mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-04 17:39:22 +08:00
Compare commits
1 Commits
v4.0
...
v3.1stable
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f9876dd5f9 |
29
README.md
29
README.md
@@ -15,7 +15,7 @@ This repository also includes Number Detector and Language classifier [models](h
|
||||
<br/>
|
||||
|
||||
<p align="center">
|
||||
<img src="https://user-images.githubusercontent.com/36505480/198026365-8da383e0-5398-4a12-b7f8-22c2c0059512.png" />
|
||||
<img src="https://user-images.githubusercontent.com/36505480/145563071-681b57e3-06b5-4cd0-bdee-e2ade3d50a60.png" />
|
||||
</p>
|
||||
|
||||
<details>
|
||||
@@ -29,17 +29,17 @@ https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-
|
||||
<h2 align="center">Key Features</h2>
|
||||
<br/>
|
||||
|
||||
- **Stellar accuracy**
|
||||
- **High accuracy**
|
||||
|
||||
Silero VAD has [excellent results](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#vs-other-available-solutions) on speech detection tasks.
|
||||
|
||||
- **Fast**
|
||||
|
||||
One audio chunk (30+ ms) [takes](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics#silero-vad-performance-metrics) less than **1ms** to be processed on a single CPU thread. Using batching or GPU can also improve performance considerably. Under certain conditions ONNX may even run up to 4-5x faster.
|
||||
One audio chunk (30+ ms) [takes](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics#silero-vad-performance-metrics) around **1ms** to be processed on a single CPU thread. Using batching or GPU can also improve performance considerably.
|
||||
|
||||
- **Lightweight**
|
||||
|
||||
JIT model is around one megabyte in size.
|
||||
JIT model is less than one megabyte in size.
|
||||
|
||||
- **General**
|
||||
|
||||
@@ -47,19 +47,11 @@ https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-
|
||||
|
||||
- **Flexible sampling rate**
|
||||
|
||||
Silero VAD [supports](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#sample-rate-comparison) **8000 Hz** and **16000 Hz** [sampling rates](https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate).
|
||||
Silero VAD [supports](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#sample-rate-comparison) **8000 Hz** and **16000 Hz** (JIT) and **16000 Hz** (ONNX) [sampling rates](https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate).
|
||||
|
||||
- **Flexible chunk size**
|
||||
|
||||
Model was trained on **30 ms**. Longer chunks are supported directly, others may work as well.
|
||||
|
||||
- **Highly Portable**
|
||||
|
||||
Silero VAD reaps benefits from the rich ecosystems built around **PyTorch** and **ONNX** running everywhere where these runtimes are available.
|
||||
|
||||
- **No Strings Attached**
|
||||
|
||||
Published under permissive license (MIT) Silero VAD has zero strings attached - no telemetry, no keys, no registration, no built-in expiration, no keys or vendor lock.
|
||||
Model was trained on audio chunks of different lengths. **30 ms**, **60 ms** and **100 ms** long chunks are supported directly, others may work as well.
|
||||
|
||||
<br/>
|
||||
<h2 align="center">Typical Use Cases</h2>
|
||||
@@ -78,10 +70,9 @@ https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-
|
||||
- [Examples and Dependencies](https://github.com/snakers4/silero-vad/wiki/Examples-and-Dependencies#dependencies)
|
||||
- [Quality Metrics](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics)
|
||||
- [Performance Metrics](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics)
|
||||
- [Number Detector and Language classifier models](https://github.com/snakers4/silero-vad/wiki/Other-Models)
|
||||
- Number Detector and Language classifier [models](https://github.com/snakers4/silero-vad/wiki/Other-Models)
|
||||
- [Versions and Available Models](https://github.com/snakers4/silero-vad/wiki/Version-history-and-Available-Models)
|
||||
- [Further reading](https://github.com/snakers4/silero-models#further-reading)
|
||||
- [FAQ](https://github.com/snakers4/silero-vad/wiki/FAQ)
|
||||
|
||||
<br/>
|
||||
<h2 align="center">Get In Touch</h2>
|
||||
@@ -105,9 +96,3 @@ Please see our [wiki](https://github.com/snakers4/silero-models/wiki) and [tiers
|
||||
email = {hello@silero.ai}
|
||||
}
|
||||
```
|
||||
|
||||
<br/>
|
||||
<h2 align="center">VAD-based Community Apps</h2>
|
||||
<br/>
|
||||
|
||||
- Voice activity detection for the [browser](https://github.com/ricky0123/vad) using ONNX Runtime Web
|
||||
|
||||
Binary file not shown.
