad`
```python3
from silero_vad import load_silero_vad, read_audio, get_speech_timestamps
model = load_silero_vad()
wav = read_audio('path_to_audio_file') # backend (sox, soundfile, or ffmpeg) required!
wav = read_audio('path_to_audio_file')
speech_timestamps = get_speech_timestamps(wav, model)
```
@@ -47,7 +68,7 @@ torch.set_num_threads(1)
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', model='silero_vad')
(get_speech_timestamps, _, read_audio, _, _) = utils
wav = read_audio('path_to_audio_file') # backend (sox, soundfile, or ffmpeg) required!
wav = read_audio('path_to_audio_file')
speech_timestamps = get_speech_timestamps(wav, model)
```
@@ -120,7 +141,7 @@ Please see our [wiki](https://github.com/snakers4/silero-models/wiki) for releva
@misc{Silero VAD,
author = {Silero Team},
title = {Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier},
year = {2021},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/snakers4/silero-vad}},

View File

@@ -0,0 +1,35 @@
using System.Text;
namespace VadDotNet;
class Program
{
private const string MODEL_PATH = "./resources/silero_vad.onnx";
private const string EXAMPLE_WAV_FILE = "./resources/example.wav";
private const int SAMPLE_RATE = 16000;
private const float THRESHOLD = 0.5f;
private const int MIN_SPEECH_DURATION_MS = 250;
private const float MAX_SPEECH_DURATION_SECONDS = float.PositiveInfinity;
private const int MIN_SILENCE_DURATION_MS = 100;
private const int SPEECH_PAD_MS = 30;
public static void Main(string[] args)
{
var vadDetector = new SileroVadDetector(MODEL_PATH, THRESHOLD, SAMPLE_RATE,
MIN_SPEECH_DURATION_MS, MAX_SPEECH_DURATION_SECONDS, MIN_SILENCE_DURATION_MS, SPEECH_PAD_MS);
List<SileroSpeechSegment> speechTimeList = vadDetector.GetSpeechSegmentList(new FileInfo(EXAMPLE_WAV_FILE));
//Console.WriteLine(speechTimeList.ToJson());
StringBuilder sb = new StringBuilder();
foreach (var speechSegment in speechTimeList)
{
sb.Append($"start second: {speechSegment.StartSecond}, end second: {speechSegment.EndSecond}\n");
}
Console.WriteLine(sb.ToString());
}
}

View File

@@ -0,0 +1,21 @@
namespace VadDotNet;
public class SileroSpeechSegment
{
public int? StartOffset { get; set; }
public int? EndOffset { get; set; }
public float? StartSecond { get; set; }
public float? EndSecond { get; set; }
public SileroSpeechSegment()
{
}
public SileroSpeechSegment(int startOffset, int? endOffset, float? startSecond, float? endSecond)
{
StartOffset = startOffset;
EndOffset = endOffset;
StartSecond = startSecond;
EndSecond = endSecond;
}
}

View File

@@ -0,0 +1,250 @@
using NAudio.Wave;
using VADdotnet;
namespace VadDotNet;
public class SileroVadDetector
{
private readonly SileroVadOnnxModel _model;
private readonly float _threshold;
private readonly float _negThreshold;
private readonly int _samplingRate;
private readonly int _windowSizeSample;
private readonly float _minSpeechSamples;
private readonly float _speechPadSamples;
private readonly float _maxSpeechSamples;
private readonly float _minSilenceSamples;
private readonly float _minSilenceSamplesAtMaxSpeech;
private int _audioLengthSamples;
private const float THRESHOLD_GAP = 0.15f;
// ReSharper disable once InconsistentNaming
private const int SAMPLING_RATE_8K = 8000;
// ReSharper disable once InconsistentNaming
private const int SAMPLING_RATE_16K = 16000;
public SileroVadDetector(string onnxModelPath, float threshold, int samplingRate,
int minSpeechDurationMs, float maxSpeechDurationSeconds,
int minSilenceDurationMs, int speechPadMs)
{
if (samplingRate != SAMPLING_RATE_8K && samplingRate != SAMPLING_RATE_16K)
{
throw new ArgumentException("Sampling rate not support, only available for [8000, 16000]");
}
this._model = new SileroVadOnnxModel(onnxModelPath);
this._samplingRate = samplingRate;
this._threshold = threshold;
this._negThreshold = threshold - THRESHOLD_GAP;
this._windowSizeSample = samplingRate == SAMPLING_RATE_16K ? 512 : 256;
this._minSpeechSamples = samplingRate * minSpeechDurationMs / 1000f;
this._speechPadSamples = samplingRate * speechPadMs / 1000f;
this._maxSpeechSamples = samplingRate * maxSpeechDurationSeconds - _windowSizeSample - 2 * _speechPadSamples;
this._minSilenceSamples = samplingRate * minSilenceDurationMs / 1000f;
this._minSilenceSamplesAtMaxSpeech = samplingRate * 98 / 1000f;
this.Reset();
}
public void Reset()
{
_model.ResetStates();
}
public List<SileroSpeechSegment> GetSpeechSegmentList(FileInfo wavFile)
{
Reset();
using (var audioFile = new AudioFileReader(wavFile.FullName))
{
List<float> speechProbList = new List<float>();
this._audioLengthSamples = (int)(audioFile.Length / 2);
float[] buffer = new float[this._windowSizeSample];
while (audioFile.Read(buffer, 0, buffer.Length) > 0)
{
float speechProb = _model.Call(new[] { buffer }, _samplingRate)[0];
speechProbList.Add(speechProb);
}
return CalculateProb(speechProbList);
}
}
private List<SileroSpeechSegment> CalculateProb(List<float> speechProbList)
{
List<SileroSpeechSegment> result = new List<SileroSpeechSegment>();
bool triggered = false;
int tempEnd = 0, prevEnd = 0, nextStart = 0;
SileroSpeechSegment segment = new SileroSpeechSegment();
for (int i = 0; i < speechProbList.Count; i++)
{
float speechProb = speechProbList[i];
if (speechProb >= _threshold && (tempEnd != 0))
{
tempEnd = 0;
if (nextStart < prevEnd)
{
nextStart = _windowSizeSample * i;
}
}
if (speechProb >= _threshold && !triggered)
{
triggered = true;
segment.StartOffset = _windowSizeSample * i;
continue;
}
if (triggered && (_windowSizeSample * i) - segment.StartOffset > _maxSpeechSamples)
{
if (prevEnd != 0)
{
segment.EndOffset = prevEnd;
result.Add(segment);
segment = new SileroSpeechSegment();
if (nextStart < prevEnd)
{
triggered = false;
}
else
{
segment.StartOffset = nextStart;
}
prevEnd = 0;
nextStart = 0;
tempEnd = 0;
}
else
{
segment.EndOffset = _windowSizeSample * i;
result.Add(segment);
segment = new SileroSpeechSegment();
prevEnd = 0;
nextStart = 0;
tempEnd = 0;
triggered = false;
continue;
}
}
if (speechProb < _negThreshold && triggered)
{
if (tempEnd == 0)
{
tempEnd = _windowSizeSample * i;
}
if (((_windowSizeSample * i) - tempEnd) > _minSilenceSamplesAtMaxSpeech)
{
prevEnd = tempEnd;
}
if ((_windowSizeSample * i) - tempEnd < _minSilenceSamples)
{
continue;
}
else
{
segment.EndOffset = tempEnd;
if ((segment.EndOffset - segment.StartOffset) > _minSpeechSamples)
{
result.Add(segment);
}
segment = new SileroSpeechSegment();
prevEnd = 0;
nextStart = 0;
tempEnd = 0;
triggered = false;
continue;
}
}
}
if (segment.StartOffset != null && (_audioLengthSamples - segment.StartOffset) > _minSpeechSamples)
{
segment.EndOffset = _audioLengthSamples;
result.Add(segment);
}
for (int i = 0; i < result.Count; i++)
{
SileroSpeechSegment item = result[i];
if (i == 0)
{
item.StartOffset = (int)Math.Max(0, item.StartOffset.Value - _speechPadSamples);
}
if (i != result.Count - 1)
{
SileroSpeechSegment nextItem = result[i + 1];
int silenceDuration = nextItem.StartOffset.Value - item.EndOffset.Value;
if (silenceDuration < 2 * _speechPadSamples)
{
item.EndOffset = item.EndOffset + (silenceDuration / 2);