Binary file not shown.
29
hubconf.py
29
hubconf.py
@@ -16,25 +16,14 @@ from utils_vad import (init_jit_model,
|
||||
OnnxWrapper)
|
||||
|
||||
|
||||
def versiontuple(v):
|
||||
return tuple(map(int, (v.split('+')[0].split("."))))
|
||||
|
||||
|
||||
def silero_vad(onnx=False, force_onnx_cpu=False):
|
||||
def silero_vad(onnx=False):
|
||||
"""Silero Voice Activity Detector
|
||||
Returns a model with a set of utils
|
||||
Please see https://github.com/snakers4/silero-vad for usage examples
|
||||
"""
|
||||
|
||||
if not onnx:
|
||||
installed_version = torch.__version__
|
||||
supported_version = '1.12.0'
|
||||
if versiontuple(installed_version) < versiontuple(supported_version):
|
||||
raise Exception(f'Please install torch {supported_version} or greater ({installed_version} installed)')
|
||||
|
||||
model_dir = os.path.join(os.path.dirname(__file__), 'files')
|
||||
if onnx:
|
||||
model = OnnxWrapper(os.path.join(model_dir, 'silero_vad.onnx'), force_onnx_cpu)
|
||||
model = OnnxWrapper(os.path.join(model_dir, 'silero_vad.onnx'))
|
||||
else:
|
||||
model = init_jit_model(os.path.join(model_dir, 'silero_vad.jit'))
|
||||
utils = (get_speech_timestamps,
|
||||
@@ -46,7 +35,7 @@ def silero_vad(onnx=False, force_onnx_cpu=False):
|
||||
return model, utils
|
||||
|
||||
|
||||
def silero_number_detector(onnx=False, force_onnx_cpu=False):
|
||||
def silero_number_detector(onnx=False):
|
||||
"""Silero Number Detector
|
||||
Returns a model with a set of utils
|
||||
Please see https://github.com/snakers4/silero-vad for usage examples
|
||||
@@ -55,7 +44,7 @@ def silero_number_detector(onnx=False, force_onnx_cpu=False):
|
||||
url = 'https://models.silero.ai/vad_models/number_detector.onnx'
|
||||
else:
|
||||
url = 'https://models.silero.ai/vad_models/number_detector.jit'
|
||||
model = Validator(url, force_onnx_cpu)
|
||||
model = Validator(url)
|
||||
utils = (get_number_ts,
|
||||
save_audio,
|
||||
read_audio,
|
||||
@@ -65,7 +54,7 @@ def silero_number_detector(onnx=False, force_onnx_cpu=False):
|
||||
return model, utils
|
||||
|
||||
|
||||
def silero_lang_detector(onnx=False, force_onnx_cpu=False):
|
||||
def silero_lang_detector(onnx=False):
|
||||
"""Silero Language Classifier
|
||||
Returns a model with a set of utils
|
||||
Please see https://github.com/snakers4/silero-vad for usage examples
|
||||
@@ -74,14 +63,14 @@ def silero_lang_detector(onnx=False, force_onnx_cpu=False):
|
||||
url = 'https://models.silero.ai/vad_models/number_detector.onnx'
|
||||
else:
|
||||
url = 'https://models.silero.ai/vad_models/number_detector.jit'
|
||||
model = Validator(url, force_onnx_cpu)
|
||||
model = Validator(url)
|
||||
utils = (get_language,
|
||||
read_audio)
|
||||
|
||||
return model, utils
|
||||
|
||||
|
||||
def silero_lang_detector_95(onnx=False, force_onnx_cpu=False):
|
||||
def silero_lang_detector_95(onnx=False):
|
||||
"""Silero Language Classifier (95 languages)
|
||||
Returns a model with a set of utils
|
||||
Please see https://github.com/snakers4/silero-vad for usage examples
|
||||
@@ -91,8 +80,8 @@ def silero_lang_detector_95(onnx=False, force_onnx_cpu=False):
|
||||
url = 'https://models.silero.ai/vad_models/lang_classifier_95.onnx'
|