nextItem.StartOffset = Math.Max(0, nextItem.StartOffset.Value - (silenceDuration / 2));
}
else
{
item.EndOffset = (int)Math.Min(_audioLengthSamples, item.EndOffset.Value + _speechPadSamples);
nextItem.StartOffset = (int)Math.Max(0, nextItem.StartOffset.Value - _speechPadSamples);
}
}
else
{
item.EndOffset = (int)Math.Min(_audioLengthSamples, item.EndOffset.Value + _speechPadSamples);
}
}
return MergeListAndCalculateSecond(result, _samplingRate);
}
private List<SileroSpeechSegment> MergeListAndCalculateSecond(List<SileroSpeechSegment> original, int samplingRate)
{
List<SileroSpeechSegment> result = new List<SileroSpeechSegment>();
if (original == null || original.Count == 0)
{
return result;
}
int left = original[0].StartOffset.Value;
int right = original[0].EndOffset.Value;
if (original.Count > 1)
{
original.Sort((a, b) => a.StartOffset.Value.CompareTo(b.StartOffset.Value));
for (int i = 1; i < original.Count; i++)
{
SileroSpeechSegment segment = original[i];
if (segment.StartOffset > right)
{
result.Add(new SileroSpeechSegment(left, right,
CalculateSecondByOffset(left, samplingRate), CalculateSecondByOffset(right, samplingRate)));
left = segment.StartOffset.Value;
right = segment.EndOffset.Value;
}
else
{
right = Math.Max(right, segment.EndOffset.Value);
}
}
result.Add(new SileroSpeechSegment(left, right,
CalculateSecondByOffset(left, samplingRate), CalculateSecondByOffset(right, samplingRate)));
}
else
{
result.Add(new SileroSpeechSegment(left, right,
CalculateSecondByOffset(left, samplingRate), CalculateSecondByOffset(right, samplingRate)));
}
return result;
}
private float CalculateSecondByOffset(int offset, int samplingRate)
{
float secondValue = offset * 1.0f / samplingRate;
return (float)Math.Floor(secondValue * 1000.0f) / 1000.0f;
}
}

View File

@@ -0,0 +1,220 @@
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using System;
using System.Collections.Generic;
using System.Linq;
namespace VADdotnet;
public class SileroVadOnnxModel : IDisposable
{
private readonly InferenceSession session;
private float[][][] state;
private float[][] context;
private int lastSr = 0;
private int lastBatchSize = 0;
private static readonly List<int> SAMPLE_RATES = new List<int> { 8000, 16000 };
public SileroVadOnnxModel(string modelPath)
{
var sessionOptions = new SessionOptions();
sessionOptions.InterOpNumThreads = 1;
sessionOptions.IntraOpNumThreads = 1;
sessionOptions.EnableCpuMemArena = true;
session = new InferenceSession(modelPath, sessionOptions);
ResetStates();
}
public void ResetStates()
{
state = new float[2][][];
state[0] = new float[1][];
state[1] = new float[1][];
state[0][0] = new float[128];
state[1][0] = new float[128];
context = Array.Empty<float[]>();
lastSr = 0;
lastBatchSize = 0;
}
public void Dispose()
{
session?.Dispose();
}
public class ValidationResult
{
public float[][] X { get; }
public int Sr { get; }
public ValidationResult(float[][] x, int sr)
{
X = x;
Sr = sr;
}
}
private ValidationResult ValidateInput(float[][] x, int sr)
{
if (x.Length == 1)
{
x = new float[][] { x[0] };
}
if (x.Length > 2)
{
throw new ArgumentException($"Incorrect audio data dimension: {x[0].Length}");
}
if (sr != 16000 && (sr % 16000 == 0))
{
int step = sr / 16000;
float[][] reducedX = new float[x.Length][];
for (int i = 0; i < x.Length; i++)
{
float[] current = x[i];
float[] newArr = new float[(current.Length + step - 1) / step];
for (int j = 0, index = 0; j < current.Length; j += step, index++)
{
newArr[index] = current[j];
}
reducedX[i] = newArr;
}
x = reducedX;
sr = 16000;
}
if (!SAMPLE_RATES.Contains(sr))
{
throw new ArgumentException($"Only supports sample rates {string.Join(", ", SAMPLE_RATES)} (or multiples of 16000)");
}
if (((float)sr) / x[0].Length > 31.25)
{
throw new ArgumentException("Input audio is too short");
}
return new ValidationResult(x, sr);
}
private static float[][] Concatenate(float[][] a, float[][] b)
{
if (a.Length != b.Length)
{
throw new ArgumentException("The number of rows in both arrays must be the same.");
}
int rows = a.Length;
int colsA = a[0].Length;
int colsB = b[0].Length;
float[][] result = new float[rows][];
for (int i = 0; i < rows; i++)
{
result[i] = new float[colsA + colsB];
Array.Copy(a[i], 0, result[i], 0, colsA);
Array.Copy(b[i], 0, result[i], colsA, colsB);
}
return result;
}
private static float[][] GetLastColumns(float[][] array, int contextSize)
{
int rows = array.Length;
int cols = array[0].Length;
if (contextSize > cols)
{
throw new ArgumentException("contextSize cannot be greater than the number of columns in the array.");
}
float[][] result = new float[rows][];
for (int i = 0; i < rows; i++)
{
result[i] = new float[contextSize];
Array.Copy(array[i], cols - contextSize, result[i], 0, contextSize);
}
return result;
}
public float[] Call(float[][] x, int sr)
{
var result = ValidateInput(x, sr);
x = result.X;
sr = result.Sr;
int numberSamples = sr == 16000 ? 512 : 256;
if (x[0].Length != numberSamples)
{
throw new ArgumentException($"Provided number of samples is {x[0].Length} (Supported values: 256 for 8000 sample rate, 512 for 16000)");
}
int batchSize = x.Length;
int contextSize = sr == 16000 ? 64 : 32;
if (lastBatchSize == 0)
{
ResetStates();
}
if (lastSr != 0 && lastSr != sr)
{
ResetStates();
}
if (lastBatchSize != 0 && lastBatchSize != batchSize)
{
ResetStates();
}
if (context.Length == 0)
{
context = new float[batchSize][];
for (int i = 0; i < batchSize; i++)
{
context[i] = new float[contextSize];
}
}
x = Concatenate(context, x);
var inputs = new List<NamedOnnxValue>
{
NamedOnnxValue.CreateFromTensor("input", new DenseTensor<float>(x.SelectMany(a => a).ToArray(), new[] { x.Length, x[0].Length })),
NamedOnnxValue.CreateFromTensor("sr", new DenseTensor<long>(new[] { (long)sr }, new[] { 1 })),
NamedOnnxValue.CreateFromTensor("state", new DenseTensor<float>(state.SelectMany(a => a.SelectMany(b => b)).ToArray(), new[] { state.Length, state[0].Length, state[0][0].Length }))
};
using (var outputs = session.Run(inputs))
{
var output = outputs.First(o => o.Name == "output").AsTensor<float>();
var newState = outputs.First(o => o.Name == "stateN").AsTensor<float>();
context = GetLastColumns(x, contextSize);
lastSr = sr;
lastBatchSize = batchSize;
state = new float[newState.Dimensions[0]][][];
for (int i = 0; i < newState.Dimensions[0]; i++)
{
state[i] = new float[newState.Dimensions[1]][];
for (int j = 0; j < newState.Dimensions[1]; j++)
{
state[i][j] = new float[newState.Dimensions[2]];
for (int k = 0; k < newState.Dimensions[2]; k++)
{
state[i][j][k] = newState[i, j, k];
}
}
}
return output.ToArray();
}
}
}

View File

@@ -0,0 +1,25 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net8.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Microsoft.ML.OnnxRuntime" Version="1.18.1" />
<PackageReference Include="NAudio" Version="2.2.1" />
</ItemGroup>
<ItemGroup>
<Folder Include="resources\" />
</ItemGroup>
<ItemGroup>
<Content Include="resources\**">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</Content>
</ItemGroup>
</Project>

View File

@@ -0,0 +1 @@
place onnx model file and example.wav file in this folder

View File

@@ -11,11 +11,11 @@ import (
func main() {