||||
else:
|
||||
url = 'https://models.silero.ai/vad_models/lang_classifier_95.jit'
|
||||
model = Validator(url, force_onnx_cpu)
|
||||
|
||||
model = Validator(url)
|
||||
|
||||
model_dir = os.path.join(os.path.dirname(__file__), 'files')
|
||||
with open(os.path.join(model_dir, 'lang_dict_95.json'), 'r') as f:
|
||||
lang_dict = json.load(f)
|
||||
|
||||
@@ -138,10 +138,7 @@
|
||||
"\n",
|
||||
"window_size_samples = 1536 # number of samples in a single audio chunk\n",
|
||||
"for i in range(0, len(wav), window_size_samples):\n",
|
||||
" chunk = wav[i: i+ window_size_samples]\n",
|
||||
" if len(chunk) < window_size_samples:\n",
|
||||
" break\n",
|
||||
" speech_dict = vad_iterator(chunk, return_seconds=True)\n",
|
||||
" speech_dict = vad_iterator(wav[i: i+ window_size_samples], return_seconds=True)\n",
|
||||
" if speech_dict:\n",
|
||||
" print(speech_dict, end=' ')\n",
|
||||
"vad_iterator.reset_states() # reset model states after each audio"
|
||||
@@ -161,10 +158,7 @@
|
||||
"speech_probs = []\n",
|
||||
"window_size_samples = 1536\n",
|
||||
"for i in range(0, len(wav), window_size_samples):\n",
|
||||
" chunk = wav[i: i+ window_size_samples]\n",
|
||||
" if len(chunk) < window_size_samples:\n",
|
||||
" break\n",
|
||||
" speech_prob = model(chunk, SAMPLING_RATE).item()\n",
|
||||
" speech_prob = model(wav[i: i+ window_size_samples], SAMPLING_RATE).item()\n",
|
||||
" speech_probs.append(speech_prob)\n",
|
||||
"vad_iterator.reset_states() # reset model states after each audio\n",
|
||||
"\n",
|
||||
|
||||
106
utils_vad.py
106
utils_vad.py
@@ -9,98 +9,51 @@ languages = ['ru', 'en', 'de', 'es']
|
||||
|
||||
class OnnxWrapper():
|
||||
|
||||
def __init__(self, path, force_onnx_cpu=False):
|
||||
def __init__(self, path):
|
||||
import numpy as np
|
||||
global np
|
||||
import onnxruntime
|
||||
if force_onnx_cpu and 'CPUExecutionProvider' in onnxruntime.get_available_providers():
|
||||
self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider'])
|
||||
else:
|
||||
self.session = onnxruntime.InferenceSession(path)
|
||||
self.session = onnxruntime.InferenceSession(path)
|
||||
self.session.intra_op_num_threads = 1
|
||||
self.session.inter_op_num_threads = 1
|
||||
|
||||
self.reset_states()
|
||||
self.sample_rates = [8000, 16000]
|
||||
|
||||
def _validate_input(self, x, sr: int):
|
||||
def reset_states(self):
|
||||
self._h = np.zeros((2, 1, 64)).astype('float32')
|
||||
self._c = np.zeros((2, 1, 64)).astype('float32')
|
||||
|
||||
def __call__(self, x, sr: int):
|
||||
if x.dim() == 1:
|
||||
x = x.unsqueeze(0)
|
||||
if x.dim() > 2:
|
||||
raise ValueError(f"Too many dimensions for input audio chunk {x.dim()}")
|
||||
|
||||
if sr != 16000 and (sr % 16000 == 0):
|
||||
step = sr // 16000
|
||||
x = x[::step]
|
||||
sr = 16000
|
||||
if x.shape[0] > 1:
|
||||
raise ValueError("Onnx model does not support batching")
|
||||
|
||||
if sr not in self.sample_rates:
|
||||
raise ValueError(f"Supported sampling rates: {self.sample_rates} (or multiply of 16000)")
|
||||
if sr not in [16000]:
|
||||
raise ValueError(f"Supported sample rates: {[16000]}")
|
||||
|
||||
if sr / x.shape[1] > 31.25:
|
||||
raise ValueError("Input audio chunk is too short")