sd, err := speech.NewDetector(speech.DetectorConfig{
ModelPath: "../../files/silero_vad.onnx",
ModelPath: "../../src/silero_vad/data/silero_vad.onnx",
SampleRate: 16000,
Threshold: 0.5,
MinSilenceDurationMs: 0,
SpeechPadMs: 0,
MinSilenceDurationMs: 100,
SpeechPadMs: 30,
})
if err != nil {
log.Fatalf("failed to create speech detector: %s", err)

View File

@@ -4,7 +4,7 @@ go 1.21.4
require (
github.com/go-audio/wav v1.1.0
github.com/streamer45/silero-vad-go v0.2.0
github.com/streamer45/silero-vad-go v0.2.1
)
require (

View File

@@ -10,6 +10,8 @@ github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZb
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/streamer45/silero-vad-go v0.2.0 h1:bbRTa6cQuc7VI88y0qicx375UyWoxE6wlVOF+mUg0+g=
github.com/streamer45/silero-vad-go v0.2.0/go.mod h1:B+2FXs/5fZ6pzl6unUZYhZqkYdOB+3saBVzjOzdZnUs=
github.com/streamer45/silero-vad-go v0.2.1 h1:Li1/tTC4H/3cyw6q4weX+U8GWwEL3lTekK/nYa1Cvuk=
github.com/streamer45/silero-vad-go v0.2.1/go.mod h1:B+2FXs/5fZ6pzl6unUZYhZqkYdOB+3saBVzjOzdZnUs=
github.com/stretchr/testify v1.8.4 h1:CcVxjf3Q8PM0mHUKJCdn+eZZtm5yQwehR5yeSVQQcUk=
github.com/stretchr/testify v1.8.4/go.mod h1:sz/lmYIOXD/1dqDmKjjqLyZ2RngseejIcXlSw2iwfAo=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=

View File

@@ -0,0 +1,37 @@
package org.example;
import ai.onnxruntime.OrtException;
import java.io.File;
import java.util.List;
public class App {
private static final String MODEL_PATH = "/path/silero_vad.onnx";
private static final String EXAMPLE_WAV_FILE = "/path/example.wav";
private static final int SAMPLE_RATE = 16000;
private static final float THRESHOLD = 0.5f;
private static final int MIN_SPEECH_DURATION_MS = 250;
private static final float MAX_SPEECH_DURATION_SECONDS = Float.POSITIVE_INFINITY;
private static final int MIN_SILENCE_DURATION_MS = 100;
private static final int SPEECH_PAD_MS = 30;
public static void main(String[] args) {
// Initialize the Voice Activity Detector
SileroVadDetector vadDetector;
try {
vadDetector = new SileroVadDetector(MODEL_PATH, THRESHOLD, SAMPLE_RATE,
MIN_SPEECH_DURATION_MS, MAX_SPEECH_DURATION_SECONDS, MIN_SILENCE_DURATION_MS, SPEECH_PAD_MS);
fromWavFile(vadDetector, new File(EXAMPLE_WAV_FILE));
} catch (OrtException e) {
System.err.println("Error initializing the VAD detector: " + e.getMessage());
}
}
public static void fromWavFile(SileroVadDetector vadDetector, File wavFile) {
List<SileroSpeechSegment> speechTimeList = vadDetector.getSpeechSegmentList(wavFile);
for (SileroSpeechSegment speechSegment : speechTimeList) {
System.out.println(String.format("start second: %f, end second: %f",
speechSegment.getStartSecond(), speechSegment.getEndSecond()));
}
}
}

View File

@@ -0,0 +1,51 @@
package org.example;
public class SileroSpeechSegment {
private Integer startOffset;
private Integer endOffset;
private Float startSecond;
private Float endSecond;
public SileroSpeechSegment() {
}
public SileroSpeechSegment(Integer startOffset, Integer endOffset, Float startSecond, Float endSecond) {
this.startOffset = startOffset;
this.endOffset = endOffset;
this.startSecond = startSecond;
this.endSecond = endSecond;
}
public Integer getStartOffset() {
return startOffset;
}
public Integer getEndOffset() {
return endOffset;
}
public Float getStartSecond() {
return startSecond;
}
public Float getEndSecond() {
return endSecond;
}
public void setStartOffset(Integer startOffset) {
this.startOffset = startOffset;
}
public void setEndOffset(Integer endOffset) {
this.endOffset = endOffset;
}
public void setStartSecond(Float startSecond) {
this.startSecond = startSecond;
}
public void setEndSecond(Float endSecond) {
this.endSecond = endSecond;
}
}

View File

@@ -0,0 +1,244 @@
package org.example;
import ai.onnxruntime.OrtException;
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioSystem;
import java.io.File;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
public class SileroVadDetector {
private final SileroVadOnnxModel model;
private final float threshold;
private final float negThreshold;
private final int samplingRate;
private final int windowSizeSample;
private final float minSpeechSamples;
private final float speechPadSamples;
private final float maxSpeechSamples;
private final float minSilenceSamples;
private final float minSilenceSamplesAtMaxSpeech;
private int audioLengthSamples;
private static final float THRESHOLD_GAP = 0.15f;
private static final Integer SAMPLING_RATE_8K = 8000;
private static final Integer SAMPLING_RATE_16K = 16000;
/**
* Constructor
* @param onnxModelPath the path of silero-vad onnx model
* @param threshold threshold for speech start
* @param samplingRate audio sampling rate, only available for [8k, 16k]
* @param minSpeechDurationMs Minimum speech length in millis, any speech duration that smaller than this value would not be considered as speech
* @param maxSpeechDurationSeconds Maximum speech length in millis, recommend to be set as Float.POSITIVE_INFINITY
* @param minSilenceDurationMs Minimum silence length in millis, any silence duration that smaller than this value would not be considered as silence
* @param speechPadMs Additional pad millis for speech start and end
* @throws OrtException
*/
public SileroVadDetector(String onnxModelPath, float threshold, int samplingRate,
int minSpeechDurationMs, float maxSpeechDurationSeconds,
int minSilenceDurationMs, int speechPadMs) throws OrtException {
if (samplingRate != SAMPLING_RATE_8K && samplingRate != SAMPLING_RATE_16K) {
throw new IllegalArgumentException("Sampling rate not support, only available for [8000, 16000]");
}
this.model = new SileroVadOnnxModel(onnxModelPath);
this.samplingRate = samplingRate;
this.threshold = threshold;
this.negThreshold = threshold - THRESHOLD_GAP;
if (samplingRate == SAMPLING_RATE_16K) {
this.windowSizeSample = 512;
} else {
this.windowSizeSample = 256;
}
this.minSpeechSamples = samplingRate * minSpeechDurationMs / 1000f;
this.speechPadSamples = samplingRate * speechPadMs / 1000f;
this.maxSpeechSamples = samplingRate * maxSpeechDurationSeconds - windowSizeSample - 2 * speechPadSamples;
this.minSilenceSamples = samplingRate * minSilenceDurationMs / 1000f;
this.minSilenceSamplesAtMaxSpeech = samplingRate * 98 / 1000f;
this.reset();
}
/**
* Method to reset the state
*/
public void reset() {
model.resetStates();
}
/**
* Get speech segment list by given wav-format file
* @param wavFile wav file
* @return list of speech segment
*/
public List<SileroSpeechSegment> getSpeechSegmentList(File wavFile) {
reset();
try (AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(wavFile)){
List<Float> speechProbList = new ArrayList<>();
this.audioLengthSamples = audioInputStream.available() / 2;
byte[] data = new byte[this.windowSizeSample * 2];
int numBytesRead = 0;
while ((numBytesRead = audioInputStream.read(data)) != -1) {
if (numBytesRead <= 0) {
break;
}
// Convert the byte array to a float array
float[] audioData = new float[data.length / 2];
for (int i = 0; i < audioData.length; i++) {
audioData[i] = ((data[i * 2] & 0xff) | (data[i * 2 + 1] << 8)) / 32767.0f;
}
float speechProb = 0;
try {
speechProb = model.call(new float[][]{audioData}, samplingRate)[0];
speechProbList.add(speechProb);
} catch (OrtException e) {
throw e;
}
}
return calculateProb(speechProbList);
} catch (Exception e) {
throw new RuntimeException("SileroVadDetector getSpeechTimeList with error", e);
}
}
/**
* Calculate speech segement by probability
* @param speechProbList speech probability list
* @return list of speech segment
*/
private List<SileroSpeechSegment> calculateProb(List<Float> speechProbList) {
List<SileroSpeechSegment> result = new ArrayList<>();
boolean triggered = false;
int tempEnd = 0, prevEnd = 0, nextStart = 0;
SileroSpeechSegment segment = new SileroSpeechSegment();
for (int i = 0; i < speechProbList.size(); i++) {
Float speechProb = speechProbList.get(i);
if (speechProb >= threshold && (tempEnd != 0)) {
tempEnd = 0;
if (nextStart < prevEnd) {
nextStart = windowSizeSample * i;
}
}
if (speechProb >= threshold && !triggered) {
triggered = true;
segment.setStartOffset(windowSizeSample * i);
continue;
}
if (triggered && (windowSizeSample * i) - segment.getStartOffset() > maxSpeechSamples) {
if (prevEnd != 0) {
segment.setEndOffset(prevEnd);
result.add(segment);
segment = new SileroSpeechSegment();
if (nextStart < prevEnd) {
triggered = false;
}else {
segment.setStartOffset(nextStart);
}
prevEnd = 0;
nextStart = 0;
tempEnd = 0;
}else {
segment.setEndOffset(windowSizeSample * i);
result.add(segment);
segment = new SileroSpeechSegment();
prevEnd = 0;
nextStart = 0;
tempEnd = 0;
triggered = false;
continue;
}
}
if (speechProb < negThreshold && triggered) {
if (tempEnd == 0) {
tempEnd = windowSizeSample * i;
}
if (((windowSizeSample * i) - tempEnd) > minSilenceSamplesAtMaxSpeech) {
prevEnd = tempEnd;
}
if ((windowSizeSample * i) - tempEnd < minSilenceSamples) {
continue;
}else {
segment.setEndOffset(tempEnd);
if ((segment.getEndOffset() - segment.getStartOffset()) > minSpeechSamples) {
result.add(segment);
}
segment = new SileroSpeechSegment();
prevEnd = 0;
nextStart = 0;
tempEnd = 0;
triggered = false;
continue;
}
}
}
if (segment.getStartOffset() != null && (audioLengthSamples - segment.getStartOffset()) > minSpeechSamples) {
segment.setEndOffset(audioLengthSamples);
result.add(segment);
}
for (int i = 0; i < result.size(); i++) {
SileroSpeechSegment item = result.get(i);
if (i == 0) {
item.setStartOffset((int)(Math.max(0,item.getStartOffset() - speechPadSamples)));
}
if (i != result.size() - 1) {
SileroSpeechSegment nextItem = result.get(i + 1);
Integer silenceDuration = nextItem.getStartOffset() - item.getEndOffset();
if(silenceDuration < 2 * speechPadSamples){
item.setEndOffset(item.getEndOffset() + (silenceDuration / 2 ));
nextItem.setStartOffset(Math.max(0, nextItem.getStartOffset() - (silenceDuration / 2)));
} else {
item.setEndOffset((int)(Math.min(audioLengthSamples, item.getEndOffset() + speechPadSamples)));
nextItem.setStartOffset((int)(Math.max(0,nextItem.getStartOffset() - speechPadSamples)));
}
}else {
item.setEndOffset((int)(Math.min(audioLengthSamples, item.getEndOffset() + speechPadSamples)));
}
}
return mergeListAndCalculateSecond(result, samplingRate);
}
private List<SileroSpeechSegment> mergeListAndCalculateSecond(List<SileroSpeechSegment> original, Integer samplingRate) {
List<SileroSpeechSegment> result = new ArrayList<>();
if (original == null || original.size() == 0) {
return result;
}
Integer left = original.get(0).getStartOffset();
Integer right = original.get(0).getEndOffset();
if (original.size() > 1) {
original.sort(Comparator.comparingLong(SileroSpeechSegment::getStartOffset));
for (int i = 1; i < original.size(); i++) {
SileroSpeechSegment segment = original.get(i);
if (segment.getStartOffset() > right) {
result.add(new SileroSpeechSegment(left, right,
calculateSecondByOffset(left, samplingRate), calculateSecondByOffset(right, samplingRate)));
left = segment.getStartOffset();
right = segment.getEndOffset();
} else {
right = Math.max(right, segment.getEndOffset());
}
}
result.add(new SileroSpeechSegment(left, right,
calculateSecondByOffset(left, samplingRate), calculateSecondByOffset(right, samplingRate)));
}else {
result.add(new SileroSpeechSegment(left, right,
calculateSecondByOffset(left, samplingRate), calculateSecondByOffset(right, samplingRate)));
}
return result;
}
private Float calculateSecondByOffset(Integer offset, Integer samplingRate) {
float secondValue = offset * 1.0f / samplingRate;
return (float) Math.floor(secondValue * 1000.0f) / 1000.0f;
}
}

View File

@@ -0,0 +1,234 @@
package org.example;
import ai.onnxruntime.OnnxTensor;
import ai.onnxruntime.OrtEnvironment;
import ai.onnxruntime.OrtException;
import ai.onnxruntime.OrtSession;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class SileroVadOnnxModel {
// Define private variable OrtSession
private final OrtSession session;
private float[][][] state;
private float[][] context;
// Define the last sample rate
private int lastSr = 0;
// Define the last batch size
private int lastBatchSize = 0;
// Define a list of supported sample rates
private static final List<Integer> SAMPLE_RATES = Arrays.asList(8000, 16000);
// Constructor
public SileroVadOnnxModel(String modelPath) throws OrtException {
// Get the ONNX runtime environment
OrtEnvironment env = OrtEnvironment.getEnvironment();
// Create an ONNX session options object
OrtSession.SessionOptions opts = new OrtSession.SessionOptions();
// Set the InterOp thread count to 1, InterOp threads are used for parallel processing of different computation graph operations
opts.setInterOpNumThreads(1);
// Set the IntraOp thread count to 1, IntraOp threads are used for parallel processing within a single operation
opts.setIntraOpNumThreads(1);
// Add a CPU device, setting to false disables CPU execution optimization
opts.addCPU(true);
// Create an ONNX session using the environment, model path, and options
session = env.createSession(modelPath, opts);
// Reset states
resetStates();
}
/**
* Reset states
*/
void resetStates() {
state = new float[2][1][128];
context = new float[0][];
lastSr = 0;
lastBatchSize = 0;
}
public void close() throws OrtException {
session.close();
}
/**
* Define inner class ValidationResult
*/
public static class ValidationResult {
public final float[][] x;
public final int sr;
// Constructor
public ValidationResult(float[][] x, int sr) {
this.x = x;
this.sr = sr;
}
}
/**
* Function to validate input data
*/
private ValidationResult validateInput(float[][] x, int sr) {
// Process the input data with dimension 1
if (x.length == 1) {
x = new float[][]{x[0]};
}
// Throw an exception when the input data dimension is greater than 2
if (x.length > 2) {
throw new IllegalArgumentException("Incorrect audio data dimension: " + x[0].length);
}
// Process the input data when the sample rate is not equal to 16000 and is a multiple of 16000
if (sr != 16000 && (sr % 16000 == 0)) {
int step = sr / 16000;
float[][] reducedX = new float[x.length][];
for (int i = 0; i < x.length; i++) {
float[] current = x[i];
float[] newArr = new float[(current.length + step - 1) / step];
for (int j = 0, index = 0; j < current.length; j += step, index++) {
newArr[index] = current[j];