|
||||
|
||||
return x, sr
|
||||
ort_inputs = {'input': x.numpy(), 'h0': self._h, 'c0': self._c}
|
||||
ort_outs = self.session.run(None, ort_inputs)
|
||||
out, self._h, self._c = ort_outs
|
||||
|
||||
def reset_states(self, batch_size=1):
|
||||
self._h = np.zeros((2, batch_size, 64)).astype('float32')
|
||||
self._c = np.zeros((2, batch_size, 64)).astype('float32')
|
||||
self._last_sr = 0
|
||||
self._last_batch_size = 0
|
||||
out = torch.tensor(out).squeeze(2)[:, 1] # make output type match JIT analog
|
||||
|
||||
def __call__(self, x, sr: int):
|
||||
|
||||
x, sr = self._validate_input(x, sr)
|
||||
batch_size = x.shape[0]
|
||||
|
||||
if not self._last_batch_size:
|
||||
self.reset_states(batch_size)
|
||||
if (self._last_sr) and (self._last_sr != sr):
|
||||
self.reset_states(batch_size)
|
||||
if (self._last_batch_size) and (self._last_batch_size != batch_size):
|
||||
self.reset_states(batch_size)
|
||||
|
||||
if sr in [8000, 16000]:
|
||||
ort_inputs = {'input': x.numpy(), 'h': self._h, 'c': self._c, 'sr': np.array(sr)}
|
||||
ort_outs = self.session.run(None, ort_inputs)
|
||||
out, self._h, self._c = ort_outs
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
self._last_sr = sr
|
||||
self._last_batch_size = batch_size
|
||||
|
||||
out = torch.tensor(out)
|
||||
return out
|
||||
|
||||
def audio_forward(self, x, sr: int, num_samples: int = 512):
|
||||
outs = []
|
||||
x, sr = self._validate_input(x, sr)
|
||||
|
||||
if x.shape[1] % num_samples:
|
||||
pad_num = num_samples - (x.shape[1] % num_samples)
|
||||
x = torch.nn.functional.pad(x, (0, pad_num), 'constant', value=0.0)
|
||||
|
||||
self.reset_states(x.shape[0])
|
||||
for i in range(0, x.shape[1], num_samples):
|
||||
wavs_batch = x[:, i:i+num_samples]
|
||||
out_chunk = self.__call__(wavs_batch, sr)
|
||||
outs.append(out_chunk)
|
||||
|
||||
stacked = torch.cat(outs, dim=1)
|
||||
return stacked.cpu()
|
||||
|
||||
|
||||
class Validator():
|
||||
def __init__(self, url, force_onnx_cpu):
|
||||
def __init__(self, url):
|
||||
self.onnx = True if url.endswith('.onnx') else False
|
||||
torch.hub.download_url_to_file(url, 'inf.model')
|
||||
if self.onnx:
|
||||
import onnxruntime
|
||||
if force_onnx_cpu and 'CPUExecutionProvider' in onnxruntime.get_available_providers():
|
||||
self.model = onnxruntime.InferenceSession('inf.model', providers=['CPUExecutionProvider'])
|
||||
else:
|
||||
self.model = onnxruntime.InferenceSession('inf.model')
|
||||
self.model = onnxruntime.InferenceSession('inf.model')
|
||||
else:
|
||||
self.model = init_jit_model(model_path='inf.model')
|
||||
|
||||
@@ -164,7 +117,7 @@ def get_speech_timestamps(audio: torch.Tensor,
|
||||
sampling_rate: int = 16000,
|
||||
min_speech_duration_ms: int = 250,
|
||||
min_silence_duration_ms: int = 100,
|
||||
window_size_samples: int = 512,
|
||||
window_size_samples: int = 1536,
|
||||
speech_pad_ms: int = 30,
|
||||
return_seconds: bool = False,
|
||||
visualize_probs: bool = False):
|
||||
@@ -224,16 +177,8 @@ def get_speech_timestamps(audio: torch.Tensor,
|
||||
if len(audio.shape) > 1:
|
||||
raise ValueError("More than one dimension in audio. Are you trying to process audio with 2 channels?")