}
reducedX[i] = newArr;
}
x = reducedX;
sr = 16000;
}
// If the sample rate is not in the list of supported sample rates, throw an exception
if (!SAMPLE_RATES.contains(sr)) {
throw new IllegalArgumentException("Only supports sample rates " + SAMPLE_RATES + " (or multiples of 16000)");
}
// If the input audio block is too short, throw an exception
if (((float) sr) / x[0].length > 31.25) {
throw new IllegalArgumentException("Input audio is too short");
}
// Return the validated result
return new ValidationResult(x, sr);
}
private static float[][] concatenate(float[][] a, float[][] b) {
if (a.length != b.length) {
throw new IllegalArgumentException("The number of rows in both arrays must be the same.");
}
int rows = a.length;
int colsA = a[0].length;
int colsB = b[0].length;
float[][] result = new float[rows][colsA + colsB];
for (int i = 0; i < rows; i++) {
System.arraycopy(a[i], 0, result[i], 0, colsA);
System.arraycopy(b[i], 0, result[i], colsA, colsB);
}
return result;
}
private static float[][] getLastColumns(float[][] array, int contextSize) {
int rows = array.length;
int cols = array[0].length;
if (contextSize > cols) {
throw new IllegalArgumentException("contextSize cannot be greater than the number of columns in the array.");
}
float[][] result = new float[rows][contextSize];
for (int i = 0; i < rows; i++) {
System.arraycopy(array[i], cols - contextSize, result[i], 0, contextSize);
}
return result;
}
/**
* Method to call the ONNX model
*/
public float[] call(float[][] x, int sr) throws OrtException {
ValidationResult result = validateInput(x, sr);
x = result.x;
sr = result.sr;
int numberSamples = 256;
if (sr == 16000) {
numberSamples = 512;
}
if (x[0].length != numberSamples) {
throw new IllegalArgumentException("Provided number of samples is " + x[0].length + " (Supported values: 256 for 8000 sample rate, 512 for 16000)");
}
int batchSize = x.length;
int contextSize = 32;
if (sr == 16000) {
contextSize = 64;
}
if (lastBatchSize == 0) {
resetStates();
}
if (lastSr != 0 && lastSr != sr) {
resetStates();
}
if (lastBatchSize != 0 && lastBatchSize != batchSize) {
resetStates();
}
if (context.length == 0) {
context = new float[batchSize][contextSize];
}
x = concatenate(context, x);
OrtEnvironment env = OrtEnvironment.getEnvironment();
OnnxTensor inputTensor = null;
OnnxTensor stateTensor = null;
OnnxTensor srTensor = null;
OrtSession.Result ortOutputs = null;
try {
// Create input tensors
inputTensor = OnnxTensor.createTensor(env, x);
stateTensor = OnnxTensor.createTensor(env, state);
srTensor = OnnxTensor.createTensor(env, new long[]{sr});
Map<String, OnnxTensor> inputs = new HashMap<>();
inputs.put("input", inputTensor);
inputs.put("sr", srTensor);
inputs.put("state", stateTensor);
// Call the ONNX model for calculation
ortOutputs = session.run(inputs);
// Get the output results
float[][] output = (float[][]) ortOutputs.get(0).getValue();
state = (float[][][]) ortOutputs.get(1).getValue();
context = getLastColumns(x, contextSize);
lastSr = sr;
lastBatchSize = batchSize;
return output[0];
} finally {
if (inputTensor != null) {
inputTensor.close();
}
if (stateTensor != null) {
stateTensor.close();
}
if (srTensor != null) {
srTensor.close();
}
if (ortOutputs != null) {
ortOutputs.close();
}
}
}
}

View File

@@ -31,11 +31,11 @@
"metadata": {},
"outputs": [],
"source": [
"#!pip install numpy==1.20.2\n",
"#!pip install torch==1.9.0\n",
"#!pip install matplotlib==3.4.2\n",
"#!pip install torchaudio==0.9.0\n",
"#!pip install soundfile==0.10.3.post1\n",
"#!pip install numpy==2.0.2\n",
"#!pip install torch==2.4.1\n",
"#!pip install matplotlib==3.9.2\n",
"#!pip install torchaudio==2.4.1\n",
"#!pip install soundfile==0.12.1\n",
"#!pip install pyaudio==0.2.11"
]
},
@@ -61,7 +61,6 @@
"import torchaudio\n",
"import matplotlib\n",
"import matplotlib.pylab as plt\n",
"torchaudio.set_audio_backend(\"soundfile\")\n",
"import pyaudio"
]
},
@@ -162,7 +161,7 @@
"metadata": {},
"outputs": [],
"source": [
"num_samples = 1536"
"num_samples = 512"
]
},
{
@@ -180,6 +179,8 @@
"data = []\n",
"voiced_confidences = []\n",
"\n",
"frames_to_record = 50\n",
"\n",
"print(\"Started Recording\")\n",
"for i in range(0, frames_to_record):\n",
" \n",
@@ -296,7 +297,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -310,7 +311,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
"version": "3.9.10"
},
"toc": {
"base_numbering": 1,

View File

@@ -1,13 +1,12 @@
use crate::utils;
use ndarray::{Array, Array2, ArrayBase, ArrayD, Dim, IxDynImpl, OwnedRepr};
use ndarray::{s, Array, Array2, ArrayBase, ArrayD, Dim, IxDynImpl, OwnedRepr};
use std::path::Path;
#[derive(Debug)]
pub struct Silero {
session: ort::Session,
sample_rate: ArrayBase<OwnedRepr<i64>, Dim<[usize; 1]>>,
h: ArrayBase<OwnedRepr<f32>, Dim<IxDynImpl>>,
c: ArrayBase<OwnedRepr<f32>, Dim<IxDynImpl>>,
state: ArrayBase<OwnedRepr<f32>, Dim<IxDynImpl>>,
}
impl Silero {
@@ -16,20 +15,17 @@ impl Silero {
model_path: impl AsRef<Path>,
) -> Result<Self, ort::Error> {
let session = ort::Session::builder()?.commit_from_file(model_path)?;
let h = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
let c = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
let state = ArrayD::<f32>::zeros([2, 1, 128].as_slice());
let sample_rate = Array::from_shape_vec([1], vec![sample_rate.into()]).unwrap();
Ok(Self {
session,
sample_rate,
h,
c,
state,
})
}
pub fn reset(&mut self) {
self.h = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
self.c = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
self.state = ArrayD::<f32>::zeros([2, 1, 128].as_slice());
}
pub fn calc_level(&mut self, audio_frame: &[i16]) -> Result<f32, ort::Error> {
@@ -37,18 +33,17 @@ impl Silero {
.iter()
.map(|x| (*x as f32) / (i16::MAX as f32))
.collect::<Vec<_>>();
let frame = Array2::<f32>::from_shape_vec([1, data.len()], data).unwrap();
let mut frame = Array2::<f32>::from_shape_vec([1, data.len()], data).unwrap();
frame = frame.slice(s![.., ..480]).to_owned();
let inps = ort::inputs![
frame,
std::mem::take(&mut self.state),
self.sample_rate.clone(),
std::mem::take(&mut self.h),
std::mem::take(&mut self.c)
]?;
let res = self
.session
.run(ort::SessionInputs::ValueSlice::<4>(&inps))?;
self.h = res["hn"].try_extract_tensor().unwrap().to_owned();
self.c = res["cn"].try_extract_tensor().unwrap().to_owned();
.run(ort::SessionInputs::ValueSlice::<3>(&inps))?;
self.state = res["stateN"].try_extract_tensor().unwrap().to_owned();
Ok(*res["output"]
.try_extract_raw_tensor::<f32>()
.unwrap()

View File

@@ -20,7 +20,7 @@ impl VadIter {
pub fn process(&mut self, samples: &[i16]) -> Result<(), ort::Error> {
self.reset_states();
for audio_frame in samples.chunks_exact(self.params.frame_size_samples) {
let speech_prob = self.silero.calc_level(audio_frame)?;
let speech_prob: f32 = self.silero.calc_level(audio_frame)?;
self.state.update(&self.params, speech_prob);
}
self.state.check_for_last_speech(samples.len());

View File

@@ -27,7 +27,7 @@ classifiers = [
dependencies = [
"torch>=1.12.0",
"torchaudio>=0.12.0",
"onnxruntime>=1.18.0",
"onnxruntime>=1.16.1",
]
[project.urls]

Binary file not shown.

View File

@@ -53,10 +53,10 @@ class OnnxWrapper():
x, sr = self._validate_input(x, sr)
num_samples = 512 if sr == 16000 else 256
if x.shape[-1] != num_samples:
raise ValueError(f"Provided number of samples is {x.shape[-1]} (Supported values: 256 for 8000 sample rate, 512 for 16000)")
batch_size = x.shape[0]
context_size = 64 if sr == 16000 else 32
@@ -133,7 +133,7 @@ class Validator():
def read_audio(path: str,
sampling_rate: int = 16000):
list_backends = torchaudio.list_audio_backends()
assert len(list_backends) > 0, 'The list of available backends is empty, please install backend manually. \
\n Recommendations: \n \tSox (UNIX OS) \n \tSoundfile (Windows OS, UNIX OS) \n \tffmpeg (Windows OS, UNIX OS)'
@@ -195,6 +195,7 @@ def get_speech_timestamps(audio: torch.Tensor,
return_seconds: bool = False,
visualize_probs: bool = False,
progress_tracking_callback: Callable[[float], None] = None,
neg_threshold: float = None,
window_size_samples: int = 512,):
"""
@@ -237,6 +238,9 @@ def get_speech_timestamps(audio: torch.Tensor,
progress_tracking_callback: Callable[[float], None] (default - None)
callback function taking progress in percents as an argument
neg_threshold: float (default = threshold - 0.15)
Negative threshold (noise or exit threshold). If model's current state is SPEECH, values BELOW this value are considered as NON-SPEECH.
window_size_samples: int (default - 512 samples)
!!! DEPRECATED, DOES NOTHING !!!
@@ -298,15 +302,17 @@ def get_speech_timestamps(audio: torch.Tensor,
triggered = False
speeches = []
current_speech = {}
neg_threshold = threshold - 0.15
temp_end = 0 # to save potential segment end (and tolerate some silence)
prev_end = next_start = 0 # to save potential segment limits in case of maximum segment size reached
if neg_threshold is None:
neg_threshold = threshold - 0.15
temp_end = 0 # to save potential segment end (and tolerate some silence)
prev_end = next_start = 0 # to save potential segment limits in case of maximum segment size reached
for i, speech_prob in enumerate(speech_probs):
if (speech_prob >= threshold) and temp_end:
temp_end = 0
if next_start < prev_end:
next_start = window_size_samples * i
next_start = window_size_samples * i
if (speech_prob >= threshold) and not triggered:
triggered = True
@@ -318,7 +324,7 @@ def get_speech_timestamps(audio: torch.Tensor,
current_speech['end'] = prev_end
speeches.append(current_speech)
current_speech = {}
if next_start < prev_end: # previously reached silence (< neg_thres) and is still not speech (< thres)
if next_start < prev_end: # previously reached silence (< neg_thres) and is still not speech (< thres)
triggered = False
else:
current_speech['start'] = next_start
@@ -334,7 +340,7 @@ def get_speech_timestamps(audio: torch.Tensor,
if (speech_prob < neg_threshold) and triggered:
if not temp_end:
temp_end = window_size_samples * i
if ((window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech : # condition to avoid cutting in very short silence
if ((window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech: # condition to avoid cutting in very short silence
prev_end = temp_end
if (window_size_samples * i) - temp_end < min_silence_samples:
continue
@@ -454,7 +460,7 @@ class VADIterator:
if (speech_prob >= self.threshold) and not self.triggered:
self.triggered = True
speech_start = self.current_sample - self.speech_pad_samples - window_size_samples
speech_start = max(0, self.current_sample - self.speech_pad_samples - window_size_samples)
return {'start': int(speech_start) if not return_seconds else round(speech_start / self.sampling_rate, 1)}
if (speech_prob < self.threshold - 0.15) and self.triggered:

74
tuning/README.md Normal file
View File

@@ -0,0 +1,74 @@
# Тюнинг Silero-VAD модели
> Код тюнинга создан при поддержке Фонда содействия инновациям в рамках федерального проекта «Искусственный
интеллект» национальной программы «Цифровая экономика Российской Федерации».
Тюнинг используется для улучшения качества детекции речи Silero-VAD модели на кастомных данных.
## Зависимости
Следующие зависимости используются при тюнинге VAD модели:
- `torchaudio>=0.12.0`
- `omegaconf>=2.3.0`
- `sklearn>=1.2.0`
- `torch>=1.12.0`
- `pandas>=2.2.2`
- `tqdm`
## Подготовка данных
Датафреймы для тюнинга должны быть подготовлены и сохранены в формате `.feather`. Следующие колонки в `.feather` файлах тренировки и валидации являются обязательными:
- **audio_path** - абсолютный путь до аудиофайла в дисковой системе. Аудиофайлы должны представлять собой `PCM` данные, предпочтительно в форматах `.wav` или `.opus` (иные популярные форматы аудио тоже поддерживаются). Для ускорения темпа дообучения рекомендуется предварительно выполнить ресемплинг аудиофайлов (изменить частоту дискретизации) до 16000 Гц;
- **speech_ts** - разметка для соответствующего аудиофайла. Список, состоящий из словарей формата `{'start': START_SEC, 'end': 'END_SEC'}`, где `START_SEC` и `END_SEC` - время начало и конца речевого отрезка в секундах соответственно. Для качественного дообучения рекомендуется использовать разметку с точностью до 30 миллисекунд.
Чем больше данных используется на этапе дообучения, тем эффективнее показывает себя адаптированная модель на целевом домене. Длина аудио не ограничена, т.к. каждое аудио будет обрезано до `max_train_length_sec` секунд перед подачей в нейросеть. Длинные аудио лучше предварительно порезать на кусочки длины `max_train_length_sec`.
Пример `.feather` датафрейма можно посмотреть в файле `example_dataframe.feather`
## Файл конфигурации `config.yml`
Файл конфигурации `config.yml` содержит пути до обучающей и валидационной выборки, а также параметры дообучения:
- `train_dataset_path` - абсолютный путь до тренировочного датафрейма в формате `.feather`. Должен содержать колонки `audio_path` и `speech_ts`, описанные в пункте "Подготовка данных". Пример устройства датафрейма можно посмотреть в `example_dataframe.feather`;
- `val_dataset_path` - абсолютный путь до валидационного датафрейма в формате `.feather`. Должен содержать колонки `audio_path` и `speech_ts`, описанные в пункте "Подготовка данных". Пример устройства датафрейма можно посмотреть в `example_dataframe.feather`;
- `jit_model_path` - абсолютный путь до Silero-VAD модели в формате `.jit`. Если оставить это поле пустым, то модель будет загружена из репозитория в зависимости от значения поля `use_torchhub`
- `use_torchhub` - Если `True`, то модель для дообучения будет загружена с помощью torch.hub. Если `False`, то модель для дообучения будет загружена с помощью библиотеки silero-vad (необходимо заранее установить командой `pip install silero-vad`);
- `tune_8k` - данный параметр отвечает, какую голову Silero-VAD дообучать. Если `True`, дообучаться будет голова с 8000 Гц частотой дискретизации, иначе с 16000 Гц;
- `model_save_path` - путь сохранения добученной модели;
- `noise_loss` - коэффициент лосса, применяемый для неречевых окон аудио;
- `max_train_length_sec` - максимальная длина аудио в секундах на этапе дообучения. Более длительные аудио будут обрезаны до этого показателя;
- `aug_prob` - вероятность применения аугментаций к аудиофайлу на этапе дообучения;
- `learning_rate` - темп дообучения;
- `batch_size` - размер батча при дообучении и валидации;
- `num_workers` - количество потоков, используемых для загрузки данных;
- `num_epochs` - количество эпох дообучения. За одну эпоху прогоняются все тренировочные данные;
- `device` - `cpu` или `cuda`.