|
||||
|
||||
if sampling_rate > 16000 and (sampling_rate % 16000 == 0):
|
||||
step = sampling_rate // 16000
|
||||
sampling_rate = 16000
|
||||
audio = audio[::step]
|
||||
warnings.warn('Sampling rate is a multiply of 16000, casting to 16000 manually!')
|
||||
else:
|
||||
step = 1
|
||||
|
||||
if sampling_rate == 8000 and window_size_samples > 768:
|
||||
warnings.warn('window_size_samples is too big for 8000 sampling_rate! Better set window_size_samples to 256, 512 or 768 for 8000 sample rate!')
|
||||
warnings.warn('window_size_samples is too big for 8000 sampling_rate! Better set window_size_samples to 256, 512 or 1536 for 8000 sample rate!')
|
||||
if window_size_samples not in [256, 512, 768, 1024, 1536]:
|
||||
warnings.warn('Unusual window_size_samples! Supported window_size_samples:\n - [512, 1024, 1536] for 16000 sampling_rate\n - [256, 512, 768] for 8000 sampling_rate')
|
||||
|
||||
@@ -281,7 +226,7 @@ def get_speech_timestamps(audio: torch.Tensor,
|
||||
triggered = False
|
||||
continue
|
||||
|
||||
if current_speech and (audio_length_samples - current_speech['start']) > min_speech_samples:
|
||||
if current_speech:
|
||||
current_speech['end'] = audio_length_samples
|
||||
speeches.append(current_speech)
|
||||
|
||||
@@ -294,8 +239,7 @@ def get_speech_timestamps(audio: torch.Tensor,
|
||||
speech['end'] += int(silence_duration // 2)
|
||||
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - silence_duration // 2))
|
||||
else:
|
||||
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
|
||||
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - speech_pad_samples))
|
||||
speech['end'] += int(speech_pad_samples)
|
||||
else:
|
||||
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
|
||||
|
||||
@@ -303,10 +247,6 @@ def get_speech_timestamps(audio: torch.Tensor,
|
||||
for speech_dict in speeches:
|
||||
speech_dict['start'] = round(speech_dict['start'] / sampling_rate, 1)
|
||||
speech_dict['end'] = round(speech_dict['end'] / sampling_rate, 1)
|
||||
elif step > 1:
|
||||
for speech_dict in speeches:
|
||||
speech_dict['start'] *= step
|
||||
speech_dict['end'] *= step
|
||||
|
||||
if visualize_probs:
|
||||
make_visualization(speech_probs, window_size_samples / sampling_rate)
|
||||
@@ -413,10 +353,6 @@ class VADIterator:
|
||||
self.model = model
|
||||
self.threshold = threshold
|
||||
self.sampling_rate = sampling_rate
|
||||
|
||||
if sampling_rate not in [8000, 16000]:
|
||||
raise ValueError('VADIterator does not support sampling rates other than [8000, 16000]')
|
||||
|
||||
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
||||
self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
||||
self.reset_states()
|
||||
|
||||
Reference in New Issue
Block a user