## Дообучение
Дообучение запускается командой
`python tune.py`
Длится в течение `num_epochs`, лучший чекпоинт по показателю ROC-AUC на валидационной выборке будет сохранен в `model_save_path` в формате jit.
## Поиск пороговых значений
Порог на вход и порог на выход можно подобрать, используя команду
`python search_thresholds`
Данный скрипт использует файл конфигурации, описанный выше. Указанная в конфигурации модель будет использована для поиска оптимальных порогов на валидационном датасете.
## Цитирование
```
@misc{Silero VAD,
author = {Silero Team},
title = {Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/snakers4/silero-vad}},
commit = {insert_some_commit_here},
email = {hello@silero.ai}
}
```

0
tuning/__init__.py Normal file
View File

17
tuning/config.yml Normal file
View File

@@ -0,0 +1,17 @@
jit_model_path: '' # путь до Silero-VAD модели в формате jit, эта модель будет использована для дообучения. Если оставить поле пустым, то модель будет загружена автоматически
use_torchhub: True # jit модель будет загружена через torchhub, если True, или через pip, если False
tune_8k: False # дообучает 16к голову, если False, и 8к голову, если True
train_dataset_path: 'train_dataset_path.feather' # путь до датасета в формате feather для дообучения, подробности в README
val_dataset_path: 'val_dataset_path.feather' # путь до датасета в формате feather для валидации, подробности в README
model_save_path: 'model_save_path.jit' # путь сохранения дообученной модели
noise_loss: 0.5 # коэффициент, применяемый к лоссу на неречевых окнах
max_train_length_sec: 8 # во время тюнинга аудио длиннее будут обрезаны до данного значения
aug_prob: 0.4 # вероятность применения аугментаций к аудио в процессе дообучения
learning_rate: 5e-4 # темп дообучения модели
batch_size: 128 # размер батча при дообучении и валидации
num_workers: 4 # количество потоков, используемых для даталоадеров
num_epochs: 20 # количество эпох дообучения, 1 эпоха = полный прогон тренировочных данных
device: 'cuda' # cpu или cuda, на чем будет производится дообучение

Binary file not shown.

View File

@@ -0,0 +1,36 @@
from utils import init_jit_model, predict, calculate_best_thresholds, SileroVadDataset, SileroVadPadder
from omegaconf import OmegaConf
import torch
torch.set_num_threads(1)
if __name__ == '__main__':
config = OmegaConf.load('config.yml')
loader = torch.utils.data.DataLoader(SileroVadDataset(config, mode='val'),
batch_size=config.batch_size,
collate_fn=SileroVadPadder,
num_workers=config.num_workers)
if config.jit_model_path:
print(f'Loading model from the local folder: {config.jit_model_path}')
model = init_jit_model(config.jit_model_path, device=config.device)
else:
if config.use_torchhub:
print('Loading model using torch.hub')
model, _ = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_vad',
onnx=False,
force_reload=True)
else:
print('Loading model using silero-vad library')
from silero_vad import load_silero_vad
model = load_silero_vad(onnx=False)
print('Model loaded')
model.to(config.device)
print('Making predicts...')
all_predicts, all_gts = predict(model, loader, config.device, sr=8000 if config.tune_8k else 16000)
print('Calculating thresholds...')
best_ths_enter, best_ths_exit, best_acc = calculate_best_thresholds(all_predicts, all_gts)
print(f'Best threshold: {best_ths_enter}\nBest exit threshold: {best_ths_exit}\nBest accuracy: {best_acc}')

65
tuning/tune.py Normal file
View File

@@ -0,0 +1,65 @@
from utils import SileroVadDataset, SileroVadPadder, VADDecoderRNNJIT, train, validate, init_jit_model
from omegaconf import OmegaConf
import torch.nn as nn
import torch
if __name__ == '__main__':
config = OmegaConf.load('config.yml')
train_dataset = SileroVadDataset(config, mode='train')
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=config.batch_size,
collate_fn=SileroVadPadder,
num_workers=config.num_workers)
val_dataset = SileroVadDataset(config, mode='val')
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=config.batch_size,
collate_fn=SileroVadPadder,
num_workers=config.num_workers)
if config.jit_model_path:
print(f'Loading model from the local folder: {config.jit_model_path}')
model = init_jit_model(config.jit_model_path, device=config.device)
else:
if config.use_torchhub:
print('Loading model using torch.hub')
model, _ = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_vad',
onnx=False,
force_reload=True)
else:
print('Loading model using silero-vad library')
from silero_vad import load_silero_vad
model = load_silero_vad(onnx=False)
print('Model loaded')
model.to(config.device)
decoder = VADDecoderRNNJIT().to(config.device)
decoder.load_state_dict(model._model_8k.decoder.state_dict() if config.tune_8k else model._model.decoder.state_dict())
decoder.train()
params = decoder.parameters()
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, params),
lr=config.learning_rate)
criterion = nn.BCELoss(reduction='none')
best_val_roc = 0
for i in range(config.num_epochs):
print(f'Starting epoch {i + 1}')
train_loss = train(config, train_loader, model, decoder, criterion, optimizer, config.device)
val_loss, val_roc = validate(config, val_loader, model, decoder, criterion, config.device)
print(f'Metrics after epoch {i + 1}:\n'
f'\tTrain loss: {round(train_loss, 3)}\n',
f'\tValidation loss: {round(val_loss, 3)}\n'
f'\tValidation ROC-AUC: {round(val_roc, 3)}')
if val_roc > best_val_roc:
print('New best ROC-AUC, saving model')
best_val_roc = val_roc
if config.tune_8k:
model._model_8k.decoder.load_state_dict(decoder.state_dict())
else:
model._model.decoder.load_state_dict(decoder.state_dict())
torch.jit.save(model, config.model_save_path)
print('Done')

357
tuning/utils.py Normal file
View File

@@ -0,0 +1,357 @@
from sklearn.metrics import roc_auc_score, accuracy_score
from torch.utils.data import Dataset
import torch.nn as nn
from tqdm import tqdm
import pandas as pd
import numpy as np
import torchaudio
import warnings
import random
import torch
import gc
warnings.filterwarnings('ignore')
def read_audio(path: str,
sampling_rate: int = 16000,
normalize=False):
wav, sr = torchaudio.load(path)
if wav.size(0) > 1:
wav = wav.mean(dim=0, keepdim=True)
if sampling_rate:
if sr != sampling_rate:
transform = torchaudio.transforms.Resample(orig_freq=sr,
new_freq=sampling_rate)
wav = transform(wav)
sr = sampling_rate
if normalize and wav.abs().max() != 0:
wav = wav / wav.abs().max()
return wav.squeeze(0)
def build_audiomentations_augs(p):
from audiomentations import SomeOf, AirAbsorption, BandPassFilter, BandStopFilter, ClippingDistortion, HighPassFilter, HighShelfFilter, \
LowPassFilter, LowShelfFilter, Mp3Compression, PeakingFilter, PitchShift, RoomSimulator, SevenBandParametricEQ, \
Aliasing, AddGaussianNoise
transforms = [Aliasing(p=1),
AddGaussianNoise(p=1),
AirAbsorption(p=1),
BandPassFilter(p=1),
BandStopFilter(p=1),
ClippingDistortion(p=1),
HighPassFilter(p=1),
HighShelfFilter(p=1),
LowPassFilter(p=1),
LowShelfFilter(p=1),
Mp3Compression(p=1),
PeakingFilter(p=1),
PitchShift(p=1),
RoomSimulator(p=1, leave_length_unchanged=True),
SevenBandParametricEQ(p=1)]
tr = SomeOf((1, 3), transforms=transforms, p=p)
return tr
class SileroVadDataset(Dataset):
def __init__(self,
config,
mode='train'):
self.num_samples = 512 # constant, do not change
self.sr = 16000 # constant, do not change
self.resample_to_8k = config.tune_8k
self.noise_loss = config.noise_loss
self.max_train_length_sec = config.max_train_length_sec
self.max_train_length_samples = config.max_train_length_sec * self.sr
assert self.max_train_length_samples % self.num_samples == 0
assert mode in ['train', 'val']
dataset_path = config.train_dataset_path if mode == 'train' else config.val_dataset_path
self.dataframe = pd.read_feather(dataset_path).reset_index(drop=True)
self.index_dict = self.dataframe.to_dict('index')
self.mode = mode
print(f'DATASET SIZE : {len(self.dataframe)}')
if mode == 'train':
self.augs = build_audiomentations_augs(p=config.aug_prob)
else:
self.augs = None
def __getitem__(self, idx):
idx = None if self.mode == 'train' else idx
wav, gt, mask = self.load_speech_sample(idx)
if self.mode == 'train':
wav = self.add_augs(wav)
if len(wav) > self.max_train_length_samples:
wav = wav[:self.max_train_length_samples]
gt = gt[:int(self.max_train_length_samples / self.num_samples)]
mask = mask[:int(self.max_train_length_samples / self.num_samples)]
wav = torch.FloatTensor(wav)
if self.resample_to_8k:
transform = torchaudio.transforms.Resample(orig_freq=self.sr,
new_freq=8000)
wav = transform(wav)
return wav, torch.FloatTensor(gt), torch.from_numpy(mask)
def __len__(self):
return len(self.index_dict)
def load_speech_sample(self, idx=None):
if idx is None:
idx = random.randint(0, len(self.index_dict) - 1)
wav = read_audio(self.index_dict[idx]['audio_path'], self.sr).numpy()
if len(wav) % self.num_samples != 0:
pad_num = self.num_samples - (len(wav) % (self.num_samples))
wav = np.pad(wav, (0, pad_num), 'constant', constant_values=0)
gt, mask = self.get_ground_truth_annotated(self.index_dict[idx]['speech_ts'], len(wav))
assert len(gt) == len(wav) / self.num_samples
mask[gt == 0]
return wav, gt, mask
def get_ground_truth_annotated(self, annotation, audio_length_samples):
gt = np.zeros(audio_length_samples)
for i in annotation:
gt[int(i['start'] * self.sr): int(i['end'] * self.sr)] = 1
squeezed_predicts = np.average(gt.reshape(-1, self.num_samples), axis=1)
squeezed_predicts = (squeezed_predicts > 0.5).astype(int)
mask = np.ones(len(squeezed_predicts))
mask[squeezed_predicts == 0] = self.noise_loss
return squeezed_predicts, mask
def add_augs(self, wav):
while True:
try:
wav_aug = self.augs(wav, self.sr)
if np.isnan(wav_aug.max()) or np.isnan(wav_aug.min()):
return wav
return wav_aug
except Exception as e:
continue
def SileroVadPadder(batch):
wavs = [batch[i][0] for i in range(len(batch))]
labels = [batch[i][1] for i in range(len(batch))]
masks = [batch[i][2] for i in range(len(batch))]
wavs = torch.nn.utils.rnn.pad_sequence(
wavs, batch_first=True, padding_value=0)
labels = torch.nn.utils.rnn.pad_sequence(
labels, batch_first=True, padding_value=0)
masks = torch.nn.utils.rnn.pad_sequence(
masks, batch_first=True, padding_value=0)
return wavs, labels, masks
class VADDecoderRNNJIT(nn.Module):
def __init__(self):
super(VADDecoderRNNJIT, self).__init__()
self.rnn = nn.LSTMCell(128, 128)
self.decoder = nn.Sequential(nn.Dropout(0.1),
nn.ReLU(),
nn.Conv1d(128, 1, kernel_size=1),
nn.Sigmoid())
def forward(self, x, state=torch.zeros(0)):
x = x.squeeze(-1)
if len(state):
h, c = self.rnn(x, (state[0], state[1]))
else:
h, c = self.rnn(x)
x = h.unsqueeze(-1).float()
state = torch.stack([h, c])
x = self.decoder(x)
return x, state
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def train(config,
loader,
jit_model,
decoder,
criterion,
optimizer,
device):
losses = AverageMeter()
decoder.train()
context_size = 32 if config.tune_8k else 64
num_samples = 256 if config.tune_8k else 512
stft_layer = jit_model._model_8k.stft if config.tune_8k else jit_model._model.stft
encoder_layer = jit_model._model_8k.encoder if config.tune_8k else jit_model._model.encoder
with torch.enable_grad():
for _, (x, targets, masks) in tqdm(enumerate(loader), total=len(loader)):
targets = targets.to(device)
x = x.to(device)
masks = masks.to(device)
x = torch.nn.functional.pad(x, (context_size, 0))
outs = []
state = torch.zeros(0)
for i in range(context_size, x.shape[1], num_samples):
input_ = x[:, i-context_size:i+num_samples]
out = stft_layer(input_)
out = encoder_layer(out)
out, state = decoder(out, state)
outs.append(out)
stacked = torch.cat(outs, dim=2).squeeze(1)
loss = criterion(stacked, targets)
loss = (loss * masks).mean()
loss.backward()
optimizer.step()
losses.update(loss.item(), masks.numel())
torch.cuda.empty_cache()
gc.collect()
return losses.avg
def validate(config,
loader,
jit_model,
decoder,
criterion,
device):
losses = AverageMeter()
decoder.eval()
predicts = []
gts = []
context_size = 32 if config.tune_8k else 64
num_samples = 256 if config.tune_8k else 512
stft_layer = jit_model._model_8k.stft if config.tune_8k else jit_model._model.stft
encoder_layer = jit_model._model_8k.encoder if config.tune_8k else jit_model._model.encoder
with torch.no_grad():
for _, (x, targets, masks) in tqdm(enumerate(loader), total=len(loader)):
targets = targets.to(device)
x = x.to(device)
masks = masks.to(device)
x = torch.nn.functional.pad(x, (context_size, 0))
outs = []
state = torch.zeros(0)
for i in range(context_size, x.shape[1], num_samples):
input_ = x[:, i-context_size:i+num_samples]
out = stft_layer(input_)
out = encoder_layer(out)
out, state = decoder(out, state)
outs.append(out)
stacked = torch.cat(outs, dim=2).squeeze(1)
predicts.extend(stacked[masks != 0].tolist())
gts.extend(targets[masks != 0].tolist())
loss = criterion(stacked, targets)
loss = (loss * masks).mean()
losses.update(loss.item(), masks.numel())
score = roc_auc_score(gts, predicts)
torch.cuda.empty_cache()
gc.collect()
return losses.avg, round(score, 3)
def init_jit_model(model_path: str,
device=torch.device('cpu')):
torch.set_grad_enabled(False)
model = torch.jit.load(model_path, map_location=device)
model.eval()
return model
def predict(model, loader, device, sr):
with torch.no_grad():
all_predicts = []
all_gts = []
for _, (x, targets, masks) in tqdm(enumerate(loader), total=len(loader)):
x = x.to(device)
out = model.audio_forward(x, sr=sr)
for i, out_chunk in enumerate(out):
predict = out_chunk[masks[i] != 0].cpu().tolist()
gt = targets[i, masks[i] != 0].cpu().tolist()
all_predicts.append(predict)
all_gts.append(gt)
return all_predicts, all_gts
def calculate_best_thresholds(all_predicts, all_gts):
best_acc = 0
for ths_enter in tqdm(np.linspace(0, 1, 20)):
for ths_exit in np.linspace(0, 1, 20):
if ths_exit >= ths_enter:
continue
accs = []
for j, predict in enumerate(all_predicts):
predict_bool = []
is_speech = False
for i in predict:
if i >= ths_enter:
is_speech = True
predict_bool.append(1)
elif i <= ths_exit:
is_speech = False
predict_bool.append(0)
else:
val = 1 if is_speech else 0
predict_bool.append(val)
score = round(accuracy_score(all_gts[j], predict_bool), 4)
accs.append(score)
mean_acc = round(np.mean(accs), 3)
if mean_acc > best_acc:
best_acc = mean_acc
best_ths_enter = round(ths_enter, 2)
best_ths_exit = round(ths_exit, 2)
return best_ths_enter, best_ths_exit, best_acc